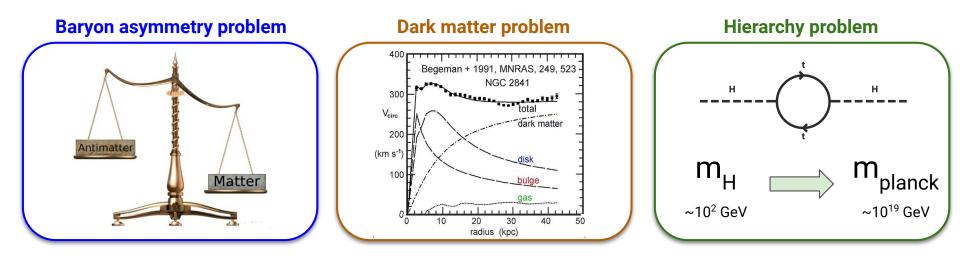
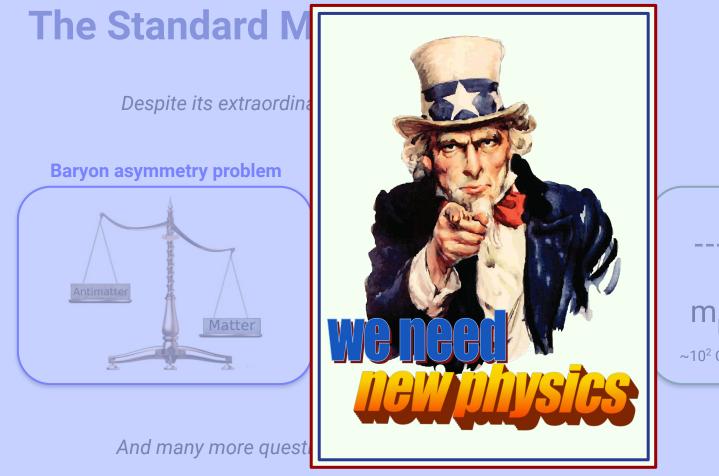
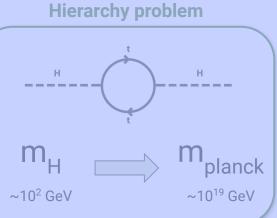
Low energy leptons in <u>High energy physics</u>

<u>Peter Meiring</u>, 4th year student in C. Botta's group at UZH-CMS

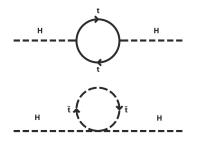

January. 26th 2023 Zurich PhD Seminar

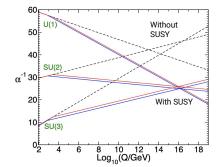



The Standard Model is incomplete

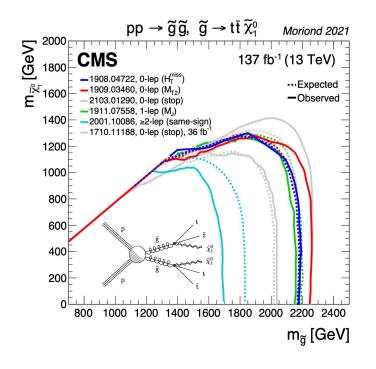
Despite its extraordinary success, we have some problems!

And many more questions left unanswered...

