

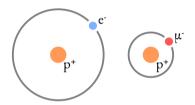
Low Energy Particle Physics (Group of Klaus Kirch) Insitute for Particle and Astrophysics

Laser System for the Hyperfine Splitting in Muonic Hydrogen

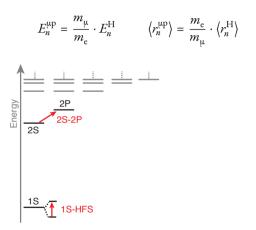
Lukas Affolter Zürich PhD Student Seminar

Outline

1. General overview: HyperMu Motivation Measurement principle

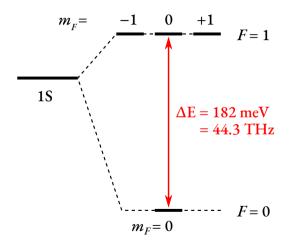

2. Requirements on the laser system

3. Schema of laser system Thin-disk laser oscillator Thin-disk laser amplifier


The HyperMu project

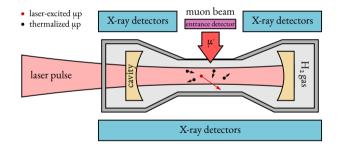
Motivation

Muonic hydrogen: μp

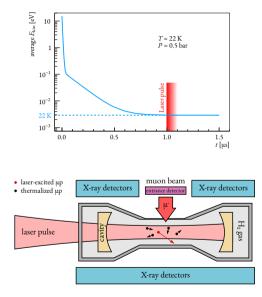

- muon 200 times more massive than the electron
- sensitive to magnetic properties of the proton

The HyperMu project

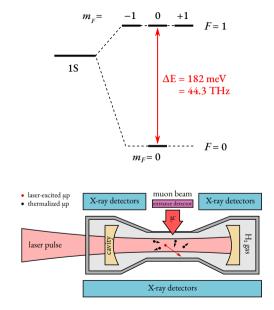
Motivation

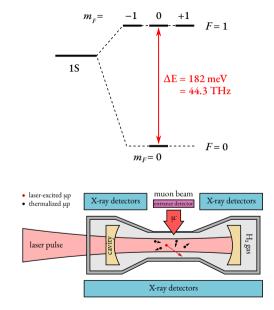

Measure the hyperfine splitting with a relative accuracy of 10^{-6}

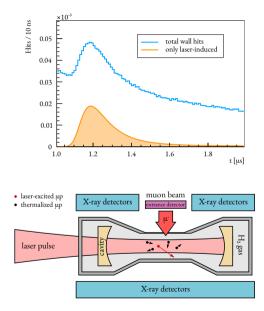
$$\underbrace{\varDelta E_{\text{HFS}}}_{\text{measured}} = E_{\text{F}} \left(1 + \varDelta_{\text{QED+weak}} + \varDelta_{\text{hVP}} + \underbrace{\varDelta_{2\gamma}}_{\text{derived}} \right)$$

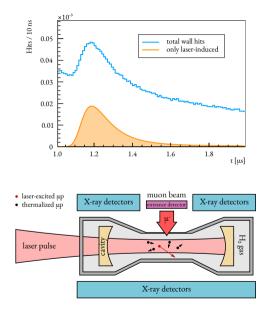


- Stop muon beam in 1 mm H₂ gas target at 22 K and 0.5 bar
- Wait until µp atom de-excites and thermalises
- Laser excites HFS transition: $\mu p^{(F=0)} + \gamma \rightarrow \mu p^{(F=1)}$
- Collisional de-excitation: $\mu p^{(F=1)} + H_2 \rightarrow \mu p^{(F=0)} + H_2 + E_{kin}$
- µp atom diffuses to Gold-coated target walls
- Formed µAu* de-excites promptly and produces characteristic X-rays
- Detected X-rays are plotted against laser frequency

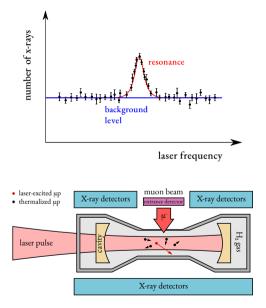



- Stop muon beam in 1 mm H_2 gas target at 22 K and 0.5 bar
- Wait until µp atom de-excites and thermalises
- Laser excites HFS transition: $\mu p^{(F=0)} + \gamma \rightarrow \mu p^{(F=1)}$
- Collisional de-excitation: $\mu p^{(F=1)} + H_2 \rightarrow \mu p^{(F=0)} + H_2 + E_{kin}$
- µp atom diffuses to Gold-coated target walls
- Formed µAu* de-excites promptly and produces characteristic X-rays
- Detected X-rays are plotted against laser frequency


- Stop muon beam in 1 mm H_2 gas target at 22 K and 0.5 bar
- Wait until µp atom de-excites and thermalises
- Laser excites HFS transition: $\mu p^{(F=0)} + \gamma \rightarrow \mu p^{(F=1)}$
- Collisional de-excitation: $\mu p^{(F=1)} + H_2 \rightarrow \mu p^{(F=0)} + H_2 + E_{kin}$
- µp atom diffuses to Gold-coated target walls
- Formed µAu* de-excites promptly and produces characteristic X-rays
- Detected X-rays are plotted against laser frequency

