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Dark Matter at a glance

What Dark Matter (DM) is:

In practice: Anything that is not Standard Model (SM)

Experimentally: Non-visible matter that interacts gravitationally (astronomical
observation)

Theoretically: Pick your poison! Supersymmetry (SUSY), Weakly Interacting Massive
Particles (WIMPs)...

What if we are not looking at the right place?

DM
SUSY

WIMP

Axion
HNL
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DM as a strongly coupled dark sector

Hidden Valley (arXiv:hep-ph/0604261) with new particles and forces form the dark
sector

There could exist a new confining SU(N) force (a.k.a. dark QCD) and dark quarks

Mediator particle makes a portal between the SM and dark sectors

SM Sector Dark Sector
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…

Motivations

Can be probed with collider experiment

Signatures unexplored by WIMP searches

Stable dark hadrons could explain the DM relic abundance! (arXiv:1907.04346)
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Production of semivisible jets

Dark quarks hadronize in the dark sector

A fraction of dark hadrons promptly decays to SM quarks which hadronize in the SM
sector

Remaining dark hadrons are stable and invisible =⇒ DM candidates

Ô Production of semivisible jets (SVJ) (arXiv:1503.00009, arXiv:1707.05326)

Ô 6ET aligned with jet!

6ET =
∣∣∣∣∣∣∑ ~pT

∣∣∣∣∣∣
rinv = 1rinv = 0 0 < rinv < 1

ET

ET
q ⌘d

ET ⇡ 0
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in associ-
ation with a gluon. Figure taken from ref. [10].

that in this set-up all dark pions are stable on cosmological scales and therefore constitute a
potential DM candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)′ gauge
boson Z ′ with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z ′ and SM gauge bosons, are assumed to
be suppressed. In analogy to γ-ρ0 mixing in the SM, the Z ′ mixes with the ρ0

d, which induces
small couplings between the ρ0

d and SM quarks and renders the ρ0
d unstable. For mρd

< 2mπd

the ρ±d mesons can only decay into three-body final states via an off-shell Z ′, which makes
them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ρ0

d mesons decay
promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = mρd

.
We note in passing that the assumption mρd

< 2mπd
can be motivated from cosmology,

because the relic density of dark pions is determined by the rate of the annihilation process
πdπd → ρdρd, which becomes Boltzmann suppressed at low temperatures. Provided mπd

and mρd
are sufficiently close, the observed relic abundance can be reproduced even for weak

portal interactions and/or heavy Z ′ bosons, which makes it possible to satisfy constraints
from direct detection experiments. For example, for mπd

= 4 GeV and gd = 1 one requires
mρd

≈ 5 GeV, while the Z ′ mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the Z ′

(possibly in association with SM particles) and its subsequent decays into either SM or dark
quarks. While the former case leads to di-jet resonances that can be easily reconstructed,

2We note that for small Z′ couplings the ρ0
d can be long-lived and lead to displaced vertices at the LHC. The

corresponding production cross sections can nevertheless be sufficiently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced
vertices for dark sector models is subject of separate work in progress.

4

SM hadrons
Stable dark hadrons
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Hadronization in the dark sector

The details of the shower in the dark sector depends on many unknown
parameters, e.g.:

Number of colors and flavors in the dark sector

Masses of the dark hadrons

Dark QCD hadronization scale ?

Ô Simulation of SVJ very

assumption- and

model-dependent
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in associ-
ation with a gluon. Figure taken from ref. [10].

that in this set-up all dark pions are stable on cosmological scales and therefore constitute a
potential DM candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)′ gauge
boson Z ′ with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z ′ and SM gauge bosons, are assumed to
be suppressed. In analogy to γ-ρ0 mixing in the SM, the Z ′ mixes with the ρ0

d, which induces
small couplings between the ρ0

d and SM quarks and renders the ρ0
d unstable. For mρd

< 2mπd

the ρ±d mesons can only decay into three-body final states via an off-shell Z ′, which makes
them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ρ0

d mesons decay
promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = mρd

.
We note in passing that the assumption mρd

< 2mπd
can be motivated from cosmology,

because the relic density of dark pions is determined by the rate of the annihilation process
πdπd → ρdρd, which becomes Boltzmann suppressed at low temperatures. Provided mπd

and mρd
are sufficiently close, the observed relic abundance can be reproduced even for weak

portal interactions and/or heavy Z ′ bosons, which makes it possible to satisfy constraints
from direct detection experiments. For example, for mπd

= 4 GeV and gd = 1 one requires
mρd

≈ 5 GeV, while the Z ′ mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the Z ′

(possibly in association with SM particles) and its subsequent decays into either SM or dark
quarks. While the former case leads to di-jet resonances that can be easily reconstructed,

2We note that for small Z′ couplings the ρ0
d can be long-lived and lead to displaced vertices at the LHC. The

corresponding production cross sections can nevertheless be sufficiently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced
vertices for dark sector models is subject of separate work in progress.