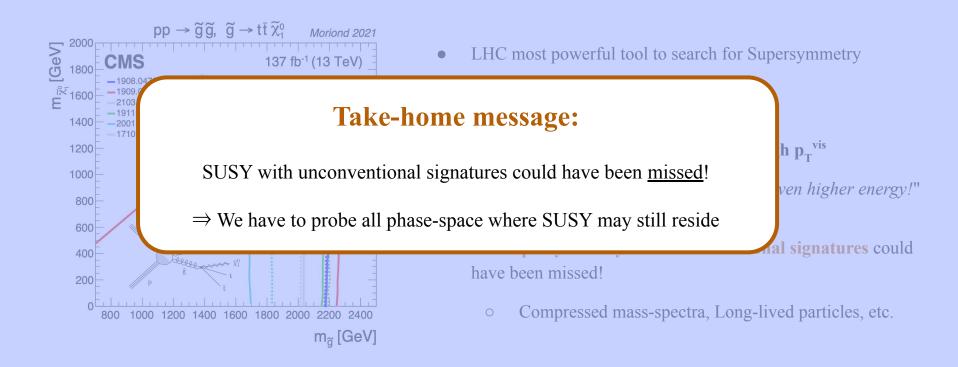



Supersymmetry still a main contender!

- SUSY still a key contender for New Physics
 - **Can solve <u>Hierarchy problem</u>** by canceling loop-corrections to the Higgs mass
 - **Can provide <u>Dark Matter</u> candidates** via a stable Lightest Supersymmetric Particle (LSP)
 - Can predict <u>Grand Unification</u>


via new gauge interactions that are spontaneously broken at high energies

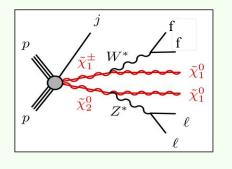
• Boosted interest by recent theory/experimental results (W-mass [1], muon g-2 [2])



But no hint of Supersymmetry... **YET!**

- LHC most powerful tool to search for Supersymmetry
- Traditional search strategy:
 - Final states with high p_T^{miss} and high p_T^{vis}
 - "Didn't find it? Then it must be at even higher energy!"
- But **Supersymmetry with unconventional signatures** could have been missed!
 - Compressed mass-spectra, Long-lived particles, etc.

But no hint of Supersymmetry... YET!


My PhD project(s): Low energy (=soft) leptons

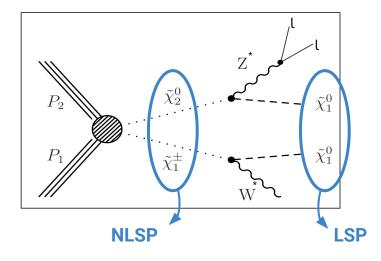
Typically 3<p_T<30 GeV

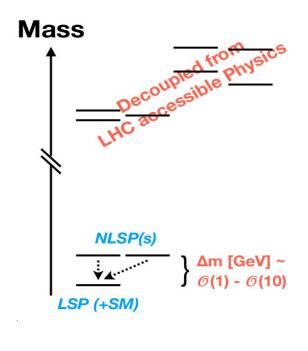
Data-analysis

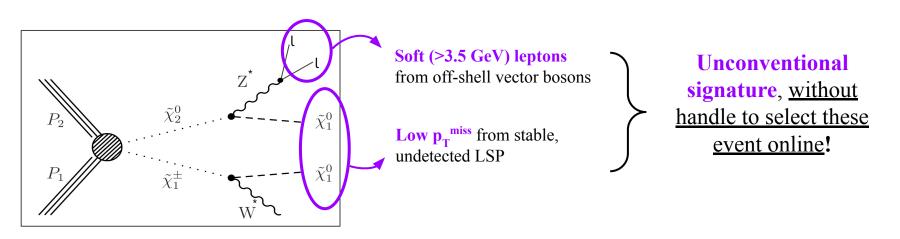
Mass-Compressed, long-lived SUSY

Search for Supersymmetry in final states with (displaced) <u>soft leptons</u>

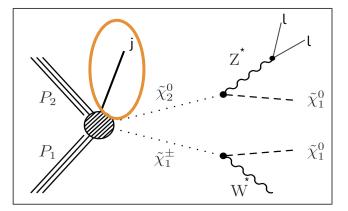
Detector development


CMS Level 1 Trigger for Phase 2

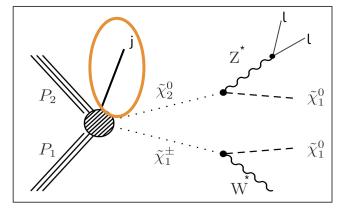

Development and implementation of trigger algorithms targeting <u>soft electrons</u>


