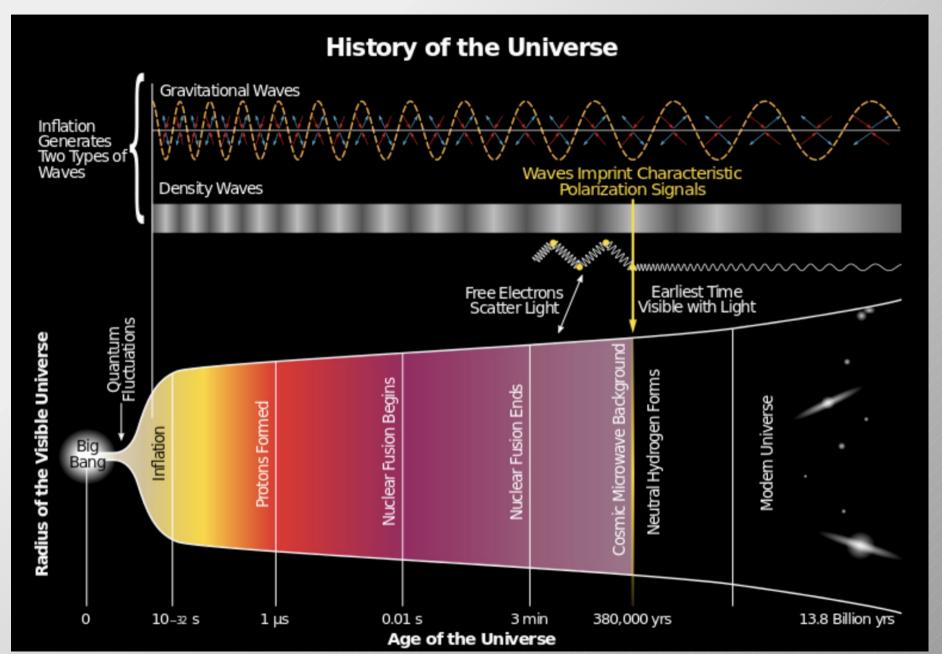
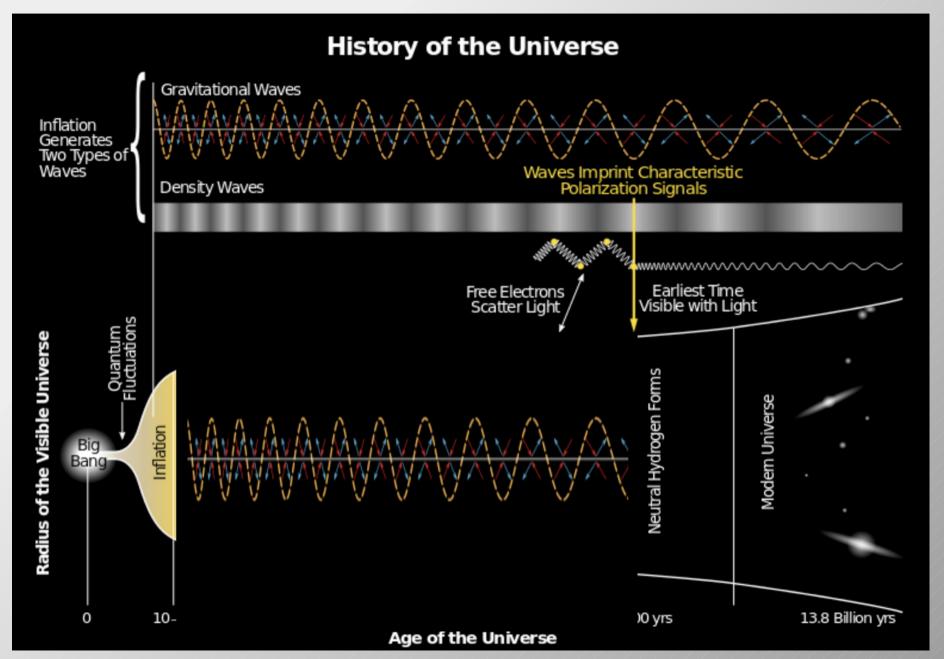