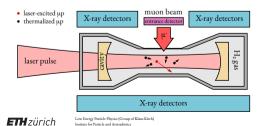

- Stop muon beam in 1 mm H_2 gas target at 22 K and 0.5 bar
- Wait until µp atom de-excites and thermalises
- Laser excites HFS transition: $\mu p^{(F=0)} + \gamma \rightarrow \mu p^{(F=1)}$
- Collisional de-excitation: $\mu \mathbf{p}^{(F=1)} + \mathbf{H_2} \rightarrow \mu \mathbf{p}^{(F=0)} + \mathbf{H_2} + E_{kin}$
- µp atom diffuses to Gold-coated target walls
- Formed µAu* de-excites promptly and produces characteristic X-rays
- Detected X-rays are plotted against laser frequency

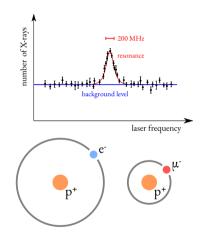
- Stop muon beam in 1 mm $\rm H_2\,gas$ target at 22 K and 0.5 bar
- Wait until µp atom de-excites and thermalises
- Laser excites HFS transition: $\mu p^{(F=0)} + \gamma \rightarrow \mu p^{(F=1)}$
- Collisional de-excitation: $\mu p^{(F=1)} + H_2 \rightarrow \mu p^{(F=0)} + H_2 + E_{kin}$
- µp atom diffuses to Gold-coated target walls
- Formed µAu* de-excites promptly and produces characteristic X-rays
- Detected X-rays are plotted against laser frequency



- Stop muon beam in 1 mm $\rm H_2\,gas$ target at 22 K and 0.5 bar
- Wait until µp atom de-excites and thermalises
- Laser excites HFS transition: $\mu p^{(F=0)} + \gamma \rightarrow \mu p^{(F=1)}$
- Collisional de-excitation: $\mu p^{(F=1)} + H_2 \rightarrow \mu p^{(F=0)} + H_2 + E_{kin}$
- µp atom diffuses to Gold-coated target walls
- Formed µAu* de-excites promptly and produces characteristic X-rays
- Detected X-rays are plotted against laser frequency

- Stop muon beam in 1 mm $\rm H_2$ gas target at 22 K and 0.5 bar
- Wait until µp atom de-excites and thermalises
- Laser excites HFS transition: $\mu p^{(F=0)} + \gamma \rightarrow \mu p^{(F=1)}$
- Collisional de-excitation: $\mu p^{(F=1)} + H_2 \rightarrow \mu p^{(F=0)} + H_2 + E_{kin}$
- µp atom diffuses to Gold-coated target walls
- Formed µAu* de-excites promptly and produces characteristic X-rays
- Detected X-rays are plotted against laser frequency

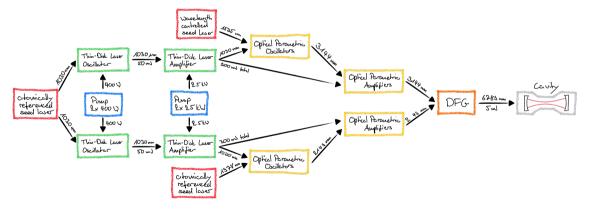

ETH zürich



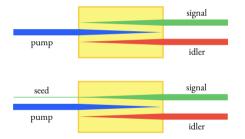
Requirements

HFS transition energy of $\Delta E_{\rm HFS} = 182 \,{\rm meV}$ spectroscopy rel. accuracy of 10^{-6} small matrix element

continuous μ beam muon lifetime ⇒ wavelength $\lambda = 6.8 \,\mu\text{m}$ ⇒ tunable wavelength ⇒ <50 MHz line width ⇒ high fluence $F \approx 10 \,\text{J cm}^{-2}$ corresponds to $E_{\text{pulse}} \approx 5 \,\text{mJ}$ ⇒ stochastic trigger ⇒ pulse delivery within 1 μ s