Search for mass-compressed electro-weakinos

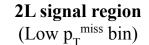
- Challenging SUSY phase-space, that is barely probed
 ⇒ Small signal acceptance, statistically limited searches
- Theoretically appealing (Bino-Wino cohanniliation, naturalness)

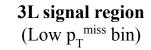


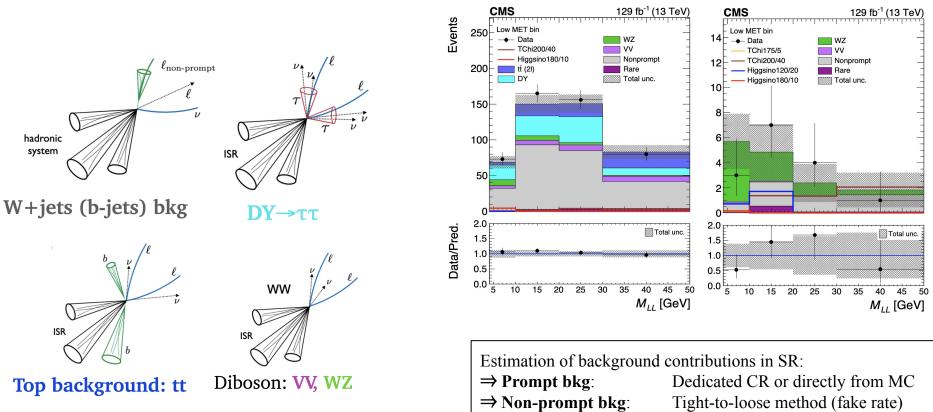
- Challenging SUSY phase-space, that is barely probed
 ⇒ Small signal acceptance, statistically limited searches
- Theoretically appealing (Bino-Wino cohanniliation, naturalness)


- Challenging SUSY phase-space, that is barely probed
 ⇒ Small signal acceptance, statistically limited searches
- Theoretically appealing (Bino-Wino cohanniliation, naturalness)

Also designed our own trigger*: $p_T^{miss} > 120 \text{ GeV \& } \mu\mu (p_T > 3 \text{ GeV})$

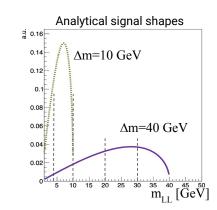

- Challenging SUSY phase-space, that is barely probed
 ⇒ Small signal acceptance, statistically limited searches
- Theoretically appealing (Bino-Wino cohanniliation, naturalness)