Measuring the polarization of the CMB with QUIJOTE and LiteBIRD

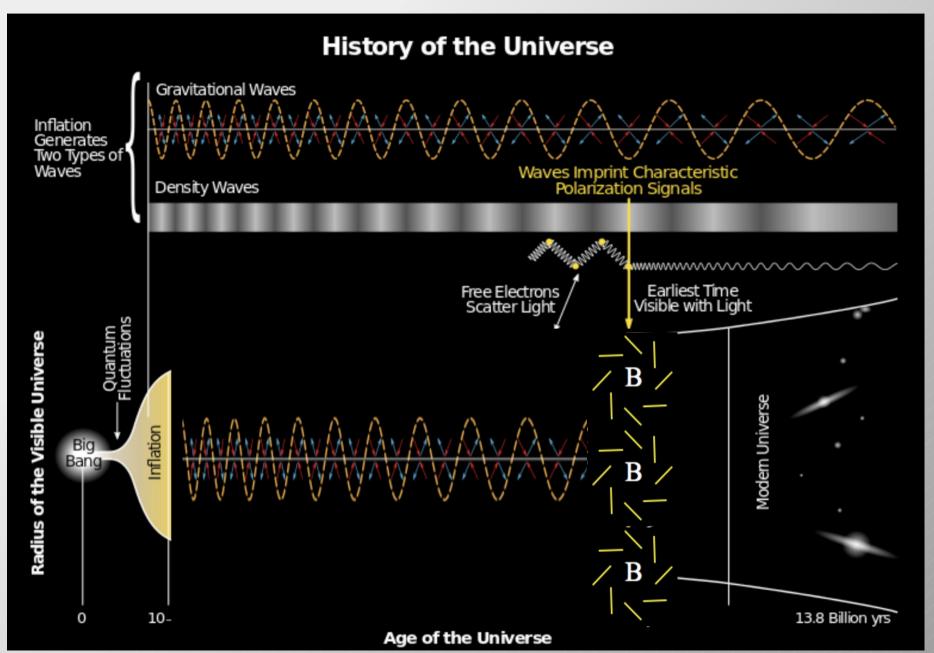

Raul Gonzalez Gonzalez IAC - ULL

XXXIII - Canary Island Winter School - 2022

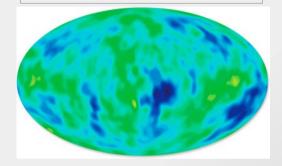
Big Bang and Inflation



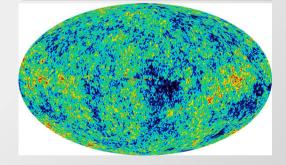
Big Bang and Inflation

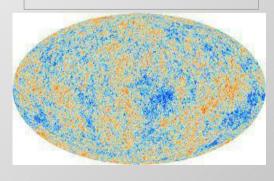


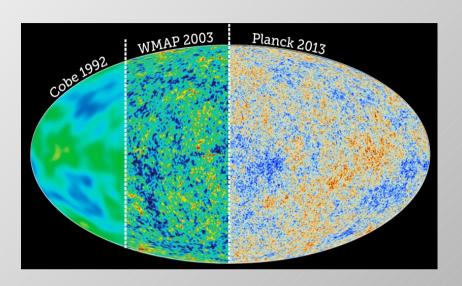
Big Bang and Inflation



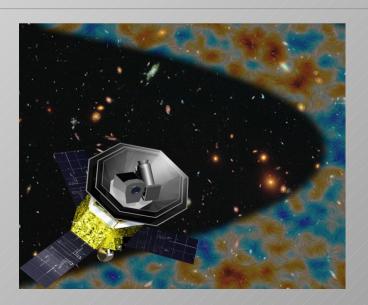
Past and future space missions




COBE 1989-1993

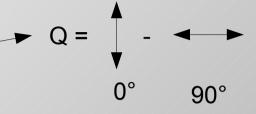


WMAP 2001 - 2010



Planck 2009 - 2013

Future space mission: LiteBIRD (JAXA-2029)


Stokes parameters, E-modes and B-modes

Stokes parameters

- We can measure the polarization of the CMB the same way as for light
- The Stokes parameters quantify polarization of a light ray:
 - \rightarrow I = no filter at all
 - \rightarrow O = linear polarized at 0° and 90°
 - \rightarrow U = linear polarized at -45° and 45°
 - V = circular polaraized
- I is just the temperature.
- O and U combine to form E-modes and B-modes.
- No known physical process can generate V-polarised CMB radiation.

Linear combination of Q and U invariant under rotation as a spin-2 quantity

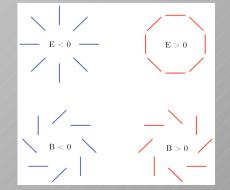
$$Q' \pm iU' = e^{\pm 2i\psi} (Q \pm iU)$$

Spin-2 armonic decomposition on the sky:

$$Q' \pm iU'(\vec{n}) = \sum_{l=2}^{\infty} \sum_{m=-l}^{+l} a_{lm \pm 2}^{\pm 2} Y_{lm}(\vec{n})$$

E-modes and B-modes

$$\sum_{l=2}^{\infty} \sum_{m=-l}^{+l} a_{lm \pm 2}^{\pm 2} Y_{lm}(\vec{n}) = \sum_{l=2}^{\infty} \sum_{m=-l}^{+l} (a_{E,lm} + i a_{B,lm})_{\pm 2} Y_{lm}(\vec{n})$$

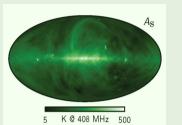

$$a_{E,lm} = \frac{1}{2} (a_{lm}^{+2} + a_{lm}^{-2})$$

 $a_{E,lm} = \frac{1}{2} (a_{lm}^{+2} + a_{lm}^{-2}) \qquad a_{B,lm} = \frac{-i}{2} (a_{lm}^{+2} - a_{lm}^{-2})$