4
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t-channel production of SVJ

3 production mechanisms:

Direct production:

Production of dark quarks without
resonance

Associated production:

Production of the mediator
associated with a dark quark

Pair production:

Production of a pair of mediators

Main model parameters:

mΦ: Mass of the mediator Φ

rinv: Jet invisible fraction

rinv =

〈
Number of stable dark hadrons

Number of dark hadrons

〉

yD

q χ

yD

q̄ χ̄

Φ

(a) Direct production

yD

q χ

αS

g yD

χ̄

q

Φ

Φ

(b) Associated production

g

Φ

Φ

g

g

αS

yD

yD

q

χ̄

q̄

χ

(c) Pair production

Figure 1: Example of diagrams for the different production modes expected in the t-channel
analysis: direct production (left), associated production (middle) and pair-production (right).
χ denotes a dark quark and Φ is the scalar bi-fundamental that couples SM and dark QCD
sectors, i.e. the mediator particle.

1
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Backgrounds

QCD multijet
Artificial missing transverse energy 6ET aligned with jet
from jet energy mismeasurement

Large cross-section

tt̄

Jet from boosted t

Semi-leptonic channel W (→ lν) with lost lepton,
genuine 6ET from neutrino

Jet aligned with 6ET

Z + jets

Genuine 6ET from Z → νν

W + jets

W → lν with lost/not reconstructed lepton or hadronic
decay of τ

Genuine 6ET from neutrino
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• AK8 jet pT > 200 GeV: boosted tops
• “Lost” lepton ℓ: out of acceptance, 

can’t veto (or hadronic τ)
• Neutrino aligned w/ AK8 jet: 

mimics semi-visible jet

Δφ

E/T

QCD

• Jet mismeasurement induces E/T
aligned with jet

• Major background

W(ℓν)+jets
• Lost lepton or hadronic τ
• Less likely than tt̄ to mimic 

semi-visible jet, but higher σ

Z(νν)+jets
• Real E/T from νν, but least likely to 

align with jet
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Overall strategy

Tag semivisible
jets

SciPost Physics Submission
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in associ-
ation with a gluon. Figure taken from ref. [10].

that in this set-up all dark pions are stable on cosmological scales and therefore constitute a
potential DM candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)′ gauge
boson Z ′ with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z ′ and SM gauge bosons, are assumed to
be suppressed. In analogy to γ-ρ0 mixing in the SM, the Z ′ mixes with the ρ0

d, which induces
small couplings between the ρ0

d and SM quarks and renders the ρ0
d unstable. For mρd

< 2mπd

the ρ±d mesons can only decay into three-body final states via an off-shell Z ′, which makes
them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ρ0

d mesons decay
promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = mρd

.
We note in passing that the assumption mρd

< 2mπd
can be motivated from cosmology,

because the relic density of dark pions is determined by the rate of the annihilation process
πdπd → ρdρd, which becomes Boltzmann suppressed at low temperatures. Provided mπd

and mρd
are sufficiently close, the observed relic abundance can be reproduced even for weak

portal interactions and/or heavy Z ′ bosons, which makes it possible to satisfy constraints
from direct detection experiments. For example, for mπd

= 4 GeV and gd = 1 one requires
mρd

≈ 5 GeV, while the Z ′ mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the Z ′

(possibly in association with SM particles) and its subsequent decays into either SM or dark
quarks. While the former case leads to di-jet resonances that can be easily reconstructed,

2We note that for small Z′ couplings the ρ0
d can be long-lived and lead to displaced vertices at the LHC. The

corresponding production cross sections can nevertheless be sufficiently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced
vertices for dark sector models is subject of separate work in progress.
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Figure 1: Example of diagrams for the different production modes expected in the t-channel
analysis: direct production (left), associated production (middle) and pair-production (right).
χ denotes a dark quark and Φ is the scalar bi-fundamental that couples SM and dark QCD
sectors, i.e. the mediator particle.
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Figure 1: Example of diagrams for the different production modes expected in the t-channel
analysis: direct production (left), associated production (middle) and pair-production (right).
χ denotes a dark quark and Φ is the scalar bi-fundamental that couples SM and dark QCD
sectors, i.e. the mediator particle.
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Search for an ex-
cess at high 6ET
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Challenges

Background

Overwhelming QCD multijet background in the region of interest ( 6ET aligned with jet)

Potentially several kinds of background jets:
light flavor QCD jets
boosted 3-prong top jets
boosted 2-prong W jets
b jets
whose relative proportions depend on event-selection

Detector effects

Energy mismeasurement in calorimeter could mimic the SVJ signature

e.g. SM dijet events with one jet falling in a calorimeter “cold” cell

Signal modeling

Non perturbative QCD theory parameters obtained from measurements

Ô Not possible for dark QCD!

Model-dependence:

Exploiting details of the SVJ shower simulation =⇒ high model-dependence =⇒ small
sensivity if the actual dark QCD is different from the one simulated
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Pre-selection

Pre-selection used to loosely select a region of phase-space enriched in SVJ events.

Cut-flow table (relative cut efficiencies in %):

mΦ [GeV] 1000 2000 4000
QCD1 tt̄ W+jets2 Z+jets2

rinv 0.3 0.1 0.3 0.7 0.3

Trigger 32.4 15.0 20.7 21.9 21.9 1.36 6.76 29.6 39.0
6ET filters 100 99.9 100 100 99.9 99.6 99.9 99.9 99.9

Lepton Veto 93.0 92.1 92.7 95.0 93.4 91.9 35.5 36.1 94.3
ST > 1300 GeV 37.7 58.3 43.6 31.9 26.5 7.58 9.34 3.95 1.31

nFatJet ≥ 2 99.9 100 99.7 95.5 99.6 99.9 99.9 97.7 91.0
Total abs. eff. [%] 11.3 8.07 8.36 6.34 5.39 0.11 0.24 0.41 0.44

6ET filters aim at rejecting events with artificial 6ET caused by detector mismeasurement,
like calorimeter “cold” cell

Trigger + ST (trigger plateau) cuts have low signal efficiency!

