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Physics Motivation

e Galaxy populated by clumps of XX — 7T
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* see e.g. Zavala, Frenk (2019) 1907.1175
Springel et al. (2008) 0809.0898

** see e.g. Hooper, Witte (2017) 1610.07587
Coronado-Blasquez et al (2019) 1910.14429
Calore et al. (2019) 1910.13722
Di Mauro et al. (2020) 2007.08535
Gammaldi et al. (2022) 2207.09307

*** see e.g. Finke et al. (2021) 2012.05251
Butter et al. (2022) 2112.01403
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dark matter
-» N-body simulations*
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Assuming WIMP dark matter:
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-» A signal like this could already
be detected among Fermi-LAT
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The Fermi-LAT 4FGL source catalog can help constrain the
properties of dark matter

1. Create realistic set of subhalo simulations

2. Assess detectability

3. Look for subhalo-like spectra among unclassified sources

Machine Learning is a powerful tool for classification tasks***
- \We employ a neural network to effectively classify DM subhalos
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Simulations
Subhalo Population

DM model dependent

Prefactor PPPC 4 DM ID
PPPC 4 DM ID: Cirelli et al. (2012) , 3 > —
DM annihilation spectra for each mass, o <0-U> j dN
and primary annihilation channel, Qb o 8. 7-m ' . dF
assuming WIMPs DM ‘ ,
o E;‘{llsijii:;l(zjewsifiC(l
CLUMPY V3: Haitten et al. (2018) =0 A
o . " O LUMPY Halo model dependent
J-factor and sky position - °
.0

of galactic subhalos

https://clumpy.gitlab.io/CLUMPY/
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> 0 Initial / Benchmark Setup

fermipy: Wood et al

) . Halo model DM only
wel - ray spectra et (Fermi-LAT collaboration, 2017) —_ 80 GeV
chinary Simulate detector effects (o) 10723 cm® 571
10! 10° 10! 102 Final state bb

Energy [MeV]

=» Benchmark classification training set for comparing subhalos with
4FGL catalog

Realistic scenario with simulations as close as possible to real sources
Number of detectable subhalos sufficient for ML approach
— Kathrin Nippel —
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ROI counts map

GLAT

* see also Calore et al. (2017) 1611.03503
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Simulations
Detector Effects

Use fermipy for simulating 12 years of Fermi-LAT data

Input: Individual subhalo with given . 8
position in sky & flux fitted with b = o (£> exp (— (E) )
‘PLSuperExpCutoff'* Eo Eo
'
Define ROI around subhalo
'
Fit source among background (diffuse + isotropic) & point sources
(4FGL-DR3)
‘ |
Detection threshold TS =2log (L/Ly) > 25

=» Benchmark classification training set for comparing subhalos with

4FGL catalog
Realistic scenario with simulations as close as possible to real sources

Number of detectable subhalos sufficient for ML approach
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OUTPUT

Machine Learning Approach
Bayesian Neural Network Classification

e Replace individual weight of Dense NN with weight distributions

Shape of distribution allows for uncertainty estimation of outputs
BNN learns posterior distribution p (w\D) by approximating variational

weight distribution gp (w) using the KL-divergence

q(w)
i)
q(w
- [ v dtwog s + o

= KL(¢g(w)||p(w)) — | dw gq(w)log(p(D|w)) + const

KL(q(w)llp(wlD)) = / duw q(w) log

Assuming multivariate,

diagonal Gaussians 02+ (ftps — 1) 1
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e In practice: Use the Flipout estimator (Wen et al.,, 2018)

Performs a Monte Carlo approximation of the distribution integrating over

the weight and bias to minimize the KL-divergence
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Preliminary Results

Subhalo vs 4FGL Prediction Uncertainty
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=» Trained network can give reliable estimate on which unclassified sources

in 4FGL are compatible with DM subhalo model at hand

Limits of accuracy: Inherent statistics in data and simulation
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BUT | MAY BE WRONG THIS IS JUST MY
OWN UNDERSTANDING AT THE
MOMENT.

astro-ph-leaks
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Are we seeing new physics already?
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Conclusions & Outlook

Using CLUMPY, PPPC 4 DM ID and fermipy, we have constructed a set of
realistic DM subhalo simulations for a given model

We have carefully evaluated the detectability using complete
simulations of 12 years of Fermi-LAT data and used this to compare to
the 4FGL-DR3 source catalog

We use a Bayesian Neural Network classification approach to
Estimate the uncertainty of y-ray classifier predictions
Apply classification to unclassified 4FGL sources to gauge a number of DM
subhalo candidates

This approach can be extended to any DM model