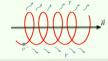
Invariant under parity NOT invariant under parity trasformation

$$a_{B,lm} = \frac{-i}{2} (a_{lm}^{+2} - a_{lm}^{-2})$$

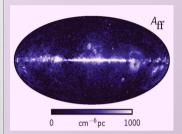
trasformation



Foregrounds



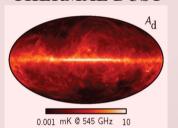
SYNCHROTRON



Cosmic ray electrons emits photos spiralizing around the galactic magnetic field (B).

$$S_{sync} = A_{sync} \left(\frac{\mathbf{v}}{\mathbf{v}_0} \right)^{\beta_s}$$

FREE-FREE

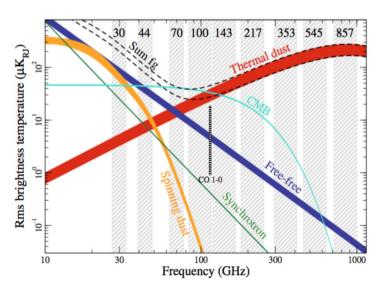


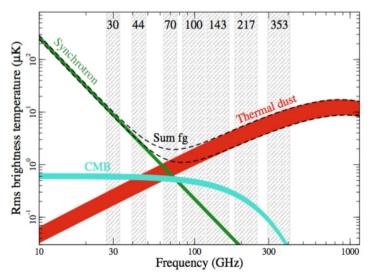
Thermal electron – ion interaction in the instersllar plasma (thermal bremmstrahlung)

$$S_{ff} = \frac{2K_B v^2}{c^2} \Omega T_{ff}$$

THERMAL DUST

Interstellar dust grains absorb the interstellar radiation and are heated up. In the cooling process it emits radiation

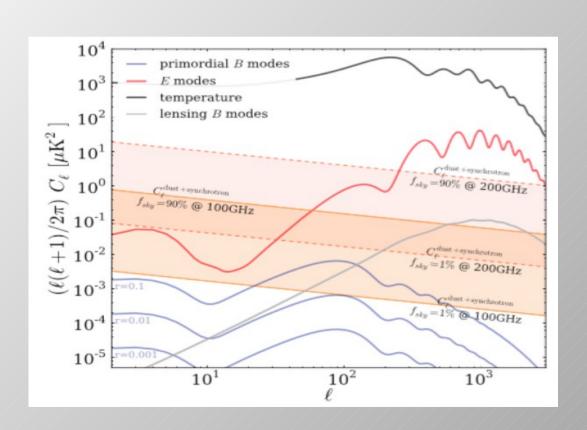

$$S_{\mathit{TD}} = au_{v0} \Big(rac{\mathbf{v}}{\mathbf{v}_0} \Big)^{eta_d} B_v(T_d)$$


ANOMALOUS MICROWAVE EMISSION

Radiation produced (most propably) by spinning small dust grains with an electric dipole moment

$$S_{AME} = A_{AME} \exp \left[\frac{-1}{2 W_{AME}^2} \ln^2 \left(\frac{\mathbf{v}}{\mathbf{v}_{AME}} \right) \right]$$

Foregrounds vs. B-modes



Foregrounds. B-mode signal is subdominant over Galactic foregrounds

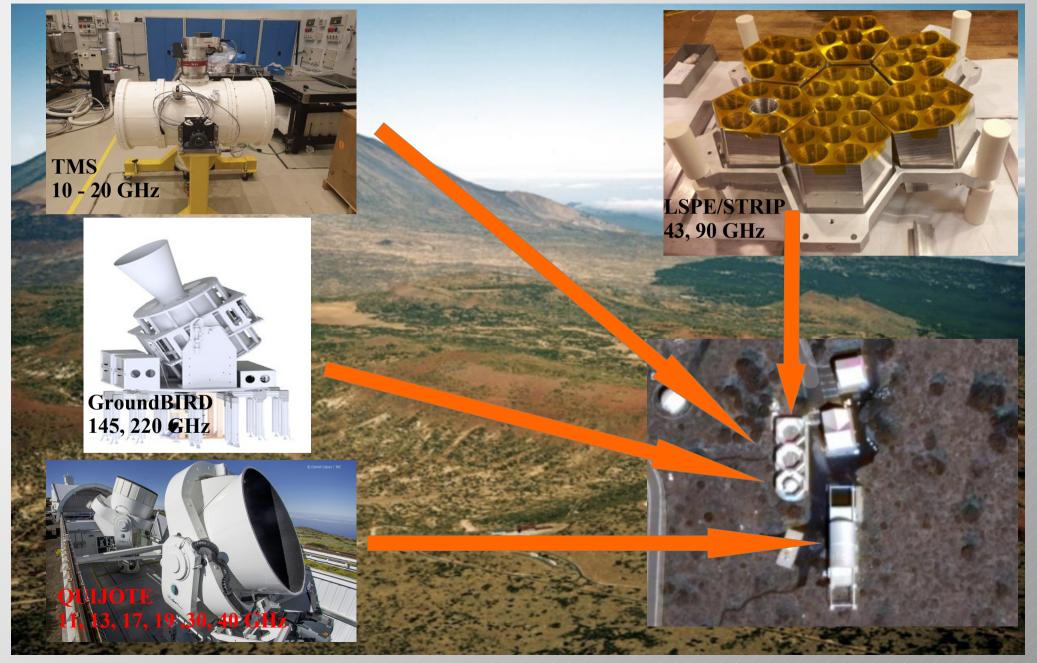
Tensor to scalar ratio

$$r = \frac{P_{tensor}(k_0)}{P_{scalar}(k_0)} = 0.008 \left(\frac{E_{inf}}{10^{16} \, Gev} \right)^4$$