Lepton veto efficient at rejecting tt̄ and W + jets backgrounds

1Gen-level p̂T > 170 GeV
2Gen-level HT > 400 GeV
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Overview of kinematics and jet substructure

6ET is the most
discriminative event-level
variable

Moderate discrimination in
other event-level variables,
e.g. angular variables,
usually enhanced at high
rinv

Moderate discrimination in
various jet substructure
(JSS) variables, usually
enhanced at low rinv

Ô JSS and event-kinematics
have complementary
sensitivity
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Analysis strategy

Several event-level variables contain moderate discrimination power

No single obvious discriminative variable for all model parameters and production
mechanisms

Jet tagger 
score
e.g.
NAE

ParticleNet

Event features
e.g. MET, jet 4-vectors

DNN

Jet 0 tag

Signal Background

Jet tagger 
score
e.g.
NAE

ParticleNet

Jet N tag

Jet 0 
sub-structure

Jet N
sub-structure… 

… 

Ô Use ML event classifier

Ô Tag SVJ

Ô Use SVJ tag information along
with event-level features to

classify SVJ events
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Analysis strategy - Tag semivisible jets/events

3 approaches:

hhhhhhhhhhhhJet tagger

Event classifier
Unsupervised Supervised

Unsupervised Fully unsupervised Mixed
Supervised Fully supervised

Supervised vs unsupervised jet tagger:

Large model dependence for dark shower simulation

Unsupervised SVJ tagger can achieve good discrimination power and surpasses
supervised tagger in case of test on an unseen model (arXiv:2112.02864)

Unsupervised tagger can be trained directly on data in a control region!

Supervised vs unsupervised event classifier:

Event kinematics is better simulated and less model-dependent

Supervised classifier: boost sensitivity compared to unsupervised approach
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Autoencoders

Autoencoders (AE) are neural networks (NN) classically used for dimensionality reduction or
anomaly detection.

AEs are composed of:

an encoder NN f

a “symmetric” decoder NN g

The AE network is trained to
learn to reconstruct the input
examples it is given.

The loss of an AN for an example
x is:

L(x) = ||g(f(x))− x||

where ||·|| is a distance

Input features Reconstructed  features

Latent space
Encoded features

Encoder DecoderBottleneck

The aim of an AE for anomaly detection is to be able to reconstruct only the
examples it is trained on but not others
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Shortcoming of standard autoencoder
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Training plain autoencoder (AE) on tt̄ jets

2 phases...
(A) Increasing AUC and decreasing reconstruction

loss

(B) Decreasing AUC while the reconstruction loss
continues to decrease

... corresponding to the AE
(A) getting better at reconstructing background jets

but not signal jets as much

(B) getting better at reconstructing signal jets, as
good as background jets

Ô Outlier reconstruction / AE is ≈ identity!

Rather large AUC (≈ 0.7), however for a very
particular point during training

Ô Ultimately, final AUC is only slightly above 0.5

1Training and validation loss on different scale because training loss is divided by number of input
features while validation loss is not
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The problem of outlier reconstruction

Normalized AEs

12

▪ In parallel, we are exploring normalized AEs (NAEs) [5]

▪ Designed to suppress outlier reconstruction that can happen in standard AEs

▪ Architecturally identical to a standard AE, the novelty is in the definition of the loss function:

∇𝜃𝐿 = 𝔼𝑥∼𝑝 𝑥 ∇𝜃𝑙(𝑥) /𝑇 − 𝔼𝑥′∼𝑝𝜃 𝑥 ∇𝜃𝑙 𝑥
′ /𝑇

Standard reconstruction loss (positive energy)

Model-induced loss (negative energy) Full phase space

Training data support

Low reconstruction loss

Outlier 
reconstruction

▪ Sample from the low loss space via MCMC and apply penalty

▪ Upon convergence, outlier reconstruction should be 
suppressed

Autoencoding Under Normalization Constraints

Sangwoong Yoon 1 Yung-Kyun Noh 2 3 Frank C. Park 1 4

Abstract
Likelihood is a standard estimate for outlier de-
tection. The specific role of the normalization
constraint is to ensure that the out-of-distribution
(OOD) regime has a small likelihood when sam-
ples are learned using maximum likelihood. Be-
cause autoencoders do not possess such a pro-
cess of normalization, they often fail to recognize
outliers even when they are obviously OOD. We
propose the Normalized Autoencoder (NAE), a
normalized probabilistic model constructed from
an autoencoder. The probability density of NAE
is defined using the reconstruction error of an
autoencoder, which is differently defined in the
conventional energy-based model. In our model,
normalization is enforced by suppressing the re-
construction of negative samples, significantly im-
proving the outlier detection performance. Our
experimental results confirm the efficacy of NAE,
both in detecting outliers and in generating in-
distribution samples.