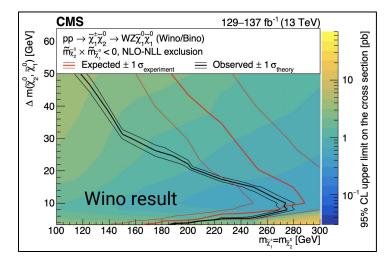


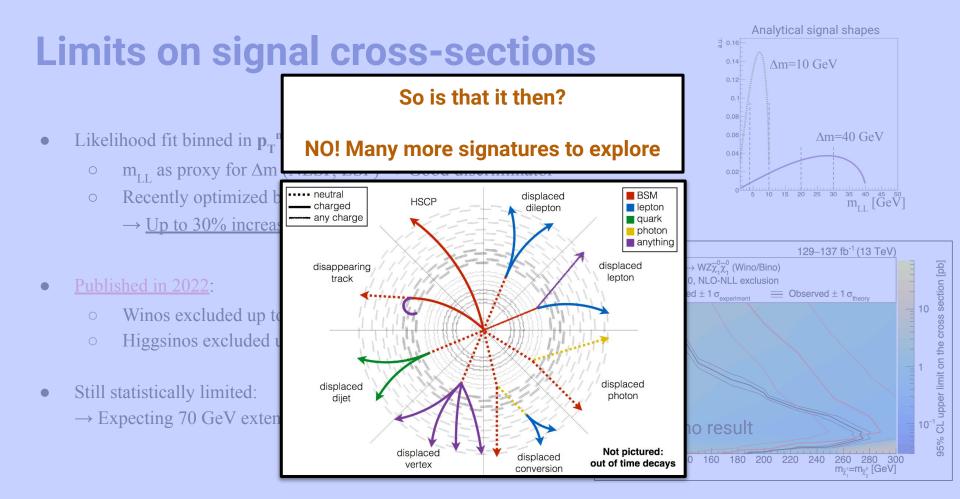

But this drastically reduces signal aturalness) But this drastically reduces signal cross-section... We are chasing very rare events! Require a jet from initial-state radiation to boost the sparticle pair. Allows usage of triggers based on p_T^{miss} : $p_T^{miss} > 200 \text{ GeV}$

Also designed our own trigger*: $p_T^{miss} > 120 \text{ GeV \& } \mu\mu (p_T > 3 \text{ GeV})$

Main backgrounds

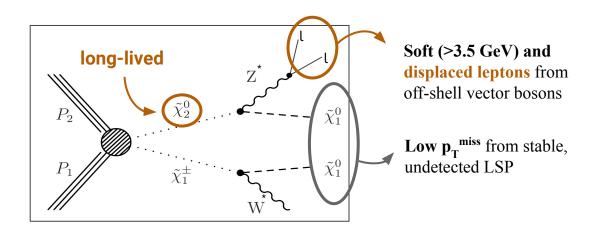


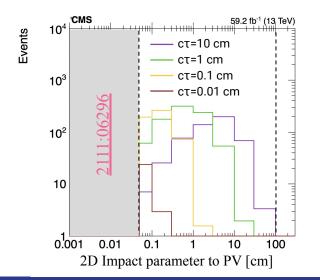




Limits on signal cross-sections

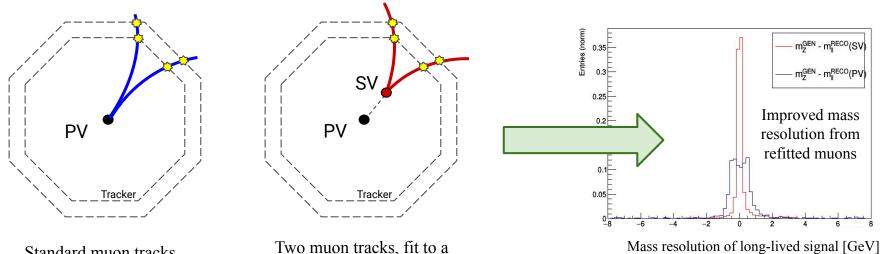
- Likelihood fit binned in **p**_T^{miss} and **m**_{LL}
 - m_{LL} as proxy for Δm (NLSP, LSP) \Rightarrow Good discriminator
 - Recently optimized binnings for each mass-hypothesis
 - \rightarrow <u>Up to 30% increased sensitivity at low Δ m</u>
- Published in 2022:
 - Winos excluded up to 275 GeV at $\Delta m=10$ GeV
 - \circ Higgsinos excluded up to 205 GeV at Δm =7.5 GeV
- Still statistically limited:
 - \rightarrow Expecting 70 GeV extension by adding Run 3 lumi (~300 fb⁻¹)




Analysis extension: Long-lived states

- Dominant background was from non-prompt leptons
 - Applied tight cuts on lepton provenance from the primary vertex
 - \rightarrow We are blind to long-lived NP states!
- Aim for this year: Target long-lived NP scenarios with soft displaced muons in the final state
 - Predicted by several BSM theories (e.g. Mini-split SUSY [1, 2])

