2023 Configuration MD (MD7003) with unsafe beams

S. Fartoukh

- Main results from MD1 & MD2
- Main objectives for FMD4 & Beams required
- MD steps

Main results from MD1+MD2 (1/2)

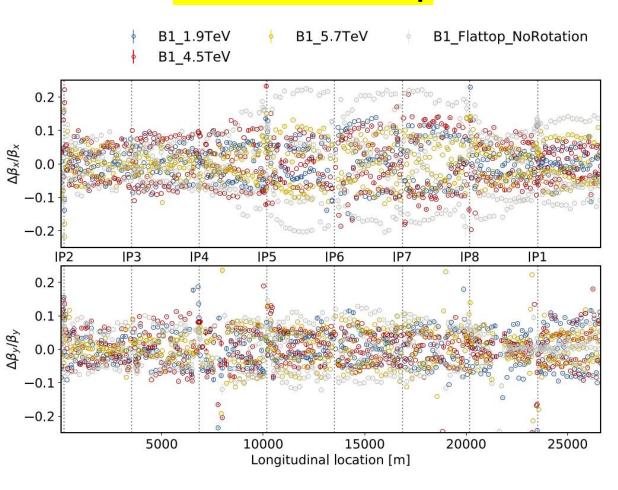
- Demonstration of the mechanics down to 30 cm
- → At 60 cm the settings are the same as for 2022, incl. OMC knobs, except
 - (i) TCT settings in IR1/5/8
 - (ii) X-plane in IR8
 - (iii) X-angle in IR1/5 [145 μ rad @ 60 cm ->160 μ rad @ 30 cm]
- → At 30 cm the settings are strictly the same

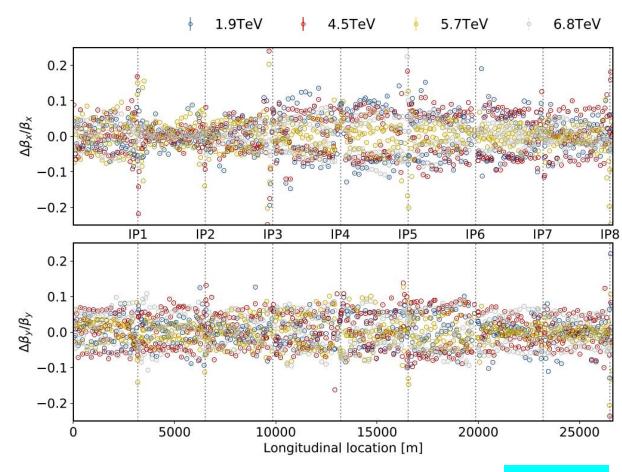
New combined ramp and antitelescopic squeeze (as of 4.5 TeV)

LHCb rotation @ FT (2 m at IP1/2/8)

Mini-squeeze down to 1.2 m

Q-change & ADJUST

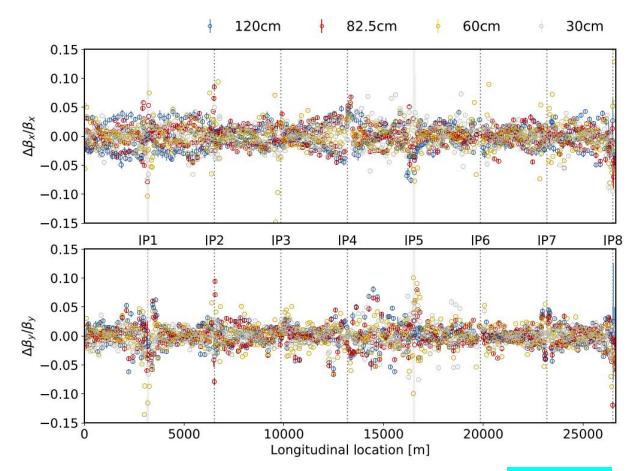

 $1^{rst} \beta^*$ -levelling segment down to 60 cm


 $2^{nd} \beta^*$ -levelling segment down to 30 cm

- Optics measurement all along the cycle, with one additional OMC knob @1.2 m (trimmed in in the mini-squeeze, and out in the first β^* levelling segment)
- → Very good optics:
- (i) 10-15% in the ramp, 5-10% in beta* levelling,
- (ii) outstanding case of B1H @ 2 m reaching 20%

Beam 1 in the ramp

Beam 2 in the ramp



Beam 1 in β*-levelling

B1_120cm B1_82cm B1_60cm B1_30cm 0.15 0.10 0.05 $\Delta \beta_{\rm x}/\beta_{\rm x}$ 0.00 -0.05-0.10-0.15IP3 IP4 IP5 IP6 IP7 IP8 IP1 0.15 IP2 0.10 0.05 $\Delta \beta_y/\beta_y$ -0.05-0.10-0.155000 15000 10000 20000 25000

Longitudinal location [m]

Beam 2 in β*-levelling

Main results from MD1+MD2 (2/2)

- Partial validation of the cycle (with 2 nom. + 10 probes per beam)
- → Successful ASD @ 1.2 m (worst case for MKD/TCDQ phase)
- → No off-momentum LMs yet, but most of on-momentum LMs till 60 cm