1. Introduction
An autoencoder (Rumelhart et al., 1986) is a neural network
trained to reconstruct samples from a training data distri-
bution. Since in principle the quality of reconstruction is
expected to be poor for inputs that deviate significantly from
the training data, autoencoders are widely used in outlier
detection (Japkowicz et al., 1995), in which an input with a
large reconstruction error is classified as out-of-distribution
(OOD). Autoencoders for outlier detection have been ap-
plied in domains ranging from video surveillance (Zhao
et al., 2017) to medical diagnosis (Lu & Xu, 2018).

However, autoencoders have been known to reconstruct
1Department of Mechanical Engineering, Seoul National

University, Seoul, Republic of Korea 2Department of Com-
puter Science, Hanyang University, Seoul, Republic of Korea
3Korea Institute of Advanced Studies, Seoul, Republic of Ko-
rea 4Saige Research, Seoul, Republic of Korea. Correspondence
to: Yung-Kyun Noh <nohyung@hanyang.ac.kr>, Frank C. Park
<fcp@snu.ac.kr>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Examples of reconstructed outliers. The last two rows
show the reconstructions from a conventional autoencoder (AE)
and NAE. Both autoencoders are trained on MNIST, and other
inputs are outliers. The architecture of the two autoencoders is
identical. Successful detection of an outlier is highlighted with blue
solid rectangles, while detection failures due to the reconstruction
of outliers are denoted with an orange dotted rectangle. Note that
AE is not the identity mapping, as it fails to reconstruct the shirt.

outliers consistently across a wide range of experimental
settings (Lyudchik, 2016; Tong et al., 2019; Zong et al.,
2018; Gong et al., 2019). We name this phenomenon outlier
reconstruction. Figure 1 shows examples of some outliers
reconstructed by an autoencoder trained with MNIST data;
the autoencoder is able to reconstruct a wide range of OOD
inputs, including constant black pixels, Omniglot charac-
ters, and fragments of MNIST digits. The early works on
regularized autoencoders (Vincent et al., 2008; Rifai et al.,
2011; Ng et al., 2011) focus for the most part on preventing
the autoencoder from turning into the identity mapping that
reconstructs every input. Nonetheless, outlier reconstruc-
tion can still occur even when the autoencoder is not the
identity as shown by the non-identity autoencoder in Figure
1. Not surprisingly, outlier reconstruction is a leading cause
of autoencoder’s detection failure.

On the other hand, in a normalized probabilistic model, it
is known that maximum likelihood learning suppresses the
assignment of probability mass in OOD regions in order to
keep the model normalized. Thus, the likelihood is widely
used as a predictor for outlier detection (Bishop, 1994).
Meanwhile, an autoencoder is not a probabilistic model
of the data and does not have a suppression mechanism
corresponding to the normalization in other probabilistic
models. As a result, the reconstruction of outliers are not
inhibited during training of an autoencoder.

This paper formulates an autoencoder as a normalized prob-
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Outlier reconstruction example: AE and NAE
trained on MNIST, other inputs are outliers.

Outlier reconstruction happens when the
network assigns low reconstruction error
to out-of-distribution (OOD) examples

OOD reconstruction not suppressed
during training in plain AE

Sometimes phrased as “OOD examples
need to be more ‘complex’ to not be
reconstructed”

Ô Normalized autoencoder1(NAE)
features a mechanism to suppress
OOD reconstruction!

Ô It ensures that the low error phase-space
of the NN matches that of the training
data.

1NAE first introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225
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NAE against tt̄ and QCD separately

Best model choice:

Monitoring AUC calculated on an ensemble of signal hypotheses

Choosing model with highest AUC during training

Successful unsupervised SVJ tagger against QCD and tt̄ jets!

tt̄ vs SVJ QCD vs SVJ
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SVJ events selection

SVJ events selection:

Exploit weakly discriminative variables
with DNN (e.g. angles between jets and
with 6ET)

Signal region: high DNN and high 6ET

DNN output must be uncorrelated with
6ET to perform background estimation
with ABCD method (see slide 19)

Example:

Trained DNN using η, φ of first 4 leading
large2 jets and 6Eφ

Used 0-zero padding if fewer than 4 jets

Trained on a mixture of all main
backgrounds

Ô Achieving large AUC!

Uncorrelation between DNN score and 6ET:

Either by providing input features
uncorrelated with 6ET, usually weakly
discriminative

Or by using also features correlated with
6ET and decorrelating DNN score with
6ET using DisCo1
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1The distance correlation (DisCo) is a measure of non-linear correlation between two variables. See
backup slide 18.