5/19

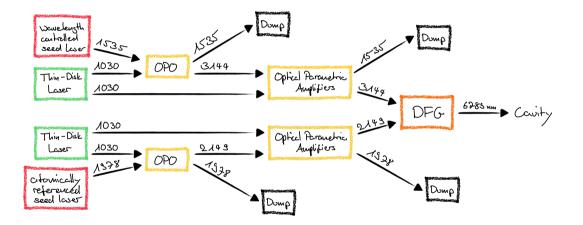
Simple schema



More detailed schema of the laser system

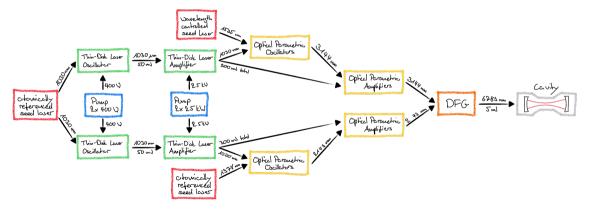
Optical parametric process

How it works

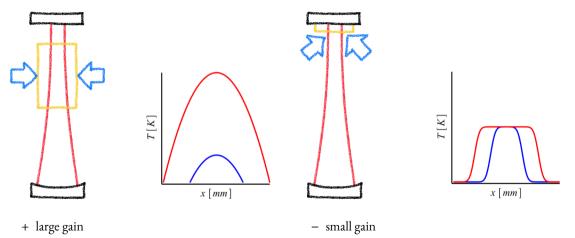


 $\nu_{\rm pump} > \nu_{\rm signal} > \nu_{\rm idler}$

 $\nu_{\text{pump}} = \nu_{\text{signal}} + \nu_{\text{idler}}$ $\vec{k}_{\text{pump}} = \vec{k}_{\text{signal}} + \vec{k}_{\text{idler}}$



Schema of the non-linear downconversion



Detailed schematic

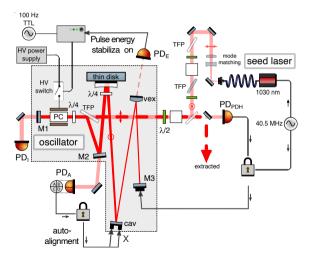
What is a thin-disk laser?

- energy not scalable

+ energy is scalable

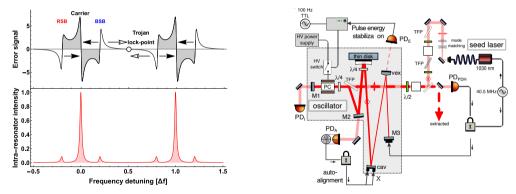
ETH zürich

Thin-disk laser oscillator


Schema

Before muon trigger

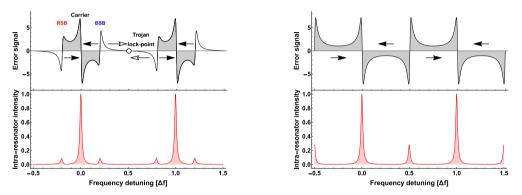
- cavity continuously injection seeded
- thin-disk continuously pumped


After muon trigger

- cavity closed by rotating polarisation using Pockels cell
- pulse build-up during few 100 ns
- cavity is opened to extract the pulse

Thin-disk laser oscillator

PDH locking

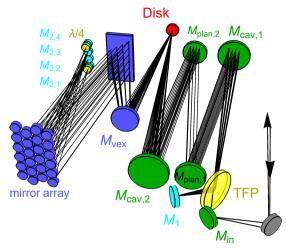


Zeyen, M. *et al.* Pound-Drever-Hall locking scheme free from Trojan operating points. *Review of Scientific Instruments* 94, 013001. arXiv: 2210.05501 [physics.optics] C (12th Jan. 2023)

ETH zürich

Thin-disk laser oscillator

PDH locking

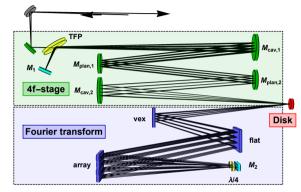


Zeyen, M. *et al.* Pound-Drever-Hall locking scheme free from Trojan operating points. *Review of Scientific Instruments* 94, 013001. arXiv: 2210.05501 [physics.optics] C (12th Jan. 2023)

ETH zürich

Multi-pass thin-disk laser amplifier $_{\scriptscriptstyle Setup}$

- Ytterbium:YAG disk amplifier
- 2.5 kW pump diode
- multi-pass design with 20 passes
- 4f-stage & Fourier transform



Multi-pass thin-disk laser amplifier

Setup

- Ytterbium:YAG disk amplifier
- 2.5 kW pump diode
- multi-pass design with 20 passes
- 4f-stage & Fourier transform

Advantages of this design

- compact layout due to 4f, including a small astigmatism
- Fourier transform helps stability against thermal effects

Multi-pass thin-disk laser amplifier

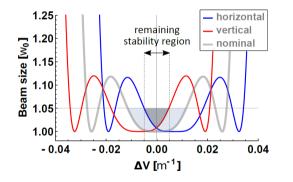
Propagation

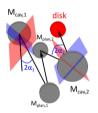
Results

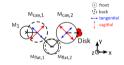
Oscillator

- injection seeding with PDH locking successful
- stability <1 %
- active auto-alignment of cavity

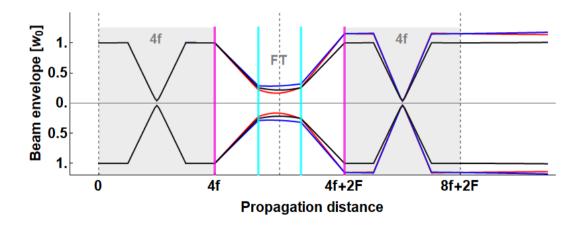
Amplifier


- propagation over 20 passes
- gain of 20 at small signal limit
- gain of 8 at 300 mJ


Thank you!


In the name of the full CREMA collaboration, I would like to thank you for your attention.

Astigmatism compensation in TDL Amplifier



Single pass through amplifier