Upper limit at the moment

Teide observatory

Altitude 2400 m; 28.3° N, 16.5° W



Teide observatory (Cosmology)

QUIJOTE telescopes

QUIJOTE telescopes

QUIJOTE. Telescope

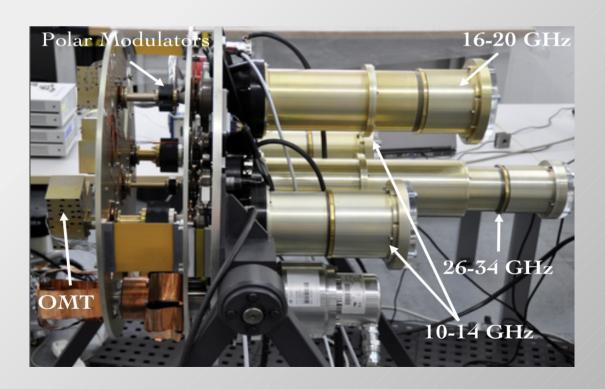
Alto-azimutal mount

Maximum rotation speed around AZ axis: 0.25 Hz.

Maximum zenith angle: 60°

Cross-Dragonian design.

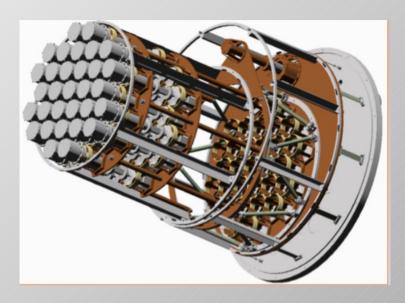
Aperture: 2.25 m (primary) and 1.9 m (secondary)

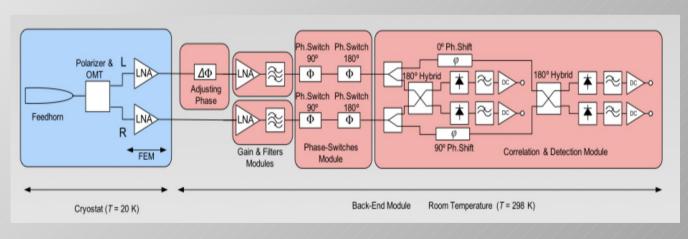

QUIJOTE-1 MFI (Multi frequency instrument)

- 4 horns, 32 channels, 4 frequency bands: 11,13,17 and 19 Ghz
- Angular resolution: 0.92° 0.63°
- Sensitivity: $400 600 \, \mu \text{K} \cdot \text{s}^{1/2} \, \text{per channel}$
- Stepping modulator (HWP) for polarization
- HEMT technology
- Observing from November 2012 to November 2018

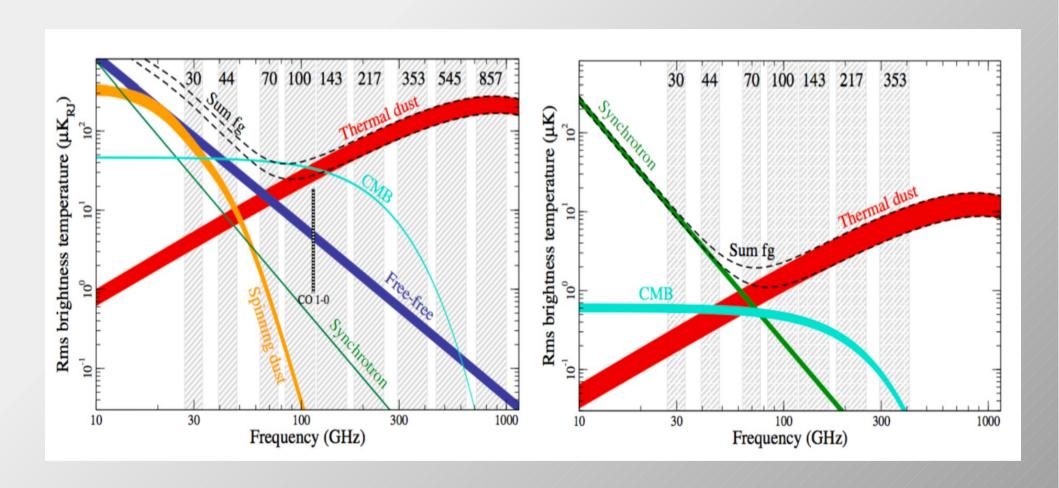
QUIJOTE-1 MFI 2 (10-20 GHz)

- MFI upgrade (MFI2 @ QT1). Aim: to increase the integration speed of the MFI by a factor 3 (mainly coming from the new LNAs) \rightarrow Sensitivity of $\sim 10 \,\mu\text{K/deg}$ @ 11 Ghz in wide survey.
- 5 horns. Two covering the 10-14 Ghz band, and three covering 16-20 GHz
- Full digital back-end (FPGAs) → RFI removal.
- Status: Cryostat fabricated and tested. Opto-mechanical components fabricated. Now in assembly phase.
- Operations: 3 effective years, starting beginning 2023.

