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Dark Matter at a glance

What Dark Matter (DM) is:
o In practice: Anything that is not Standard Model (SM)

o Experimentally: Non-visible matter that interacts gravitationally (astronomical
observation)

o Theoretically: Pick your poison! Supersymmetry (SUSY), Weakly Interacting Massive
Particles (WIMPs)...

What if we are not looking at the right place?
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DM as a strongly coupled dark sector

o Hidden Valley (arXiv:hep-ph/0604261) with new particles and forces form the dark
sector

@ There could exist a new confining SU(N) force (a.k.a. dark QCD) and dark quarks

o Mediator particle makes a portal between the SM and dark sectors
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Motivations
o Can be probed with collider experiment
e Signatures unexplored by WIMP searches
e Stable dark hadrons could explain the DM relic abundance! (arXiv:1907.04346)
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https://arxiv.org/abs/hep-ph/0604261
https://arxiv.org/abs/1907.04346

Production of semivisible jets

e Dark quarks hadronize in the dark sector

o A fraction of dark hadrons promptly decays to SM quarks which hadronize in the SM
sector

o Remaining dark hadrons are stable and invisible = DM candidates
- Production of semivisible jets (SVJ) (arXiv:1503.00009, arXiv:1707.05326)
- K aligned with jet!

o=l

SM hadrons

Stable dark hadrons
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https://arxiv.org/abs/1503.00009
https://arxiv.org/abs/1707.05326

Hadronization in the dark sector

The details of the shower in the dark sector depends on many unknown
parameters, e.g.:

o Number of colors and flavors in the dark sector
o Masses of the dark hadrons (7
e Dark QCD hadronization scale N

=> Simulation of SVJ very
assumption- and
model-dependent
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t-channel production of SVJ

3 production mechanisms: Main model parameters:
e Direct production: @ mg: Mass of the mediator &
Production of dark quarks without

resonance @ Tinyv: Jet invisible fraction

o Associated production:
Production of the mediator
associated with a dark quark

Number of stable dark hadrons
Tinv =
mv Number of dark hadrons

o Pair production:
Production of a pair of mediators
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Backgrounds

QCD multijet
o Artificial missing transverse energy Fr aligned with jet
from jet energy mismeasurement

o Large cross-section

tt
o Jet from boosted ¢

@ Semi-leptonic channel W (— lv) with lost lepton,
genuine 1 from neutrino

o Jet aligned with Fp

Z + jets

e Genuine fr from Z — vv

W + jets

o W — lv with lost/not reconstructed lepton or hadronic
decay of T

o Genuine £ from neutrino
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Overall strate

Tag semivisible Classify signal Search for an ex-
jets vs background cess at high Fr
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Challenges

Background
e Overwhelming QCD multijet background in the region of interest (Er aligned with jet)

e Potentially several kinds of background jets:
light flavor QCD jets

e boosted 3-prong top jets

e boosted 2-prong W jets

o b jets

o whose relative proportions depend on event-selection

©

Detector effects

e Energy mismeasurement in calorimeter could mimic the SVJ signature

e.g. SM dijet events with one jet falling in a calorimeter “cold” cell

Signal modeling

o Non perturbative QCD theory parameters obtained from measurements
- Not possible for dark QCD!

o Model-dependence:

Exploiting details of the SVJ shower simulation = high model-dependence = small
sensivity if the actual dark QCD is different from the one simulated
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Pre-selection

Pre-selection used to loosely select a region of phase-space enriched in SVJ events.

Cut-flow table (relative cut efficiencies in %):

e [GeV] 1000 2000 1000 T T

} Tiny % 0.3 % 01 [ 03 [ 07 % 0.3 H QChT | ‘Wﬂe“ Ztjets
Trigger 324 [ 150 | 207 | 21.0 | 219 || 136 | 676 | 206 39.0

o filters 100 | 99.9 | 100 | 100 | 99.9 | 996 | 99.9 | 999 99.9
Lepton Veto | 93.0 | 921 | 927 | 950 | 93.4 | 919 | 355 | 361 94.3
St > 1300 GeV | 37.7 | 583 | 43.6 | 31.9 | 265 || 7.58 | 934 | 3.95 131
nFatdet >2 | 99.9 | 100 | 99.7 | 955 | 99.6 | 99.9 | 99.9 | 977 91.0
Total abs. off. (%] | 11.3 | 8.07 | 8.36 | 6.34 | 539 || 0.11 | 024 | 04l 0.44

o [ filters aim at rejecting events with artificial 1 caused by detector mismeasurement,
like calorimeter “cold” cell

o Trigger + St (trigger plateau) cuts have low signal efficiency!

