
1 Content of Lecture II

� Weak fields around black holes: the approximation

� Wave equation for integer spin fields

� A second look at no-hair properties

� Tidal properties of black holes

� Dynamics: the QNMs of black holes

� Resonant excitation of modes?

� Wave phenomena for massive fields

� Summary

� Open issues:
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2 Lecture 2

Let us now look at some dynamics. Start with a massive
scalar,

S =

∫
d4x

√
−g

(
R

k
− 1

2
gµν∂µΨ∂νΨ− 1

2
µ2Ψ2

)
,

Varying action, get equations of motion

∇µ∇µΨ = µ2Ψ

Rµν −
1

2
gµνR = k

(
1

2
Ψ,µΨ,ν − 1

4
gµν

(
Ψ,αΨ

,α + µ2Ψ2
))

Not easy to solve! Work with ||Ψ|| ≪ 1:

Rµν −
1

2
gµνR = 0

1√
−g

∂µ
(√

−ggµν∂νΨ
)
= µ2Ψ

Schwarzschild solves the first equation. We can solve the
second in such a background. Decompose
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Ψ =
∑
ℓm

Φ

r
Yℓm(θ, ϕ) ,

since Yℓm are complete set (cf. notebook “scattering−scalars”).
Find,

∂2Φ

∂r2∗
− ∂2Φ

∂t2
− V Φ = 0

dr∗
dr

=
1

f
=

1

1− 2M/r
, V = f

(
ℓ(ℓ + 1)

r2
+
2M

r3
+ µ2

)
For vectors and tensors, need slightly different proce-

dure. Take Maxwell theory

S =

∫
d4x

√
−g

(
R

k
− 1

4
FµνF

µν

)
, Fµν = ∇µAν−∇νAµ

As before, solve ∇µF
µν = 0. Aµ is vector and separa-

tion needs care, components must transform like vector.
Construct 3 vectors with help of scalar harmonics,
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∇Yℓm = (0, ∂θYℓm, ∂ϕYℓm)

LYℓm =

(
0,

i

sin θ
∂ϕYℓm,−i sin θ∂θYℓm

)
rrYℓm = (Yℓm, 0, 0)

To include time, add extra independent component etYℓm,

Aµ =
∑
ℓm




0

0
aℓm(t,r)
sin θ ∂ϕYℓm

−aℓm(t, r) sin θ ∂θYℓm

 +


f ℓm(t, r)Yℓm
hℓm(t, r)Yℓm
kℓm(t, r) ∂θYℓm
kℓm(t, r) ∂ϕYℓm




Parity transformation: simultaneous inversion of all carte-
sian axes, corresponding to (θ, ϕ) → (π−θ, π+ϕ). First
term parity (−1)ℓ+1, second term parity (−1)ℓ. Inserting
decomposition (cf. notebook “Perturbations”)

∂2Ψ

∂r2∗
− ∂2Ψ

∂t2
− V Ψ = 0

V =

(
1− 2M

r

)
ℓ(ℓ + 1)

r2
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where we chose

Ψ =

{
a(t, r) axial
r2(∂th

ℓm − ∂rf
ℓm) polar

Repeat procedure for tensors. Upshot: for massless fields,

∂2Ψ

∂r2∗
− ∂2Ψ

∂t2
− V Ψ = 0

V =

(
1− 2M

r

)(
ℓ(ℓ + 1)

r2
+ (1− s2)

2M

r3

)
Large ℓ, ω2 recover null geodesics (cross section, etc).
Static solutions? Ψ = Ar−ℓ +Brℓ+1 far away

Take scalar with ℓ = 0. Solution:

Ψ = k1r + k2r log (1− 2M/r)

Take scalar with ℓ = 1. Solution:

Ψ = k1r(r/M−1)+k2r

(
1 +

1

2
(r/M − 1) log (2M/r − 1)

