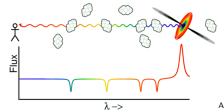
Is a new cosmological tension emerging from the (Lyman- α) forest?

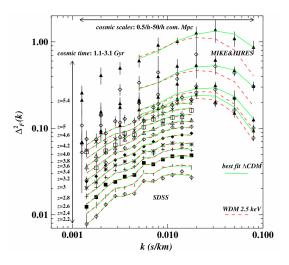
Matteo Lucca Université Libre de Bruxelles (ULB)

Presentation for the "XXXIII Canary Islands Winter School of Astrophysics"

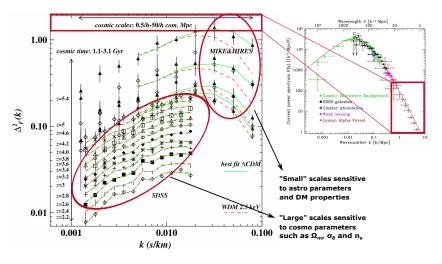


The Lyman- α flux power spectrum

Introduction State of the art Hints of new physics Take-home message


- ▶ Photons from quasars 1) travel through H clouds, 2) get absorbed and 3) re-emitted in other direction
- ▶ Since clouds are at lower redshifts than source, features are shifted towards lower wavelengths \rightarrow Ly α forest
- Density and temperature of clouds determine depth and width of absorption features

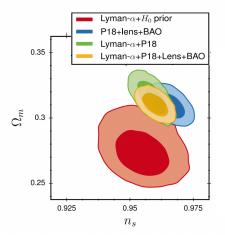
Adapted from www.astro.ucla.edu


► Calculate normalized "transmission", Fourier transform, ensemble average, get flux PS (see e.g. Garzilli et al. 2019 for pedagogical introduction)

Introduction State of the art Hints of new physics Take-home message

Adapted from Viel et al. 2013

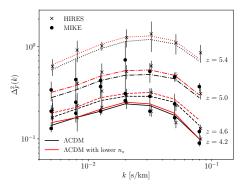
Introduction State of the art Hints of new physics Take-home message



Adapted from Viel et al. 2013 (left) and Tegmark et al. 2004 (right)

State of the art: ΛCDM

At large scales (SDSS):

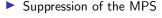

- Overall good agreement with weak lensing measurements
- $ightharpoonup 2.5 3.5\sigma$ tension with early-time measurements in the determination of the PS tilt
- Analysis with two independent slopes at CMB and Ly α scales $\rightarrow n_s({\rm CMB}) = 0.967 \pm 0.004$ vs. $n_s({\rm Ly}\alpha) = 0.941 \pm 0.006$ $\rightarrow \Delta \chi^2 \simeq -14$
- Preference for a PS more strongly falling off than CMB would like

Adapted from Palangue-Delabrouille et al. 2019

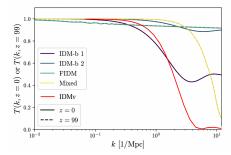
At small scales (MIKE/HIRES+XQ-100):

Visually clear that ΛCDM prediction (black) lays below MIKE/
 HIRES data points and that a lower n_s (red) can improve the fit

More quantitative analysis in progress (Piga, Murgia et al. 2022)


Adapted from Hooper & Lucca 2021

State of the art: dark matter

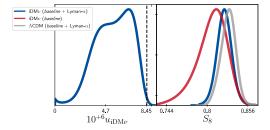

Generalities on the role of (light/warm and interacting) DM:

▶ If the DM is 1) light/warm ($m_{\rm DM} \simeq \mathcal{O}(\text{few keV})$) or 2) interacting (with e.g. baryons, γ , ν and dark radiation), high velocity dispersion/

interactions act as pressure/dragging effect countering the gravitational collapse

 Shape of the suppression encapsulates the model dependence

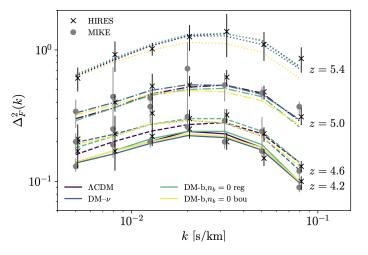
 \rightarrow Many DM models predict a suppression of the PS at Ly α scales, but which ones can correctly adjust its tilt?


Adapted from Hooper et al. 2022 (with info from Hooper & Lucca 2021)

Hints of new physics?

(Hooper & Lucca 2021 and Hooper et al. 2022)

Case-by-case study in the context of MIKE/HIRES data:


- ▶ WDM and FIDM show no preference
 → indicative for sharpest and softest suppression
- ▶ DM-b interactions show a slight preference for $\sigma_{\rm DMb} \simeq 4-6 \times 10^{-27}~{\rm cm^2}$ and $f_{\rm DMb} \simeq 0.06-0.2$
- ▶ DM- ν interactions show a preference for $\sigma_{\rm DM}$ ν 3 σ away from zero (with the requirement of a relatively cold thermal history)

Adapted from Hooper & Lucca 2021

troduction State of the art **Hints of new physics** Take-home message

Visual confirmation:

Adapted from Hooper et al. 2022

Final thoughts and take-home message

troduction State of the art Hints of new physics **Take-home message**

What we know:

- ► There is a $2-3\sigma$ tension in the determination of the PS's tilt between early-time and Lyman- α measurements
- Many DM models predict a suppression of the PS at Lyman- α scales, but only few seem to be "correctly" adjusting the PS's tilt (DM- ν and DM-b interactions are two such examples)

What we do not know (yet):

- Is the tension real?
 - ightarrow Need for combined analyses to cover as many scales as possible
 - \rightarrow Fundamental role of upcoming data
- Is this tension actually *new*? Could it just be a small-scale extension of the σ_8 tension?
- What would it take to solve the tension?