o Lepton veto efficient at rejecting ¢t and W + jets backgrounds

LGen-level pip > 170 GeV
2Gen-level Hp > 400 GeV
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Overview of kinematics and jet substructure

Private work (CMS Simulation) Private work (CMS Simulation)
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o [t is the most
discriminative event-level
variable

@ Moderate discrimination in
other event-level variables,
e.g. angular variables,
usually enhanced at high
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Analysis strategy

o Several event-level variables contain moderate discrimination power

o No single obvious discriminative variable for all model parameters and production

mechanisms
- Use ML event classifier sub-structure sub-structure
- Tag SVJ
Jet tagger Jet tagger
- Use SVJ tag information along SERIE score
with event-level features to €.g. e.g.
classify SVJ events NAE NAE

ParticleNet ParticleNet

Event features
e.g. MET, jet 4-vectors
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Analysis strategy - Tag semivisible jets/events

3 approaches:

Event classifier . .
Jet tagger Unsupervised Supervised
Unsupervised Fully unsupervised Mixed
Supervised Fully supervised

Supervised vs unsupervised jet tagger:

o Large model dependence for dark shower simulation

e Unsupervised SVJ tagger can achieve good discrimination power and surpasses
supervised tagger in case of test on an unseen model (arXiv:2112.02864)

o Unsupervised tagger can be trained directly on data in a control region!

Supervised vs unsupervised event classifier:

o Event kinematics is better simulated and less model-dependent

@ Supervised classifier: boost sensitivity compared to unsupervised approach

an Eble
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https://arxiv.org/abs/2112.02864

Autoencoders

Autoencoders (AE) are neural networks (NN) classically used for dimensionality reduction or
anomaly detection.

AEs are composed of:

Input features Reconstructed features
e an encoder NN f P

e a “symmetric” decoder NN g Latent space
Encoded features

The AE network is trained to
learn to reconstruct the input
examples it is given.

The loss of an AN for an example
x is:

L(z) = [lg(f () — =[]

where ||-]| is a distance

Encoder Bottleneck Decoder

The aim of an AE for anomaly detection is to be able to reconstruct only the
examples it is trained on but not others
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Shortcoming of standard autoencoder
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Training plain autoencoder (AE) on tt jets

2 phases...

(A) Increasing AUC and decreasing reconstruction
loss

(B) Decreasing AUC while the reconstruction loss
continues to decrease

corresponding to the AE

getting better at reconstructing background jets
but not signal jets as much

getting better at reconstructing signal jets, as
good as background jets

Outlier reconstruction / AE is & identity!

Rather large AUC (& 0.7), however for a very
particular point during training

Ultimately, final AUC is only slightly above 0.5

lTraining and validation loss on different scale because training loss is divided by number of input
features while validation loss is not




The problem of outlier reconstruction

Full phase space o Outlier reconstruction happens when the
network assigns low reconstruction error
to out-of-distribution (OOD) examples

@ OOD reconstruction not suppressed
— during training in plain AE
Training data support

/
Low reconstruction loss o Sometimes phrased as “OOD examples
need to be more ‘complex’ to not be

. Half 4 reconstructed”
MNIST FMNIST Blank Omniglot Half 5 Half 0

- Normalized autoencoder! (NAE)
........................................... : features a mechanism tO suppress
OOD reconstruction!

= It ensures that the low error phase-space
of the NN matches that of the training

Outlier reconstruction example: AE and NAE data.

trained on MNIST, other inputs are outliers.

INAE first introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225



https://arxiv.org/abs/2105.05735
https://arxiv.org/abs/2206.14225

. tt and QCD se

Best model choice:
@ Monitoring AUC calculated on an ensemble of signal hypotheses

o Choosing model with highest AUC during training

Successful unsupervised SVJ tagger against QCD and tt jets!

tt vs SVJ QCD vs SVJ
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SVJ events selection

SVJ events selection: Uncorrelation between DNN score and Frp:
o Exploit weakly discriminative variables o Either by providing input features
with DNN (e.g. angles between jets and uncorrelated with £, usually weakly
with Fr) discriminative
o Signal region: high DNN and high o Or by using also features correlated with

F+ and decorrelating DNN score with

e DNN output must be uncorrelajted .vvith Er using DisCol
F1 to perform background estimation

with ABCD method (see slide 19)

Private Work (CMS Simulation)

Example:

o Trained DNN using 7, ¢ of first 4 leading

5.
large” jets and J,, 0821 0813 0844

m,, [GeV]

o Used 0-zero padding if fewer than 4 jets

o Trained on a mixture of all main
backgrounds

- Achieving large AUC!

r

inv

L The distance correlation (DisCo) is a measure of non-linear correlation between two variables. See
backup slide 18.