)
Regularity at horizon implies k2 = 0...
No hair & Black holes don’t polarize!
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No-hair. Can generalize. For static fields,((
1− 2M

r

)
Ψ′
)′

− V Ψ = 0

Multiply by Ψ∗ and integrate exterior,∫ ∞

2M

((
1− 2M

r

)
Ψ′
)′

Ψ∗ − V |Ψ|2 dr = 0[(
1− 2M

r

)
Ψ′Ψ∗

]∞
2M

−
∫ ∞

2M

dr

(
1− 2M

r

)
|Ψ′|2 −

∫ ∞

2M

dr V |Ψ|2 = 0

At infinity Ψ ∼ r−ℓ+ rℓ+1. At horizon Ψ ∼ k1k2 log(r−
2M). Since V > 0 it follows no hair, i..e, Ψ = 0. Ex-
ception 1: l = 0 EM for which V = 0 (corresponds to
what?). Exception 2: ℓ = 0, 1 gravitational, for which
V < 0 (corresponds to what?).
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Dynamics I. Look for monochromatic solutions, Ψ ∼
e−iωtZ(r∗),

d2Z

dr2∗
+
(
ω2 − V

)
Z = 0

Solutions:

Ψ =

{
ATe

−iωr∗ r∗ → −∞
Aine

−iωr∗ + Aoute
iωr∗ r∗ → +∞

V is real, soZ∗ also solution. W = ZdZ∗/dr∗−Z∗dZ/dr∗
is constant (easy to check), thus

W (−∞) = 2iω|AT|2

W (+∞) = 2iω
(
|Ain|2 − |Aout|2

)
⇒ |Ain|2 − |Aout|2 = |AT|2

8



Figure 1: Absorption amplitudes from a Schwarzschild black hole.
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Dynamics II. Use Laplace transform Ψ̃ =
∫∞
0 e−stΨdt

for initial-value problems, and find (s = −iω)

d2Ψ̃

dr2∗
+
(
ω2 − V

)
Ψ̃ = −∂Ψ(t = 0)

∂t
+ iωΨ(t = 0) ≡ I(r)

Describes also sourced equations. Define two indepen-
dent homogeneous solutions Ψ̃L, Ψ̃R

Ψ̃L =

{
e−iωr∗ r∗ → −∞
Aine

−iωr∗ + Aoute
iωr∗ r∗ → +∞

Ψ̃R = eiωr∗ , r∗ → +∞
General solution:

Ψ̃ = Ψ̃R

∫ r∗ IΨ̃L

W
dr∗ + Ψ̃L

∫
r∗

IΨ̃R

W
dr∗ + Ψ̃hom

W = Ψ̃LΨ̃
′
R − Ψ̃RΨ̃

′
L = 2iωAin

Impose BCs (cf. notebook “Scattering−scalar”):

Ψ̃ = Ψ̃R

∫ r∗

−∞

IΨ̃L

W
dr∗ + Ψ̃L

∫ ∞

r∗

IΨ̃R

W
dr∗

W = Ψ̃LΨ̃
′
R − Ψ̃RΨ̃

′
L = 2iωAin
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Figure 2: Contour integration in complex frequency plane. Crosses

are poles of Green function: the quasinormal frequencies.

QNMs and tails. At large distances

Ψ̃ = eiωr∗
∫ +∞

−∞

IΨ̃L

W
dr∗

Invert

Ψ =
1

2π

∫
dω Ψ̃e−iωt ,

and perform ω integral closing contour. Branch-cut at
ω = 0 and poles inside contour: the quasinormal fre-
quencies of the system. Correspond to Ain = 0.
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Figure 3: Gravitational QN frequencies of Schwarzschild black hole

Calculation of modes: see “QNMs”
Modes labeled by integers ℓ, n, from least damped (small
ℑ(ω)) to large damping. At large n,

Mω =
log 3

8π
− i

(2n + 1)

8

At large ℓ,

Mω =
ℓ

3
√
3
− i

n

3
√
3
= ℓMΩ− inλ
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Prompt

Ringdown

Back scatter

Figure 4: Cartoon of wave propagation on black hole background
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Figure 5: The ringdown stage of black holes

f =
ℜω
2π

= 1.207

(
10M⊙

M

)
kHz

τ =
1

|ℑ(ω)|
= 0.5537

(
10M⊙

M

)
ms
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Figure 6: Black hole spectroscopy with LIGO. Shown
90% posterior distributions. Black solid is 90% poste-
rior of QNM as derived from the posterior mass and
spin of remnant. See LSC PRL116:221101 (2016);
arXiv:2010.14529; Cotesta+ arXiv:2201.00822
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Figure 7: Black hole spectroscopy in the near-future,
assuming SNR of 40. LISA will see SNR of thousands.
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Spectral stability. Add a small bump to potential.