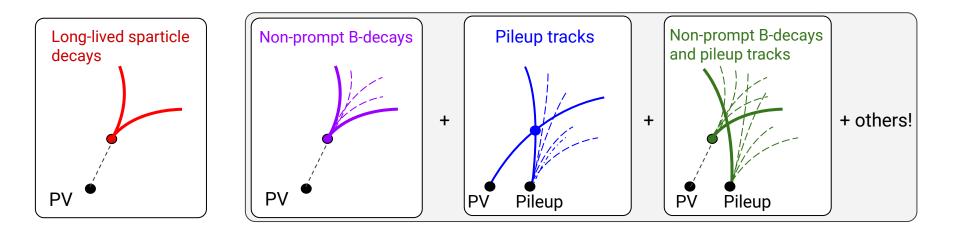
Analysis extension: Long-lived states


- Dominant background was from non-prompt leptons
 - Applied tight cuts on lepton provenance from the primary vertex
 - \rightarrow We are blind to long-lived NP states!
- Aim for this year: Target long-lived NP scenarios with soft displaced muons in the final state
 - Predicted by several BSM theories (e.g. Mini-split SUSY [1, 2])
- Use muons identified by the inner Tracker and Muon Spectrometer
 - Allows for higher reconstruction efficiency at low p_T (3 GeV)
 - Improves spatial resolution of secondary vertex position
- Targeting typical displacement between $0.05 \text{ cm} \rightarrow 110 \text{ cm}$
 - <0.05 cm: already covered by previous "prompt" analysis
 - >110 cm : no acceptance for CMS Tracker

Di-muon object reconstruction

 P_2 $\tilde{\chi}^0_2$ $\tilde{\chi}^0_1$ $\tilde{\chi}^0_1$ $\tilde{\chi}^0_1$ $\tilde{\chi}^0_1$ $\tilde{\chi}^0_1$ $\tilde{\chi}^0_1$

- Final state of signal includes two displaced isolated muon tracks from a common vertex
 - Implemented an alternative reconstruction for displaced di-muons

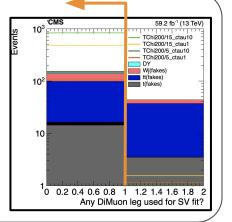


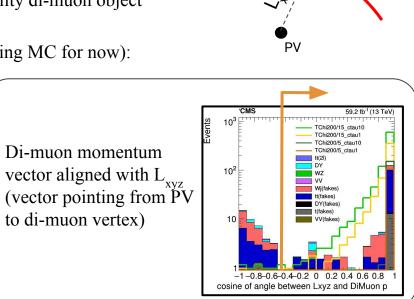
Standard muon tracks, fit to **primary vertex**

Two muon tracks, fit to a common secondary vertex (without PV as constraint)

New backgrounds enter the game...

- Sources of tricky backgrounds processes can feature:
 - Refitted di-muons from <u>non-prompt B-decays</u>
 - Refitted di-muons from pileup tracks
- Tracks are less isolated. But standard Particle-Flow isolation is computed with objects originating from the PV!

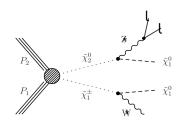


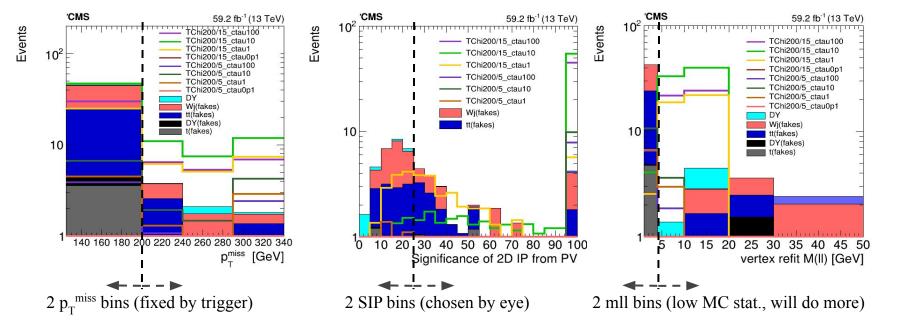

Designing the analysis

- Defining **new signal regions** based on presence of high-quality di-muon object
- Studying promising **cuts for background rejection** (still using MC for now):