2Reconstructed with the anti-kT algorithm with radius R = 0.8
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Background estimation and statistical analysis

Background estimation:

Data-driven technique as QCD multijet
simulation is not reliable

ABCD method: event-classifier score
versus an uncorrelated variable (e.g. 6ET)

Statistical analysis:

Search for an excess in 6ET in the signal
region

Background estimation in signal region:

Nbkg
A =

NBNC

ND

V2

V1

Background
SignalAC

B

D

c1

c2

Private Work (CMS Simulation)

Private Work (CMS Simulation)
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Conclusions and next steps

Current status:

Analysis strategy well in place

Proof-of-principle for unsupervised jet tagger (NAE) selecting SVJ against a mixture of
SM background jets

Supervised event classifier (DNN) exploiting weakly discriminative variables or more
discriminative variables with DisCo

Proof-of-principle for data-driven background estimation using ABCD method

Next steps:

Finalize jet tagger:
Optimization of input features
Optimization of hyper-parameters with Optuna
Checking correlation with high level jet features, e.g. pT

Finalize event classifier:
Add NAE loss to input feature
Finalize input features in connection with uncorrelation with 6ET

Verify/optimize artificial 6ET filters for this channel

Perform statistical analysis including systematics
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Many possible diagrams in the t-channel

Direct production
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Diagrams made by MadGraph5_aMC@NLO
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Associated production
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Pair production
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su11 is the mediator Φ, gv11 is a dark quark
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t-channel jet classification

Different jets in the t-channel final state:

SVJ not from the mediator

SVJ from the mediator

SVJ initiated by a dark quark, dark gluon

SM jets not from the mediator

SM jets from the mediator

Any combination of the previous cases...

Unique code to
define each
possibility:

Uniqueness of the ID

6

• The value of the jet category ID is unique for every possibility of jet content.


• For example, jet category ID = 13 = 8 + 4 + 1 is only possible for jet that 
contains dark quark from mediator, dark gluon, and descendants from 
dark hadrons.


• This is possible, because the value we add to the ID is based on the binary 
number system. In base-2 system, the ID basically starts with 00000. We 
can think of these placeholders as follows:

00000 Descendants from dark hadron

Dark quark

Dark gluon

Dark quark from med.

SM quark from med.

• If the placeholder is 1, then the jet contains that particle, otherwise, the jet 
doesn’t contain that particle.


• In the example above, the jet category ID in base-2 system is 01101, which is 
only possible when it contains the particles as mentioned above.

SVJ categories:
1 - 15

Jets from dark
quark, dark gluon,
from the mediator
or not

yD

q χ

yD

q̄ χ̄

Φ

(a) Direct production

yD

q χ

αS

g yD

χ̄

q

Φ

Φ

(b) Associated production

g

Φ

Φ

g

g

αS

yD

yD

q

χ̄

q̄

χ

(c) Pair production

Figure 1: Example of diagrams for the different production modes expected in the t-channel
analysis: direct production (left), associated production (middle) and pair-production (right).
χ denotes a dark quark and Φ is the scalar bi-fundamental that couples SM and dark QCD
sectors, i.e. the mediator particle.

1
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Energy-based models

Energy-based models (EMBs)

EBMs are models where the probability is defined through the Boltzmann distribution

Let θ denote the model parameters

The model probability pθ is defined from the energy Eθ

pθ(x) =
1

Ωθ
exp (−Eθ(x)/T ) (1)

where the normalization constant Ωθ is

Ωθ =

∫
exp (−Eθ(x)/T ) dx (2)

The EBM loss for a training example x is the negative log-likelihood:

Lθ(x) = − log pθ(x) = Eθ(x)/T + log Ωθ (3)

The gradient of the EBM loss is thus:

∇θLθ(x) = ∇θEθ(x)− Ex′∼pθ
[
∇θEθ(x′)

]
(4)

The expectation value over the training dataset, with probability pdata is:

Ex∼pdata [∇θLθ(x)] = Ex∼pdata [∇θEθ(x)]− Ex′∼pθ
[
∇θEθ(x′)

]
(5)
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Working principle of the Normalized Autoencoder (NAE)

Basic idea:

Ensure that low reconstruction error
phase-space matches that of training data

i.e. OOD examples are constrained to have high
reconstruction error

NAE methematics

Let θ be the NAE model parameters

Let pdata be the probability distribution of the
training data

Let Eθ be the reconstruction error of the AE

Autoencoding Under Normalization Constraints

In the autoencoder-based outlier detection (Japkowicz et al.,
1995), an input is classified as OOD if its reconstruction
error lθ(x) is greater than a threshold τ : lθ(x) > τ . The
outlier reconstruction indicates that there exists an input x∗

with p(x∗) ≤ ρ, but lθ(x∗) < τ . Appendix includes the
detailed investigation on outlier reconstruction.

2.2. Energy-based Models

Unlike autoencoders, energy-based models (EBMs) are
valid models for a normalized probability distribution. The
EBM represents a probability distribution through the un-
normalized negative log probability, also called the energy
function Eθ(x). Here, θ denotes the model parameters.

For a continuous input x ∈ X ⊂ RDx , Eθ(x) defines the
model density function pθ(x) through Gibbs distribution:

pθ(x) =
1

Ωθ
exp(−Eθ(x)/T ), (4)

where T ∈ R+ is called the temperature and is often ignored
by setting T = 1. Ωθ is the normalization constant and is
defined as:

Ωθ =

∫
X

exp(−Eθ(x)/T )dx <∞. (5)

The computation of Ωθ is usually difficult for high-
dimensional x. However, maximum likelihood learning
can still be performed without the explicit evaluation of Ωθ.
The gradient of negative log likelihood of data is given as
follows (Younes, 1999):

Ex∼p(x)[−∇θ log pθ(x)]

=Ex∼p(x)[∇θEθ(x)]/T +∇θ log Ωθ (6)
=Ex∼p(x)[∇θEθ(x)]/T − Ex′∼pθ(x)[∇θEθ(x

′)]/T (7)

∇θ log Ωθ in Eq. (6) is evaluated from the energy gradients
of samples x′ generated from the model in Eq. (7). The
samples from pθ(x) are often called ”negative” samples.
The derivation of Eq. (7) is provided in Appendix.