2Reconstructed with the anti-kp algorithm with radius R = 0.8
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Ba

Background estimation:

o Data-driven technique as QCD multijet
simulation is not reliable

o ABCD method: event-classifier score
versus an uncorrelated variable (e.g. Fr)

Statistical analysis:

e Search for an excess in £ in the signal
region
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Conclusions and next steps

Current status:

o Analysis strategy well in place

o Proof-of-principle for unsupervised jet tagger (NAE) selecting SVJ against a mixture of
SM background jets

o Supervised event classifier (DNN) exploiting weakly discriminative variables or more
discriminative variables with DisCo

o Proof-of-principle for data-driven background estimation using ABCD method

Next steps:

o Finalize jet tagger:

o Optimization of input features
o Optimization of hyper-parameters with Optuna
o Checking correlation with high level jet features, e.g. p

o Finalize event classifier:

o Add NAE loss to input feature
o Finalize input features in connection with uncorrelation with F

e Verify/optimize artificial F1 filters for this channel

o Perform statistical analysis including systematics
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Many possible diagrams in the ¢-channel

@ Direct production

2
j sl - 5 - wii-
9 .
1




t-channel jet classification

Different jets in the t-channel final state:
e SVJ not from the mediator o SM jets not from the mediator
e SVJ from the mediator @ SM jets from the mediator

e SV initiated by a dark quark, dark gluon e Any combination of the previous cases...

Dark quark from med.
Unique code to

define each 0(500Q‘—> Descendants from dark hadron

possibility:

Dark quark
Dark gluon
q
. X

SVJ categories: ¢ X ¢ X 9
1-15 0 & @y

j g J/

'$ as

Jets from dark @
quark, dark gluon, |

‘ o @ YD
from the mediator Yp g Yo 9 q
or not q

(a) Direct production (b) Associated production (c) Pair production
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Energy-based models

Energy-based models (EMBs)

o EBMs are models where the probability is defined through the Boltzmann distribution

o Let 6 denote the model parameters

o The model probability pgy is defined from the energy Fjy

po(z) = Qie exp (= Ey(z)/T)

where the normalization constant €y is

Qp = / exp (~Eg(x)/T) da
o The EBM loss for a training example z is the negative log-likelihood:
Lo(x) = —logpg(z) = Eg(x)/T + log Qo
o The gradient of the EBM loss is thus:

VoLg(x) = VoEg(x) —E [VoEo(z")]

x/~pg

o The expectation value over the training dataset, with probability pqata is:

Ez~pata [VoLo(z)] = Ez~pata [VoEg(x)] — Ex’~p9 [VgEg(l'/)]

Florian Eble Non-resonant SV rc 26/01/2023




Working principle of the Normalized Autoencoder (NAE)

Basic idea:

o Ensure that low reconstruction error Po (%) p(x)
phase-space matches that of training data ft T —VEp(X)

VEg (X)T 1 tt

e i.e. OOD examples are constrained to have high
reconstruction error

Figure 2. An illustration of the energy gradients in Eq. (7). The

NAE methematics red and blue shades represent the model and the data density,
respectively. The gradient update following Eq. (7) increases the
o Let 6 be the NAE model parameters energy of samples from pg(x) (the red dots) and decreases the

energy of training data (the blue crosses).

o Let pgata be the probability distribution of the
training data
o Let Ey be the reconstruction error of the AE
o We define the model probability py through the Boltzmann distribution as:
1
Po(a) = o exp (—Eo(@)) ®)
6
Such that the phase space with high reconstruction error has low probability
o We define the loss to learn pg = pgata:

Eznpaaca [Lo(z)] = Exnpgaa [Bo(x)] — Ew’pr [E9 (T,)] (7)

positive energy negative energy
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Working principle of the Normalized Autoencoder (NAE)

Loss
EiBdiata [L9(x)] = EﬂcNPdata [E9($)] - E,,/Np() [EQ(I,)] =Ey —-E-

positive energy negative energy

Positive energy
e Simply the reconstruction error over the training dataset

o Take SM jets and compute the reconstruction error!