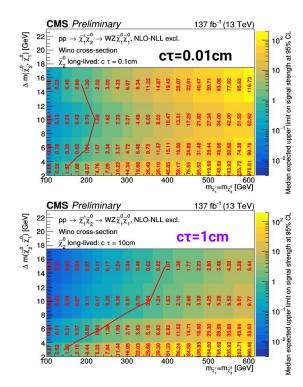
Neither di-muon leg is used in a centrally reconstructed SV **compatible with B-decay**

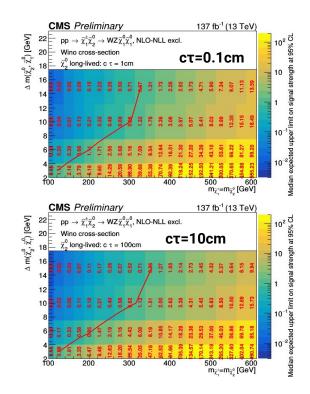
$$(m_{SV} \le 6.5 \text{ GeV}, n_{Tracks} \ge 3)$$



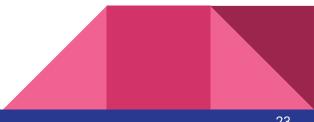


Dimuon P


Signal regions in the making


- Use same variables for SR binning as in prompt search (m_{LL}, p_T^{miss})
 - Adding displacement dimension (significance of IP2D_{SV-PV})

Preliminary upper limits*


New displaced SRs combined with prompt regions

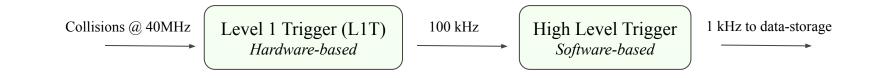
Best sensitivity at c\tau = 1cm (+60 GeV w.r.t. prompt signal)

Note: still work in progress on many fronts!

Summary and take-home message

- SUSY with unconventional signatures could have been missed! • \Rightarrow We have to probe all phase-space where SUSY may still reside
- LHC Run 3 will see many innovative searches targeting new, challenging signatures
- My PhD project(s) aim to increase our New Physics reach by using soft leptons •
 - Search for SUSY with displaced soft leptons Ο
 - CMS Phase-2 Level-1 Trigger algorithms targeting soft electrons Ο
- Got you curious? Ask away!

Back-up

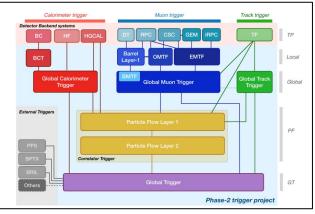

Electron L1T algorithms for Phase 2

- HL-LHC running conditions
- The Phase 2 Level-1 Trigger
- Current L1T algorithms for electrons
- Alternative electron trigger strategy

Phase 2 upgrade of the CMS Level-1 Trigger

- Many new physics searches are statistically limited
 - Future HL-LHC will provide ~4000 fb⁻¹ due to the **much higher instantaneous luminosity**
- **Drawback:** Pile-up (PU) increased by a factor 5!

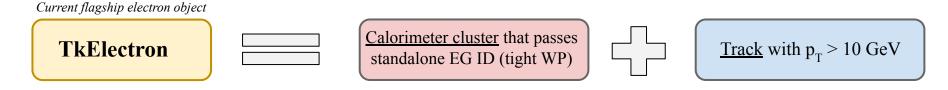
 \rightarrow More particles traveling through the detector \rightarrow Problem for the <u>CMS Trigger system</u>*