In Eq. (7), the first term decreases the energy of the training
data, or “positive” samples, while the second term increases
the energy of the generated samples, or “negative” samples.
The training converges when pθ(x) becomes identical to
p(x), as the two gradient terms cancel out. In practice, the
two expectations in Eq. (7) are approximated with a mini-
batch of samples during each iteration. Figure 2 visualizes
the gradients in Eq. (7).

Langevin Monte Carlo (LMC) The negative samples are
generated using MCMC. LMC (Parisi (1981); Grenander
& Miller (1994)) is a simple yet effective MCMC method
used in recent work on deep EBMs (Du & Mordatch, 2019;
Grathwohl et al., 2020; Nijkamp et al., 2019). In LMC, a

Figure 2. An illustration of the energy gradients in Eq. (7). The
red and blue shades represent the model and the data density,
respectively. The gradient update following Eq. (7) increases the
energy of samples from pθ(x) (the red dots) and decreases the
energy of training data (the blue crosses).

starting point x0 is drawn from a noise distribution p0(x),
typically a Gaussian or uniform distribution. Starting from
x0, a Markov chain evolves as follows:

xt+1 = xt + λx∇x log pθ(xt) + σxεt, (8)

where εt ∼ N (0, I). λx and σx are the step size and
the noise parameters, respectively. A theoretically moti-
vated choice is 2λx = σ2

x, but the parameters are often
tweaked separately for better performance (Du & Mordatch,
2019; Grathwohl et al., 2020; Nijkamp et al., 2019). As
∇x log pθ(x) = −∇xE(x)/T , tweaking the step size can
be seen as adjusting the temperature T .

To ensure the convergence of the chain, either Metropolis-
Hastings rejection (Roberts et al., 1996) or annealing of
the noise parameter to zero (Welling & Teh, 2011) may be
employed, but often omitted in practice.

We discuss specific strategies to evaluate the second term in
Eq. (7) in Section 4. For a comprehensive review on various
strategies for training an EBM, readers may refer to Song &
Kingma (2021).

3. Normalized Autoencoders
3.1. Definition

We propose Normalized Autoencoder (NAE), a normal-
ized probabilistic model defined from an autoencoder. The
probability density of NAE pθ(x) is defined as a Gibbs
distribution (Eq. (4)) the energy of which is defined as the
reconstruction error of an autoencoder:

Eθ(x) = lθ(x). (9)

Thus, the model density of NAE is given as

pθ(x) =
1

Ωθ
exp(−lθ(x)/T ), (10)

where Ωθ is defined as in Eq. (5). Due to the normalization
constant, pθ(x) is a properly normalized probability density.

As a probabilistic model, NAE is trained to maximize the
likelihood of data. The loss function to be minimized is the

We define the model probability pθ through the Boltzmann distribution as:

pθ(x) =
1

Ωθ
exp (−Eθ(x)) (6)

Such that the phase space with high reconstruction error has low probability

We define the loss to learn pθ = pdata:

Ex∼pdata [Lθ(x)] = Ex∼pdata [Eθ(x)]− Ex′∼pθ
[
Eθ(x′)

]
(7)

positive energy negative energy
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Working principle of the Normalized Autoencoder (NAE)

Loss
Ex∼pdata [Lθ(x)] = Ex∼pdata [Eθ(x)]− Ex′∼pθ

[
Eθ(x′)

]
= E+ − E−

positive energy negative energy

Positive energy

Simply the reconstruction error over the training dataset

Take SM jets and compute the reconstruction error!

Negative energy

Reconstruction error of the “negative samples” x′ from the probability distribution pθ

Need to sample from the model to get the “negative samples”

Ô Monte Carlo Markov Chain (MCMC) employed

MCMC

Start from an initial point x′0
Run n Langevin MCMC steps:

x′i+1 = x′i − λi∇xEθ(x′i) + σiε ε ∼ N (0, I) (8)

drift diffusion

Repeat with several points x
′(j)
0 , the negative samples are the x

′(j)
n
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Training samples and hyper-parameters

Input features (AK8 jets)

Jet shape
Axis major
axis minor,

Jet substructure pD
T , EFP1

Boosted object
τ2, τ3
Cβ=0.5

2 , Dβ=0.5
2

Other Jet mass1

Architecture
Fully connected neural net
Hidden layers: 10, 10, 6, 10, 10

Hyper-parameters

Hyper-parameter Value
Batch size 256
Reconstruction loss MSE
Activation ReLU
Output encoder/

Linear
decoder activation
Optimizer Adam
Learning rate 1e-5
Dropout 0.
Max number of epochs 20 000
MCMC PCD
Regularization See slide ??