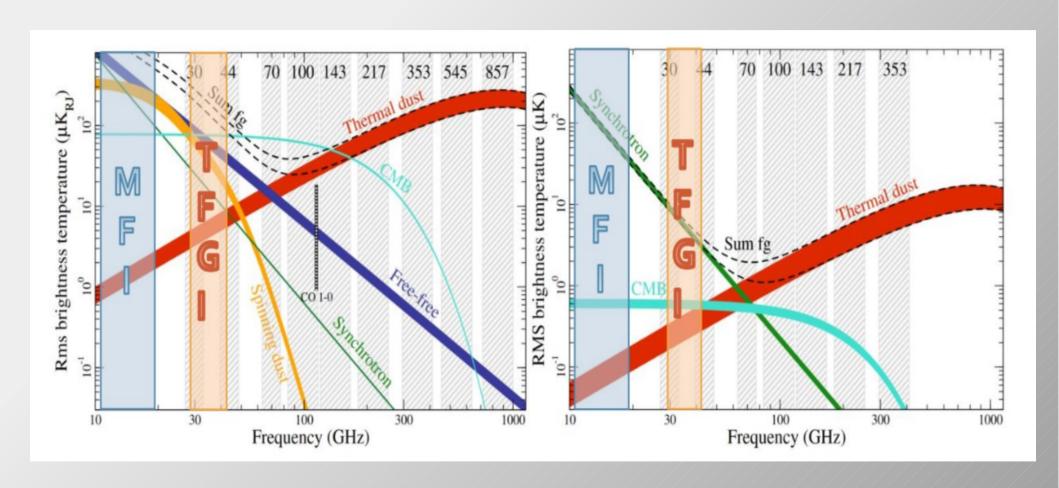


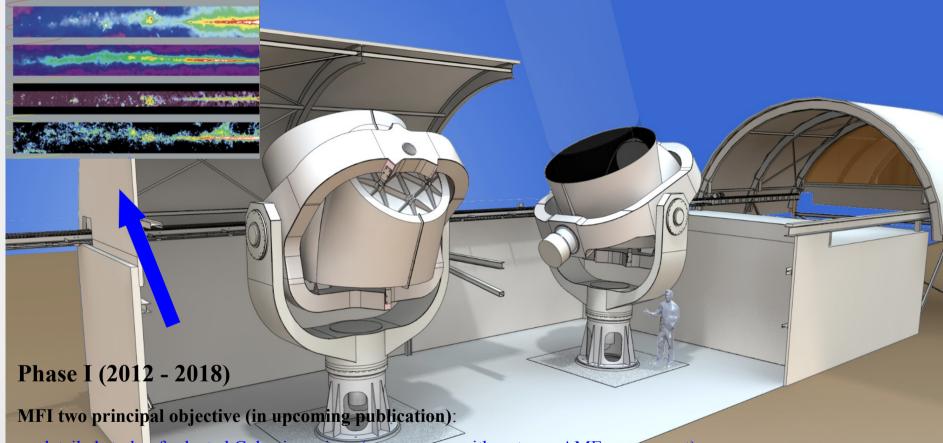

QUIJOTE-2 TFGI (Thirty-Forty GHz Instrument)

- 14 pixels at 30 GHz, 15 pixel at 40 GHz
- Angular resolution: 0.32° 0.26°
- Sensitivity: $\sim 100 \ \mu \text{K} \cdot \text{s}^{1/2}$
- First light in 2018 but stopped. Now restarted, in phase of calibration (started in november 2021)



Foregrounds





QUIJOTE frequency range

- detailed study of selected Galactic regions (e.g. sources with a strong AME component).
- characterization of low frequency Galactic foregrounds in intensity and polarization.
 - Synchrotron: main emission mecanism at QUIJOTE's frequencies.
 - <u>Anomalous microwave emission</u> (spinning dust?): current best upper limits of polarization fraction are ~ 0.22% (Genova-Santos et al. 2017).

allowing to achieve a more accurate component separation for present and future CMB experiments. To correct them in future space missions aiming to reach r = 0.001 (LiteBIRD satellite telescope). Excellent complement to Planck at low frequencies