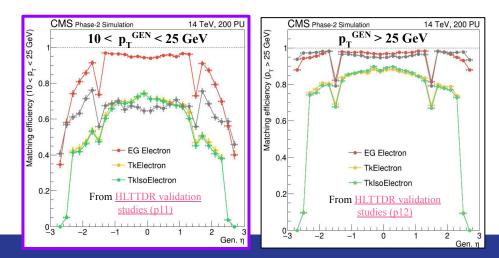

• Using the L1T algorithms of Phase 1 in the running conditions of Phase 2 would increase the rate to ~<u>4000kHz</u>, which is **beyond technical feasibility**

 \rightarrow Complete redesign needed to maintain Phase-1 physics acceptance in Phase-2

Phase 2 upgrade of the CMS Level-1 Trigger

- Preliminary design of L1T for Phase 2 documented in CMS L1-Technical Design Report [1]
- For the first time **Tracker information** available in the L1T!
 - Precise momentum measurements
 - Reconstruction of pp collision vertices
 - \rightarrow Important handle for PU mitigation (rate reduction)
- **Correlator Trigger** central role in L1T design
 - Inputs from Calorimeter, Muon and Track trigger
 → data from multiple subsystems available on single board!
- Other upgrades:
 - Increased bandwidth (100 \rightarrow 750kHz) and higher latency (3.8us \rightarrow 12.5us)
 - More FPGA processing power (Xilinx Ultrascale+ <u>7.5x more resources</u> than Virtex 7 used in Phase 1)
 - Tools now available to synthesize BDTs and NNs to modern FPGAs
- All these upgrades allow implementation of <u>complex "offline-like" algorithms</u> for object identification, and the usage of ML to build more powerful discriminators


L1T design architecture



Track-matched electrons

- Crucial objects for the Phase-2 L1 Trigger
 - Only way to construct single-electron triggers for Phase 2 with <u>Phase 1 thresholds</u> and <u>sustainable rates</u>

Cut on p_T^{track} comes with cost of <u>decreased efficiency</u>, especially for soft electrons

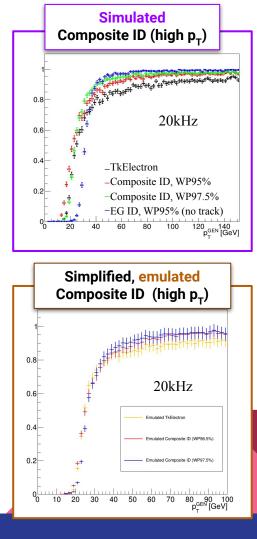
But loosening costs rate!

Track-matched electrons

- Crucial objects for the Phase-2 L1 Trigger
 - Only way to construct single-electron triggers for Phase 2 with <u>Phase 1 thresholds</u> and <u>sustainable rates</u>
- Developing a new "Composite ID" as alternative to the TkElectron
 - Aiming to recover efficiency of electrons in HGCAL, over the full p_T spectrum
 - Still using clusters matched to tracks, but with several key differences:

Standard TkElectron

- Only use tracks with $p_T > 10 \text{ GeV}$
- **Tight elliptical match** of track & cluster
- ✤ MVA ID applied on cluster only


New Composite ID

- Use tracks down to $p_T > 2 \text{ GeV}$
- Loosely match track & cluster with dR<0.2
- ✤ MVA ID applied on composite (track+cluster) object
 - \rightarrow Tracks used as input to the ID, not for a-posteriori matching

Construct loose composite object and rely (more) on ML algorithm to control background

Preliminary results

- Composite ID being developed as alternative to the TkElectron ID
 - Simulation studies demonstrated <u>high potential of Composite ID</u>
- Trained a realistic version of the Composite ID and implemented in firmware
 - Less input features, reduced model complexity, single bit precision
 - Showed that BDT inference in firmware and in simulation are identical
 - Requires 5 clock-cycles with 3% resources (SLR) of U250 to infer BDT
- Integrated the Composite ID in the L1T emulator
 - Composite ID outperforms flagship TkElectron at high p_T
 - Still room for improvement, considering new features, NN models, etc.
- Developing also dedicated <u>low p_T electron ID</u> (e.g. for p_T^{miss} +ee triggers), based on the same concept!

