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The HyperMu project
Motivation
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The HyperMu project
Motivation
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Measure the hyperfine splitting with a relative
accuracy of 10−6

𝛥𝐸HFS⏟
measured

= 𝐸F (1 + 𝛥QED+weak + 𝛥hVP + 𝛥2γ⏟
derived
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Measurement principle

• Stop muon beam in 1mmH₂ gas
target at 22K and 0.5 bar

• Wait until μp atom de-excites and
thermalises

• Laser excites HFS transition:
μp(𝐹=0) + γ → μp(𝐹=1)

• Collisional de-excitation:
μp(𝐹=1) +H₂ → μp(𝐹=0) +H₂ + 𝐸kin

• μp atom diffuses to Gold-coated
target walls

• Formed μAu* de-excites promptly
and produces characteristic X-rays

• Detected X-rays are plotted against
laser frequency
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Requirements

HFS transition energy
ofΔ𝐸HFS = 182meV

⇒wavelength 𝜆 = 6.8 µm

spectroscopy ⇒ tunable wavelength
rel. accuracy of 10−6 ⇒ <50MHz line width
small matrix element ⇒ high fluence 𝐹 ≈ 10 J cm−2

corresponds to 𝐸pulse ≈ 5mJ
continuous μ beam ⇒ stochastic trigger
muon lifetime ⇒ pulse delivery within 1 µs
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Simple schema
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More detailed schema of the laser system
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Optical parametric process
How it works

pump

signal

idler

seed

pump

signal

idler

𝜈pump > 𝜈signal > 𝜈idler

𝜈pump = 𝜈signal + 𝜈idler
�⃗�pump = �⃗�signal + �⃗�idler
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Schema of the non-linear downconversion
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Detailed schematic
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What is a thin-disk laser?

+ large gain
− energy not scalable

− small gain
+ energy is scalable
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Thin-disk laser oscillator
Schema

Before muon trigger
• cavity continuously injection seeded
• thin-disk continuously pumped

After muon trigger
• cavity closed by rotating polarisation
using Pockels cell

• pulse build-up during few 100 ns
• cavity is opened to extract the pulse
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Thin-disk laser oscillator
PDH locking
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Zeyen, M. et al. Pound-Drever-Hall locking scheme free from Trojan operating points. Review of Scientific Instruments
94, 013001. arXiv: 2210.05501 [physics.optics] � (12th Jan. 2023)
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Thin-disk laser oscillator
PDH locking

Trojan 

lock-point
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94, 013001. arXiv: 2210.05501 [physics.optics] � (12th Jan. 2023)

Low Energy Particle Physics (Group of Klaus Kirch)
Insitute for Particle and Astrophysics 27.01.2023 13/19

https://arxiv.org/abs/2210.05501


Multi-pass thin-disk laser amplifier
Setup

• Ytterbium:YAG disk amplifier
• 2.5 kW pump diode
• multi-pass design with 20 passes
• 4f-stage & Fourier transform
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Multi-pass thin-disk laser amplifier
Setup
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Advantages of this design

• compact layout due to 4f, including a small astigmatism
• Fourier transform helps stability against thermal effects
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Multi-pass thin-disk laser amplifier
Propagation
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Results

Oscillator
• injection seeding with PDH locking successful
• stability <1%
• active auto-alignment of cavity

Amplifier
• propagation over 20 passes
• gain of 20 at small signal limit
• gain of 8 at 300mJ
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Thank you!

In the name of the full CREMA collaboration, I would like to thank you for your attention.
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Astigmatism compensation in TDL Amplifier
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Single pass through amplifier
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