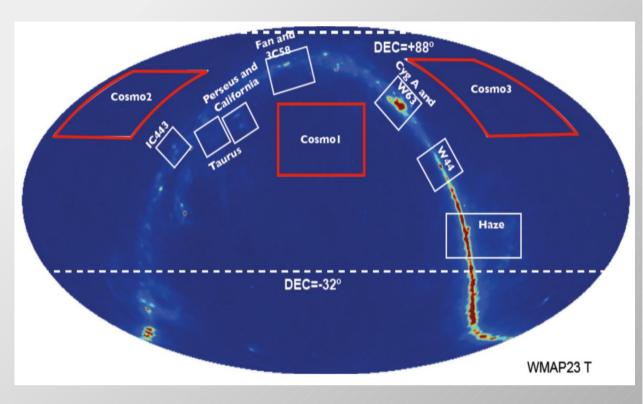
QUIJOTE CMB experiment Phase II (2023 Future objectives: Combined FGLTGI data should allow to reach r = 0.05 after 3 years of operation GroundBIRD will start operations in 2023, at 145 GHz and 220 GHz, and will have sensitivity to r = 0.01, after • Joint QUIJOTE + GroundBIRD (same angular resolution, different frequencies) analysis could potentially allow for even more stringent r constraints, and simultaneous correction for synchrotron+dust for possible future experiments operating at intermediate frequencies (~90 Ghz). TT $[l(l+1)C_l/2\pi]^{1/2} (\mu K)$ g. lensing BB10-2

QUIJOTE MFI fields

• Wide survey: 20.000 deg^2 of sky covered, more that 21.000 hours of observations, sensitivity of $30 \mu K/1^{\circ}$ beam.

Nominal observation: 8h azimuth scans at fixed elevation (30°, 35°, 40°, 50°, 60°, 65°, 70°, 75°, 80°)

Goal: mostly foreground studies


• Deep cosmological survey: 3.000 deg^2 in 3 separated fields. Sensitivity $10\mu\text{K}/1^\circ\text{beam}$ after 1 year with the MFI (@11,13,17,19 Ghz) and $1\mu\text{K}/1^\circ\text{beam}$ after 1 year with TFGI (@ 30, 40 Ghz).

Goal: reach $r \sim 0.05$ in three years of operation of the TFGI in **B_modes** studies for $l \sim 18^{\circ}$

• Galactic regions: covering few hundred deg² sensitivity 30 - 40 μK/1°beam

Raster observation: scans in a azimuth interval and fixed elevation

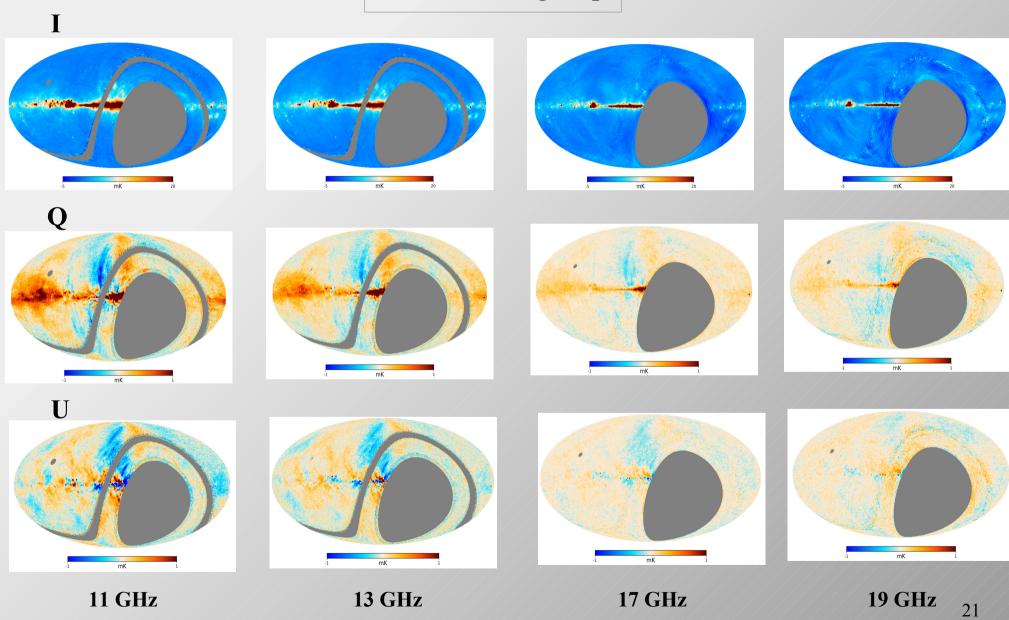
Goal: radio foregrounds characterization in those regions

QUIJOTE papers already published:

- Perseus molecular complex (Genova-Santos et al. (2015))
- W44, supernova remnant, W43 and W47 molecular complexes (Genova-Santos et al. (2017))
- Taurus molecular cloud (Poidevin et al. 2019)