	FT @ 2m before rot.	FT @ 2m after rot.	1.2 m before coll.	1.2 m in coll.	60 cm In coll.	30 cm In col.
On-momentum	٧	٧	٧	٧	× (B1) √ (B2)	×
Off-momentum δ >0	×	×	×	×	×	×
Off-momentum δ <0	×	×	×	×	×	×

The cycle will be limited to 60 cm in FMD4

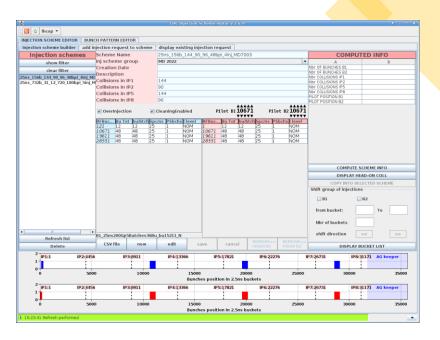
Example of B1H

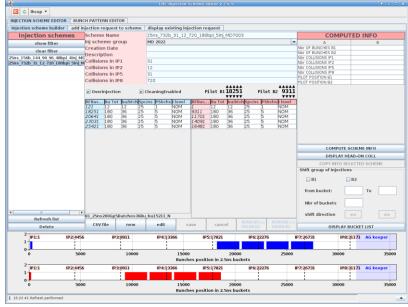
Before LHCb rotation @ 2 m

After LHCb rotation @ 2 m

Before collision @ 1.2 m

After collision @ 1.2 m


Loss Pattern IR7 1.0e+00 1.0e+00 d 1.0e-02 1.0e-04 1.0e-06 Loss pattern LHC ring - 2022/11/08 04:00:05 - Configuration not requested Loss Pattern IR7 1.0e+01 1.0e-03 Loss pattern LHC ring - 2022/11/08 04:27:50 - Configuration not requested Loss Pattern IR7 9 1.0e-02 <u>စီ</u> 1.0e-04 12000 14000 Loss pattern LHC ring - 2022/11/08 05:03:59 - Configuration not requested Loss Pattern IR7 ਜ਼ੇ 1.0e+00 ਲੁੰ % 1.0e-02 1.0e-04 12000 s (m)


Collimation team

Objectives for MD4

- Beam-beam studies @ 1.8e11 p/b, collisions at the 4 IPs, and external V-crossing in IR8
 - →25ns_**156b**_144_90_96_48bpi_4inj_MD7003
 - → The 48b trains are widely separated (3 SPS injection)

- LHCb rotation in the presence of e-cloud @ 1.4e11 p/b
 - → 25ns_**732b**_31_12_720_180bpi_5inj_MD7003
 - → The number of beam-beam interactions (BBLR+HO) is maximised in IR8

MD steps (1/2)

- Fill # 1: validation fill with 2 nominal + 12 probes (<3e11 p/b)
 - Selection of off-momentum LMs down to 60 cm + B1H/V @ 60 cm
 - → 12 LMs for Beam1 and 10 LMs for Beam2

	FT @ 2m before rot.	FT @ 2m after rot.	1.2 m before coll.	1.2 m in coll.	60 cm In coll.	30 cm In col.
On-momentum	٧	٧	٧	٧	√ (B1) √ (B2)	×
Off-momentum δ >0	×	٧	×	٧	٧	×
Off-momentum δ <0	×	٧	×	٧	×	×

- De-squeeze from 60 cm up to 1.2 m
- Scrape the two nominal (is it needed?)
- IR8 V-aperture measurement (expected to be 12.5-13 σ vs. 20 σ ++ in IR1/5)
- Dump

MD steps (2/2)

- Fill # 2: 1^{rst} intensity ramp-up step with 12b + 48b @ 1.4e11 p/b
 - Run the cycle with no stop till 1.2 m
 - Establish and optimize the collisions IP1/5 (no collisions at IP2/8)
 - Tune optimization based on lifetime
 - Beta* levelling down to 60 cm
 - Lumi and tune optimization @ 60 cm
 - Dump @ 60 cm
- Fill # 3: 2nd step with 12b + 3×48b @ 1.8e11 p/b
 - Run the cycle with no stop till 1.2 m
 - Establish and optimize the collisions at all Ips (IP2 &IP8 separated)
 - Tune optimization based on lifetime
 - Beta* levelling <u>in steps</u> down to 60 cm (with lumi and tune optimization whenever needed)
 - Dump @ 60 cm
- Fill # 4: 3rd step with ~700 b @ 1.4e11 p/b
 - Run the cycle with no stop till FT
 - Run the LHCb rotation and monitor lifetime and losses
 - Dump @ 2 m

Intermediate step requested by rMPP

Expected Head-on Lumi [10³²]

	β*= 1.2 m	β*= 60 cm		
ATLAS & CMS	11.9	20.0		
Alice	1.0			
LHCb	4.3			

Very likely 3h00 will be missing!

Tiny risk that it does not work,
.. but sizeable impact (1 week) for
the 2023 commissioning if actually
it does not!