Negative energy
@ Reconstruction error of the “negative samples” z’ from the probability distribution pg
o Need to sample from the model to get the “negative samples”
- Monte Carlo Markov Chain (MCMC) employed

MCMC
o Start from an initial point x,

e Run n Langevin MCMC steps:

wiy =a; — A VaEg(x)) + oe e~N(0,1) (8)
drift diffusion

/( ()

o Repeat with several points xoj), the negative samples are the z
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Training samples and hyper-parameters

Input features (AKS8 jets) Hyper-parameters
Jet sh Axis major Hyper-parameter Value
et shape axis minor, Batch size 256
Jet substructure p%, EFP1 Reconstruction loss MSE
Activation ReLU
. T2, T3
Boosted object cB=0-5_ pp=0.5 Output encoder/ )
2 » &9 o Linear
Other Jet mass! decoder activation
Optimizer Adam
3 Learning rate le-5
Architecture Dropout 0.
Fl..llly connected neural net Max number of epochs | 20 000
Hidden layers: 10,10, 6,10, 10 MCMC PCD
Regularization See slide 77
Number of events
mg [GeV] 1000 | 1500 2000 3000 | 4000 -
Tine 03 | 03 [ 01050307 03 [ o3| P "

Number of events 23k 25k 23k ‘ 18k ‘ 16k ‘ 11k 14k 14k 217k | 23k

Number of AKS jets Train/validation/test splitting

Background jets | Leading 2 jets 0.7/0.15/0.15
Signal jets Only SVJ? in leading 2 jets

1Should use soft drop mass in the future to better exploit dark hadron mass
2¢-channel SV, categories explained in backup slide 3
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Input feature
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Input feature
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In general:

e SVJ JSS more alike to tt
JSS than QCD JSS

o High ri,y SVJs are more
SM-like




Differences with previous applications

o Existing classification tasks'? are quite different from this one:

Data representation
Number of dimensions
Network architecture

Classification

32 x 32 1in [0, 1]

1024

2D CNN

1 MNIST class as OOD

. . Computer science paperl | HEP paper? SVJ search
Classification task / MNIST task / task
Data MNIST images Jet images 1D array of JSS features

40 x 40 in [0, 1]
1600

2D CNN

QCD vs tf

tt vs QCD
QCD vs SVJ

9 features, not all bounded
9

DNN

tt vs SVJ

QCD vs SVJ

QCD + tt vs SVJ

e Development of this SVJ tagger done on tt sample

o In the next slides, presented AUCs are the average AUC over all signal model hypotheses

LarXiv:2105.05735
2arXiv:2206.14225

26/01
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MCMC initialization

MCMC initialization:
e In theory, MCMC convergence independent on the initial point

e However, in practice with short chain, initialization is crucial

Several commonly used initialization algorithms of the MCMC:
o Contrastive Divergence! (CD)
e Persistent CD? (PCD)

CcD?
o Initial distribution from training data

o Re-initialization after each parameter update (i.e. epoch)

PCD*
e Random initial distribution for first MCMC
o The model changes only slightly during parameter update

o Thus, for subsequent chains, initialize chain at the state in which it ended for the
previous model

o Possibility to randomly re-initialize a small fraction of the samples

INeural Comput 2002; 14 (8) 3lllustration in backup slide 15
2pCcD paper 41llustration in backup slide 16

an Eble 0 c 26/01
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On-Manifold Initialization

Tailored MCMC initialization algorithm for AEs:
o CD and PCD have failure modes

o CD failure mode: spurious low reconstruction error phase-space far from the training
dataset

e PCD failure mode: MCMC chains very correlated, spurious low reconstruction error
phase-space can be missed

- Tailored algorithm for AE: On-Manifold Initialization (OMI)
e Run a first MCMC in the latent space to generate samples lying near the decoder
manifold
o Use them as initial points for the usual MCMC

Initial point of
the latent chain

N L
Latent space Z

—0
Decoder Manifold | f2(@) | [On-manifci!d Initializatio:l | _ -4 Langevin MC
Features space X/ . + «,
ad TTe-al L Negative sample
JPtas =~ to compute
Initial point of L-7 negative energy

the langevin MC

26/01



OMI versus (P)CD

e On image classification tasks, OMI was proved to outperform CD and PCD

@ The performance severely depends on tuning the MCMC hyper-parameters

Table 1. MNIST hold-out class detection AUC scores. The values in parentheses denote the standard error of mean after 10 training runs.
HoLD-OUT: 0 1 2 3 4 5 6 7 8 9 AVG