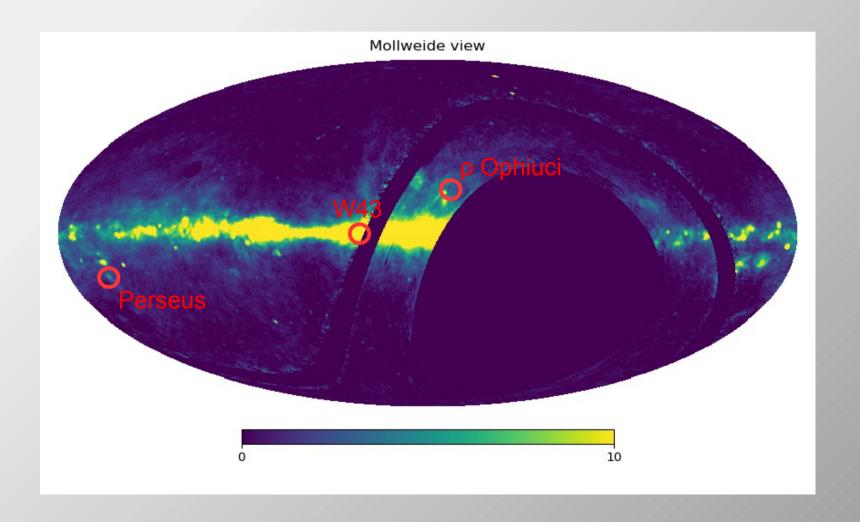
...but also:

- 3C58 and the fan region (561.4h)
- Galactic haze (930h)
- SNRs: IC443 (270h), W63 (250h)


• /.... 20

QUIJOTE MFI wide survey (10-20 GHz)

Smoothed 1 deg maps


My activity with MFI Anomalous Microwave Emission (AME) analysis

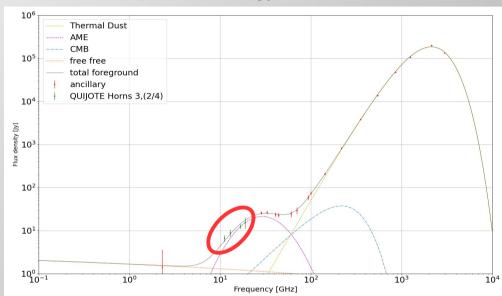
Main purpose of my activity:

- To measure the polarization and upper limits, or to improve it, for the AME radiation in some galactic region.
- 3 of the brightest and best studied regions as been chosen: ρ Ophiuchi, W43, Perseus.

11 GHz

13 GHz

ρ Ophiuchi



Intensity

17 GHz

19 GHz

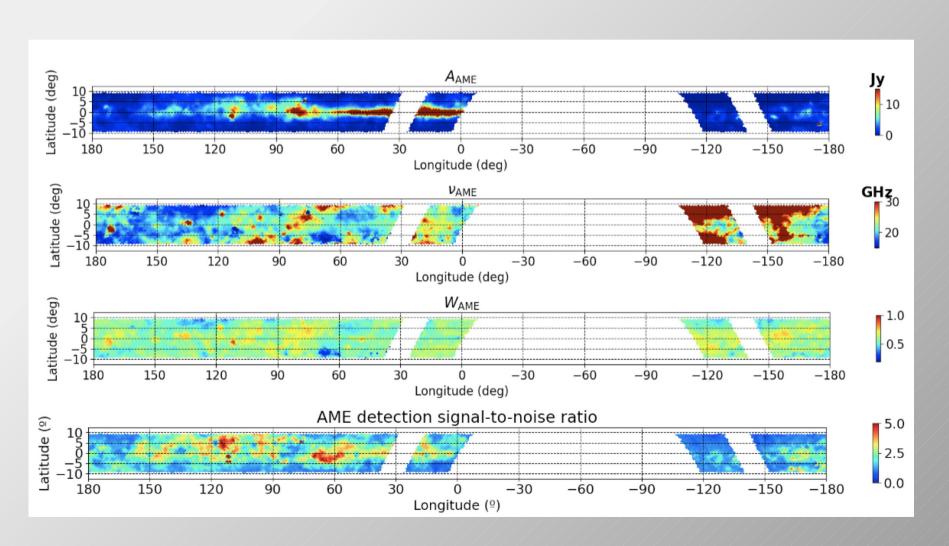
Spectral Energy Distribution

SED parameters

Foreground	Free free	Thermal dust			СМВ	AME		
Parameter	EM (cm ⁻⁶ pc)	τ ₂₅₀ (x10 ⁻⁵)	T _d (K)	β_d	<u>ΔT</u> _{cmb} (μ ς)	A _{ame}	v _{ame} (GHz)	W _{ame}
Values	16 ± 21	53.0 ± 3.3	22.1 ± 0.3	1.66 ± 0.04	81.0 ± 28.0	21.3 ± 1.8	29.1 ± 1.9	0.53 ± 0.08

Polarization parameters

Freq. [Ghz]	Iame (Jy)	Q (Jy)	U (Jy)	P (Jy)	Пате (%)	
QUIJOTE - 11	6.2 ± 1.4	0.080 ± 0.189	0.445 ± 0.206	0.452 ± 0.205	6.71 ± 3.91	
QUIJOTE - 1	8.7 ± 1.6	.176 ± 0.149	0.369 ± 0.198	0.409 ± 0.189	4.52 ± 2.55	
QUIJOTE - 17	14.0 ± 1.7	- 0.076 ± 0.184	0.377 ± 0.280	$0.385 \pm 0.27^{\circ}$	< 5.19	
QUIJOTE - 9	18.6 ± 4.4	0316 ± 0.458	0.456 ± 0.621	0.554 ± 0.57	< 7.41	
WMAP K - : 3	24.3 ± 2.5	0 111 ± 0.129	0.351 ± 0.092	0.368 ± 0.96	1.44 ± 0.50	
Planck - 28	26.7 ± 2.5	-0.055 ± 0.133	0.137 ± 0.108	0.147 ± 0.112	< 1.20	
WMAP Ka - 33	25.8 ± 2.7	-0.263 ± 0.137	0.034 ± 0.138	0.265 ± 0.137	0.83 ± 0.67	
WMAP Q - 40	20.5 ± 3.2	0.067 ± 0.238	- 0.103 ± 0.232	0.122 ± 0.231	< 2.49	
Planck - 44	18.0 ± 3.6	0.137 ± 0.146	0.137 ± 0.221	0.193 ± 0.188	< 2.35	



