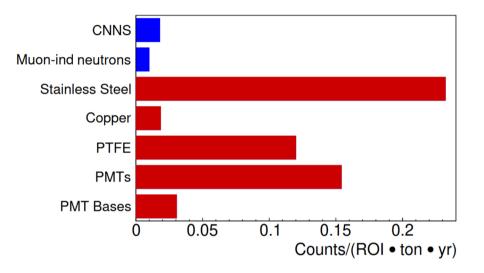
The low-background germanium counting facility Gator for highsensitivity γ-ray spectrometry

Zurich PhD Student Seminar

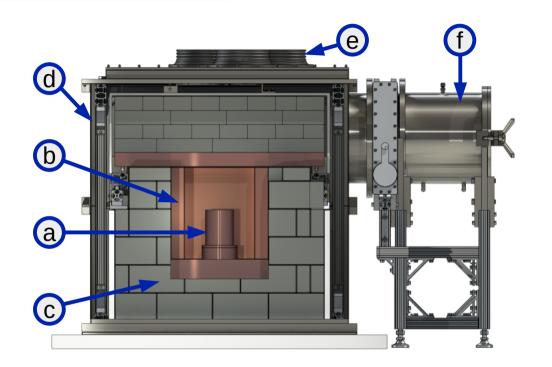

Alexander Bismark (alexander.bismark@physik.uzh.ch) 26 January 2023

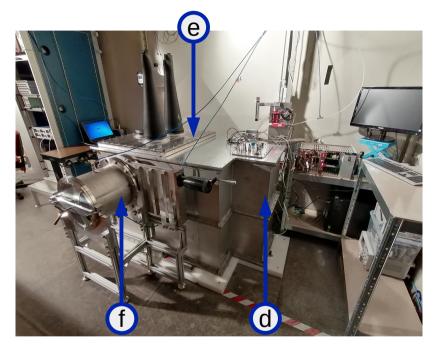
Particle Astrophysics Department of Physics University of Zurich

Motivation

- Required low backgrounds in rare event searches (e.g. DM, 0vββ)
- Germanium spectroscopy: non-destructive and high resolution screening method for material radioassay
- Selection of radiopure detector materials and precise background simulations
- Gator facility used for...
 - XENON100, XENON1T and XENONnT, GERDA and LEGEND-200
 - Future: LEGEND-1000 and DARWIN

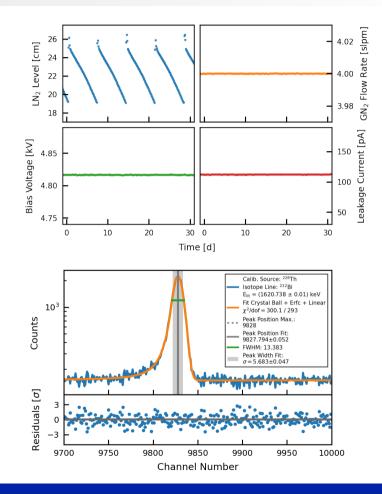
Nuclear recoil backgrounds in XENON1T from materials (red), predicted from screening measurements, and external sources (blue)^[1]


The Gator Facility


- Low-background germanium counting facility for high-sensitivity γ-ray spectrometry^[2]
- Located at the Gran Sasso underground laboratory in Italy (LNGS) at a depth of 3600 m water equivalent
- Core: p-type coaxial high-purity germanium (HPGe) detector with 2.2 kg sensitive mass and a relative efficiency of 100.5%
- Sample chamber volume: 25×25×33 cm³
- Recent upgrades to decrease background level, noise contribution in low-energy region, facilitate sample handling process

[2] JINST 17 (2022) P08010

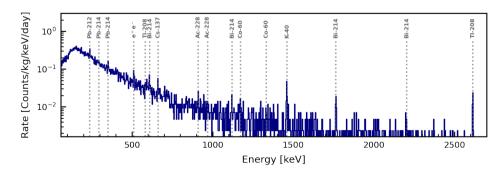
The Upgraded Gator Detector


(a) HPGe detector inside Cu-OFE cryostat (cooled with LN_2 via copper coldfinger), (b) OFHC Cu cavity, (c) lead shield, polyethylene sheet, (d) airtight stainless steel enclosure (purged with GN_2), (e) glove ports, (f) sample load lock