NAE-OMI .989.002) .919¢013) .992.001) .949(.004) .949(.005) .978.003) .938.004) .975(.024) .929(.004) .934(.005) .955
NAE-CD .799 .098 .878 769 .656 .806 874 537 876 .500 679
NAE-PCD .745 114 .879 754 .690 813 .872 .509 902 544 .682
AE 819 131 .843 734 .661 755 .844 .542 902 .537 677
DAE 769 124 .872 935 .884 793 .865 .533 910 625 731
VAE(R) 954 391 978 910 .860 939 916 174 .946 721 .839
VAE(L) 967 .326 976 .906 798 927 928 751 935 614 813
WAE 817 .145 975 950 751 942 .853 912 907 799 .805
GLOW .803 014 .624 .625 364 .561 .583 .326 721 426 .505
PXCNN++ .757 .030 .663 .663 483 642 .596 .307 810 497 .545
IGEBM 926 401 .642 644 .664 152 851 572 747 522 672
DAGMM .386 .304 407 435 444 429 446 .349 .609 420 423




Principle of MCMC

Initial distribution Gradient + noise Step 1 Step N
.0 .0 [J ®o_ o
K Y ® @ o ° ,
[ J [ ] °
[ [
[ ] 2 "
° o |0 ° P ® L )
° . ° ¢ 4 o ° o°
[ ] [ [ ] °
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Principle of CD

Example of a failure mode of CD: High Training .
probability mode far from training data data distri-
distribution is not sampled

bution: .
Initial distribution Step 1 Step 2 Step N
[ ] o Y °
[ ° ° °o_o 0oy ®
o% ©
Chaini o, ‘. ‘. .‘.
® e o
_Eei o b L ®o e - ... ) =® o
[}
¢ ot »
Model
parameter L
update Initial distribution Step 1 Step 2 Step N
L ° Y
.‘.. oo Y 2] ° "
o o ®g o e® ®
Chain i+1
L X ] -
— - - e o - -
B, e o ; ° ‘.
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Principle of PCD

Initial distribution Step 1 Step 2 Step N
.o o o °
- °* e o o e o N
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E [ J
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NAE against a mixture of ¢t and QCD

Disclaimer: “Cherry-picking” best model (at epoch with highest AUC)
NAE trained against a mixture of 50% QCD and 50% tt

Successful unsupervised SVJ tagger against a mixture of ¢ and
light-flavor jets!

tt vs SVJ QCD vs SVJ

Private Work (CMS Simulation) Private Work (CMS Simulation)
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4000 0.95 4000 0.95
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O, 2000 0687 0671 0689 | IR O, 2000 0747 0730 0746 | [RH
° °

IS5 0.70 e 0.70

1500 0.65 1500 0.65
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1000 055 1000 055
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I'inv I'inv

o Compared to separate background case, same performance for QCD, worse for ¢t
e More important to better tag SVJ against QCD than tt
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Distance correlation (DisCo)

The Pearson correlation only evaluates

0.4 0.8

linear correlations: e w \
COVQ(X Y) 0 0 0
2 5
X,Y) = 9 ey
pPearson( ) COV(X, X)COV(Y, Y) ( ) % {.‘:} zv‘i
The Distance correlation (]DiSCO)1 makes Pearson correlation coefficient

use of all information of the random variables:
dCov?(X,Y) = .

[ st gy (0 = Fx (9 @ wis.o

where fx (resp. Y) is the characteristic
function of X (resp. Y'), fx,y is the joint
characteristic function of X and Y.

fx,y == fxfy iff X and Y are independent.

Distance correlation coefficient

_ dCov?(X,Y)
" dCov(X, X)dCov(Y,Y)

DisCo?(X,Y) (10)

1DisCo in ML for HEP at arXiv:2001.05310
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https://arxiv.org/abs/2001.05310

ABCD method

Let V7 and V2 be 2 uncorrelated variables for the background distribution.

o Signal region A: V] > ¢; and Vo > c2

o Number of events in each region: Na, Ng, No, Np

Background estimation in signal region:

NpN¢

bkg
N =
A Np

Background
C A Signal

Florian Eble

c, \%

Tlustration of the ABCD method
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