Galactic AME variations

Maps for the amplitude, peak and width of the parable fitting the AME

Poster from Mateo Fernandez Torreiro

List of pubblications

MFI early results (3 papers, published):

- I. Intensity and polarization of the AME in the Perseus molecular complex (Génova-Santos et al. 2015)
- II. Polarization measurements in the Galactic MCs W43 and W47 and SNR W43 (Génova-Santos et al. 2017)
- III. Microwave spectrum of intensity and polarization in the Taurus MC complex and L1527 (Poidevin et al. 2019)

MFI wide survey (13 papers, associated to MFI wide survey data release):

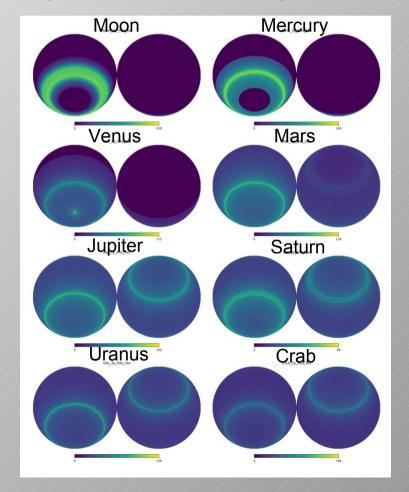
- IV. A northern sky survey at 10-20 GHz with the Multi-Frequency Instrument (Rubino-Martín et al. submitted)
- V. W49, W51 and IC443 SNRs as seen by QUIJOTE-MFI (Tramonte et al. submitted)
- VI. The Haze region and the Galactic Centre as seen by QUIJOTE-MFI (Guidi et al. submitted)
- VII. Galactic AME sources in the MFI wide survey (Poidevin et al. Submitted): the detection of AME in various compact sources, allowing to perform a statistical study over the AME parameters and the correlation with other foregrounds
- VIII. Component separation in polarization with the QUIJOTE-MFI wide survey. (de la Hoz et al. Submitted): the production of new foregrounds maps in intensity and polarization, providing a particularly accurate separation of polarized synchrotron and AME
- IX. Radio-sources in the QUIJOTE-MFI wide survey (Herranz et al. Submitted): the production of a catalog of radio-sources at the MFI frequencies
- X. Polarised synchrotron loops and spurs. (Peel et al. in prep)
- XI. Spatial variability of AME parameters in the Galactic Plane (Fernández-Torreiro et al.)
- XII. Analysis of the polarised synchrotron emission at the power spectrum level (Vansyngel et al.): the characterization of the polarized diffuse synchrotron with cross-correlations
- XIII. Intensity and polarization study of Supernova Remnants (López-Caraballo et al. in prep)
- XIV. The FAN region as seen by QUIJOTE-MFI (Ruiz-Granados et al. in prep)
- XV. The North Galactic Spur as seen by QUIJOTE-MFI (Watson et al. in prep): the study of the brightest polarized loop in the sky, the North Polar Spur
- XVI. Component separation in intensity with the QUIJOTE-MFI wide survey (de la Hoz et al. in prep)

Other MFI papers (3 papers, 2 published):,

- Detection of spectral variations of AME with QUIJOTE and C-BASS (Cepeda-Arroita al. 2021)
- The PICASSO map-making code: application to a simulation of the QUIJOTE MFI survey (Guidi et al. 2021)
- MFI data processing pipeline (Genova-Santos et al. in prep)
- Measeurement of the intensity and polarization of the AME in ρ Ophiuci molecular complex. Update measurement for Perseus, W43, W44, W47 (Gonzalez Gonzalez et al.)

LiteBIRD (2029)

Member of simulation of In-flight calibration group


- Over 300 researchers from Japan, North America and Europe
- All-sky 3-y survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (34-448 GHz, 15 bands)

Definitive search for the **B-mode signal from cosmic** inflation in the CMB polarization

- Making a discovery or ruling out well-motivated inflationary models
- Aim to detect inflationary B-mode polarization with total uncertainty of $\delta r < 0.001$
- Insight into the quantum nature of gravity
- **Reionization** (improve $\sigma(\tau)$ by a factor of 3)
- Neutrino mass $(\sigma(\sum m_v) = 15 \text{ meV})$
- Constraints on cosmic birefringence
- •/

Simulation of some celestial objects as observed by LiteBIRD

Thank You for Your attention!