Figure 8: Spectral instability of black holes. See Che-
ung+ PRL128:111103 (2022); also arXiv:2205.08547.
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Temporal stability.

Figure 9: Spectral instability of black holes. see
arXiv:2205.08547.
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Particles around black holes. Assume point-particles,

T µν = mp

∫
vµvν

δ(4)(xβ − yβp )√
−g

dτ

and find source to equation

d2Ψ̃

dr2∗
+
(
ω2 − V

)
Ψ̃ = S(r)

source depends on motion. Compute Ψ and gravitational-
wave amplitude at large distances. Find energy flux, wave
amplitude, etc. For low-velocities, equation can be solved,
and makes contact with quadrupole results:

h+ = −2Gmp

c2r

(
GMΩ

c3

)2/3

(1 + cos2 θ) cos 2ψ

h× = −4Gmp

c2r

(
GMΩ

c3

)2/3

cos θ sin 2ψ

ψ = Ω(t− r)− ϕ
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dE

dt
=

32

5

G

c5
m2
pL

4Ω6 =
32

5

c5

G

m2
p

M 2

(
GMΩ

c3

)10/3

� Equivalent to Einstein’s quadrupole formula

� Relativistic systems: c5/G Thorne-Dyson conjec-
ture

� Quantum system if Ė/Ω ≲ ℏΩ

� Why circular? Because

de

dt
= −e304

15

G3

c5
M 2mp

a4(1− e2)5/2

(
1 +

121

304
e2
)

orbits evolve, under GW emission, to circular.

semi-major axis decreases and plunge
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Summary: Black holes don’t polarize, but vibrate. Prospect
for black hole spectroscopy. Their dynamical response is
governed, not by the horizon, but mostly by the photon-
sphere, the light ring. Can use astrophysical mergers to
test uniqueness properties using ringdown stage, or inspi-
ral stage.
Open issues:

� Resonant excitation of ringdown?

� Detection of overtones?

� Environmental effects

� Spectral stability

� Energy extraction from higher-spin fields

� Is there an upper bound on amplification?

� Quantization of superradiance?

� Open issues: why do LIGO BHs spin so slowly?
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Exercises

� a) Calculate the scalar and electromagnetic energy
fluxes expressed in terms of the master variables.

� b) Show that there is no static solution to the mass-
less scalar equation in a Schwarzschild background.
What about the Maxwell equations? What is the
allowed solution, and what does it mean?

� c) I am waving my hand at a friend, producing a
time-varying quadrupole moment. Do I emit grav-
itational waves? The flux in gravitational waves is given

by quadrupole formular in flat space,

Ė =
G

c5
1

5

〈
d3Qij

dt3
d3Qij

dt3

〉
Qij =

∫
d3xρ(xi)

(
xixj −

1

3
r2δij

)
For a waving hand of mass M ∼ 1Kg and doing motion

of amplitude A = 1m and period T = 1 sec, in cartesian

coordinates we can model this as simply x = A cos 2πt/T ,

and we find,

Ė =
4096GA4M 2π6

45c5T 6
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Thus, the energy emitted over one period is

ĖT

ℏω
=

2048GA4M 2π5

45ℏc5T 4
∼ 10−15 .

This is a quantum process, no graviton is emitted in a single

period!

� d) Calculate the quasinormal frequencies of a scalar
field around non-rotating black hole

� e) Consider the system, mimicking the dynamical
response of a black hole

d2Ψ̃

dx2
+
(
ω2 − 2V0δ(x)

)
Ψ̃ = iωδ(x− x0)

Calculate the quasinormal frequencies of this sys-
tem, and solve analytically for Ψ(t).
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