Number of events

mΦ [GeV] 1000 1500 2000 3000 4000
QCD tt̄

rinv 0.3 0.3 0.1 0.5 0.3 0.7 0.3 0.3
Number of events 23k 25k 23k 18k 16k 11k 14k 14k 217k 23k

Number of AK8 jets

Background jets Leading 2 jets
Signal jets Only SVJ2 in leading 2 jets

Train/validation/test splitting

0.7/0.15/0.15

1Should use soft drop mass in the future to better exploit dark hadron mass
2t-channel SVJ, categories explained in backup slide 3

Florian Eble Non-resonant SVJ search 26/01/2023 7 / 19
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Input features
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In general:

SVJ JSS more alike to tt̄
JSS than QCD JSS

High rinv SVJs are more
SM-like
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Differences with previous applications

Existing classification tasks12 are quite different from this one:

Classification task
Computer science paper1 HEP paper2 SVJ search
/ MNIST task / task

Data MNIST images Jet images 1D array of JSS features
Data representation 32× 32 in [0, 1] 40× 40 in [0, 1] 9 features, not all bounded
Number of dimensions 1024 1600 9
Network architecture 2D CNN 2D CNN DNN

Classification
1 MNIST class as OOD QCD vs tt̄ tt̄ vs SVJ

tt̄ vs QCD QCD vs SVJ
QCD vs SVJ QCD + tt̄ vs SVJ

Development of this SVJ tagger done on tt̄ sample

In the next slides, presented AUCs are the average AUC over all signal model hypotheses

1arXiv:2105.05735
2arXiv:2206.14225
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MCMC initialization

MCMC initialization:

In theory, MCMC convergence independent on the initial point

However, in practice with short chain, initialization is crucial

Several commonly used initialization algorithms of the MCMC:

Contrastive Divergence1 (CD)

Persistent CD2 (PCD)

CD3

Initial distribution from training data

Re-initialization after each parameter update (i.e. epoch)

PCD4

Random initial distribution for first MCMC

The model changes only slightly during parameter update

Thus, for subsequent chains, initialize chain at the state in which it ended for the
previous model

Possibility to randomly re-initialize a small fraction of the samples

1Neural Comput 2002; 14 (8) 3Illustration in backup slide 15
2PCD paper 4Illustration in backup slide 16
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On-Manifold Initialization

Tailored MCMC initialization algorithm for AEs:

CD and PCD have failure modes
CD failure mode: spurious low reconstruction error phase-space far from the training
dataset
PCD failure mode: MCMC chains very correlated, spurious low reconstruction error
phase-space can be missed

Ô Tailored algorithm for AE: On-Manifold Initialization (OMI)
Run a first MCMC in the latent space to generate samples lying near the decoder
manifold
Use them as initial points for the usual MCMC

131313Florian Eble                                                                                                                                                                                                      25/11/2022 13

 The two MCMC in OMI
● OMI is based on 2 MCMC

○ Latent MCMC: The goal is to find good initial distribution for the LMC (Langevin MC)
○ Features MCMC: The regular Langevin MCMC to sample “negative samples” and therefore 

compute the negative energy, initialized from the previous step

Figure adapted from the NAE paper

Langevin MC

Initial point of 
the latent chain

Initial point of 
the langevin MC

Negative sample 
to compute 
negative energy

Latent space

Features space
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OMI versus (P)CD

On image classification tasks, OMI was proved to outperform CD and PCD

The performance severely depends on tuning the MCMC hyper-parametersAutoencoding Under Normalization Constraints

Table 1. MNIST hold-out class detection AUC scores. The values in parentheses denote the standard error of mean after 10 training runs.
HOLD-OUT: 0 1 2 3 4 5 6 7 8 9 AVG

NAE-OMI .989(.002) .919(.013) .992(.001) .949(.004) .949(.005) .978(.003) .938(.004) .975(.024) .929(.004) .934(.005) .955
NAE-CD .799 .098 .878 .769 .656 .806 .874 .537 .876 .500 .679
NAE-PCD .745 .114 .879 .754 .690 .813 .872 .509 .902 .544 .682
AE .819 .131 .843 .734 .661 .755 .844 .542 .902 .537 .677
DAE .769 .124 .872 .935 .884 .793 .865 .533 .910 .625 .731
VAE(R) .954 .391 .978 .910 .860 .939 .916 .774 .946 .721 .839
VAE(L) .967 .326 .976 .906 .798 .927 .928 .751 .935 .614 .813
WAE .817 .145 .975 .950 .751 .942 .853 .912 .907 .799 .805
GLOW .803 .014 .624 .625 .364 .561 .583 .326 .721 .426 .505
PXCNN++ .757 .030 .663 .663 .483 .642 .596 .307 .810 .497 .545
IGEBM .926 .401 .642 .644 .664 .752 .851 .572 .747 .522 .672
DAGMM .386 .304 .407 .435 .444 .429 .446 .349 .609 .420 .423

6.2. 2D Density Estimation

We demonstrate the density estimation capability of NAE
with a two-dimensional mixture of 8 Gaussians. First,
we benchmark negative sample generation strategies for
NAE, including CD, PCD with and without restart, and on-
manifold initialization. The results are shown in Figure 3
and discussed in Section 4.1 in detail.

Second, we compare NAE trained with the on-manifold ini-
tialization to a conventional autoencoder and VAE (Figure
5). An autoencoder assigns high densities on regions be-
tween Gaussian modes, meaning that an autoencoder gives
a small reconstruction error from a points from the region.
For the overcomplete case (Dz = 3 > Dx), an autoencoder
almost becomes the identity map, and its reconstruction
error is not an informative predictor for an outlier. VAE and
NAE learn a non-identity function under the overcomplete
setting, showing the effectiveness of their regularizers.

In the experiments, the identical network architecture is
used, and the temperature is optimized by gradient descent.
In on-manifold initialization, temperature values are shared
by the main MCMC and the latent chain. When perform-
ing MCMC in X , Metropolis-Hastings rejection is applied
to ensure the detailed balance but is not applied in the la-
tent chain. For visualization, the normalization constants
for an autoencoder and NAE are computed by numerically
integrating over the domain, [−4, 4]2.

6.3. Outlier Detection

Experimental Setting We empirically demonstrate the ef-
fectiveness of NAE as an outlier detector. In outlier detec-
tion tasks, an outlier detector is trained only using inlier
data and then asked to discriminate outliers from inliers
during test phase. Given an input, a detector is assumed to
produce a scalar decision function which indicates the out-
lierness of the input. We measure the detection performance
in AUC, i.e., the area under the receiver operating character-
istic curve. Following the protocol of Ren et al. (2019) and
Hendrycks et al. (2019), we use an OOD dataset different

from the datasets used in test phase to tune model hyper-
pamraeters. Additional details on model implementation
and datasets can be found in the supplementary material.

The identical networks architectures are used for all
autoencoder-based methods. The reconstruction error is
used as the decision function, except for VAE. For deep
generative models, PixelCNN++ (PXCNN++, Salimans
et al. (2017)), Glow (Kingma & Dhariwal, 2018) and a
feed-forward EBM (IGEBM, Du & Mordatch (2019)), we
use the negative log-likelihood (i.e., the energy) as the de-
cision function. For VAE, we show two results from using
the reconstruction error (R) or the negative log-likelihood
(L) as decision functions.

MNIST Hold-Out Class Detection One class from
MNIST is set as the outlier class and the rest as the inlier
class. Then, the procedure is repeated for all ten classes in
MNIST. ConstantGray dataset is used for model selection.

This problem is not as easy as it seems, as confirmed in
the very low performance of various algorithms in Table
1. When a class is held out from MNIST, the remaining
9 classes may contain a set of visual features sufficient to
reconstruct the hold-out class, i.e., the outlier reconstruction
occurs. The outlier reconstruction is particularly severe for
the digit 1, 4, 7 and 9, possibly because their shape can be
reconstructed from the recombination of other digits. For
example, overlapping 4 and 7 produces a shape similar to
9. Interestingly, most of the other baseline algorithms also
show poor performance when 1, 4, 7 or 9 are held out as the
outlier. NAE shows the highest AUC score for all classes
and effectively suppresses the reconstruction of the outlier
class (Figure 6).

We also compare CD and PCD along with OMI in training
NAEs. Using CD and PCD show poor outlier detection
performance, although given the identical set of MCMC
parameters.

Out-of-Distribution Detection The samples from differ-
ent datasets are used as the outlier class. We test two in-
lier datasets, CIFAR-10 or ImageNet 32×32 (ImageNet32).
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Principle of MCMC

…

Initial distribution Gradient + noise Step 1 Step N

Chain
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Principle of CD

Example of a failure mode of CD: High
probability mode far from training data
distribution is not sampled

Training
data distri-
bution:

Background data 
distribution

…

Initial distribution Step 2 Step N

…

Initial distribution Step 2 Step N

Step 1

Step 1

Model 
parameter 

update

Chain i

Chain i+1
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Principle of PCD

…

Initial distribution Step 2 Step N

…

Initial distribution Step 2 Step N

Step 1

Step 1

Model 
parameter 

update

Chain i

Chain i+1
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NAE against a mixture of tt̄ and QCD

Disclaimer: “Cherry-picking” best model (at epoch with highest AUC)
NAE trained against a mixture of 50% QCD and 50% tt̄

Successful unsupervised SVJ tagger against a mixture of tt̄ and
light-flavor jets!

tt̄ vs SVJ QCD vs SVJ
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Compared to separate background case, same performance for QCD, worse for tt̄

More important to better tag SVJ against QCD than tt̄
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Distance correlation (DisCo)

The Pearson correlation only evaluates
linear correlations:

ρ2
Pearson(X,Y ) =

Cov2(X,Y )

Cov(X,X)Cov(Y, Y )
(9)

The Distance correlation (DisCo)1 makes
use of all information of the random variables:

dCov2(X,Y ) =∫
dpsdqt

∣∣fX,Y (s, t)− fX(s)fY (t)
∣∣2 w(s, t)

where fX (resp. Y ) is the characteristic
function of X (resp. Y ), fX,Y is the joint
characteristic function of X and Y .
fX,Y == fXfY iff X and Y are independent.

DisCo2(X,Y ) =
dCov2(X,Y )

dCov(X,X)dCov(Y, Y )
(10)

Pearson correlation coefficient

Distance correlation coefficient

1DisCo in ML for HEP at arXiv:2001.05310
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ABCD method

Let V1 and V2 be 2 uncorrelated variables for the background distribution.

Signal region A: V1 > c1 and V2 > c2

Number of events in each region: NA, NB , NC , ND

Background estimation in signal region:

Nbkg
A =

NBNC

ND

V2

V1

Background
SignalAC

B

D

c1

c2

Illustration of the ABCD method
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