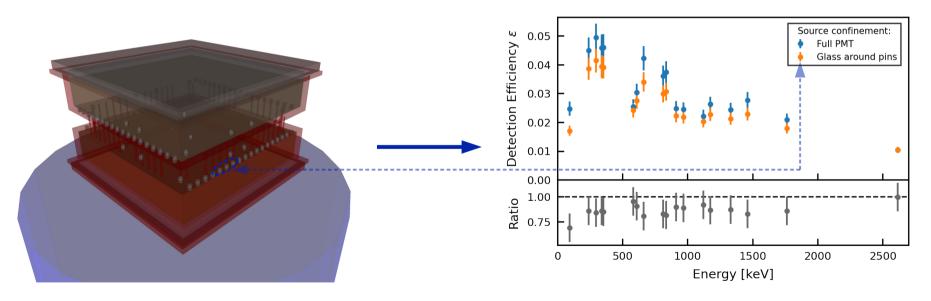
Detector Operation and Performance

- Stable operation for over 10 years
- Remote monitoring (incl. alarms) of operations parameters to ensure detector stability and data quality
- Regular calibrations of the detector with radioactive sources (e.g. ²²⁸Th, ¹³⁷Cs, or ⁶⁰Co) or high-activity samples
 - FWHM at 1332 keV: (1.98±0.07) keV (Maeve: 3.19 keV^[3], GeOroel: 1.85 keV^[4])
 - Verification of simulated efficiencies and consistent activities related lines

[3] Eur. Phys. J. C80 (2020) 1044


[4] Bandac, "Ultra-Low Background Services in the LSC", DS-Mat Meeting, GSSI, 2019

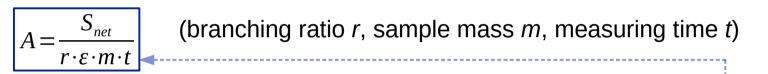
Background Contributions


- Integrated background rate in the energy region 100-2700 keV ^[2]: (82.0±0.7) d⁻¹kg⁻¹; as compared to value from 2010 ^[5]: (102.8±0.7) d⁻¹kg⁻¹; stable within runs (χ^2 /ndf ≈ 1)
- Low energies (\leq 35 keV, below ROI):
 - electronic noise
- Higher energies:
 - detector & shielding materials
 - environmental radon

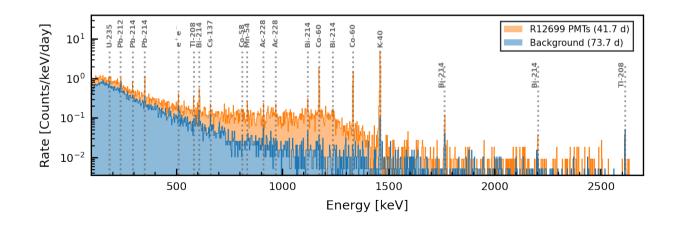
Energy [keV]	Isotope	Rate '21 [d ⁻¹]	Rate '10 [d-1]
351.932	Pb-214	0.41 ± 0.17	0.7 ± 0.3
609.312	Bi-214	0.26 ± 0.10	0.6 ± 0.2
1120.29	Bi-214	< 0.28	0.3 ± 0.1
1764.49	Bi-214	0.14 ± 0.06	0.08 ± 0.06
661.657	Cs-137	0.19 ± 0.09	0.3 ± 0.1
1173.24	Co-60	< 0.27	0.5 ± 0.1
1332.51	Co-60	< 0.21	0.5 ± 0.1
1460.88	K-40	0.28 ± 0.08	0.5 ± 0.1
2614.51	TI-208	0.19 ± 0.05	0.2 ± 0.1

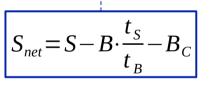
Sample Simulation and Analysis

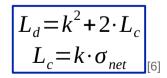
 Determination of the material-, geometry-, and energy-dependent detection efficiency ε of the respective γ-lines through GEANT4 Monte Carlo simulations for each sample



Resulting detection efficiencies lines


Simulated R12699 PMTs on detector


Sample Simulation and Analysis

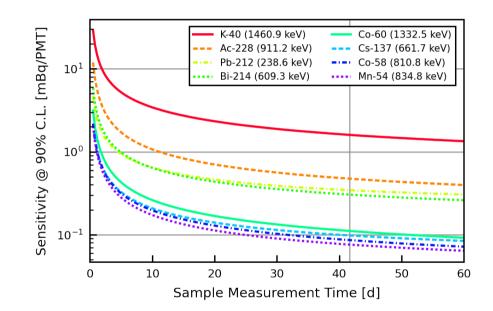

• Calculation of the specific activities A from the background- and Comptonsubtracted counts S_{net} at the location (±3 σ) of the most prominent lines as

Combination to activities of isotopes / subchains (L_d @ 90% C.L.)

[6] Anal. Chem. 1968, 40, 3, 586–593

Example: Hamamatsu PMT R12699-406-M4

For isotopes where detection limit is exceeded, current PMT model (still being optimized) has, per active photocathode area*,


- tenth fourfold activities w.r.t. R11410 units (in XENON1/nT)^[1]
- lower activity compared to the R8520 PMTs (in XENON100)^[5]
- → Good potential for future improvements through material selection for use in DARWIN
- * R12699 ~ 23.5 cm², R11410 ~ 32.2 cm², R8520 ~ 4.2 cm²

		Confin	ement full PMT			
Isotope	Improved	Initial	Prototype	Hamamatsu	Hamamatsu	
_	LRI model	model	Screening 2018	R11410	R8520-06	
			Detected/Limit (90 % C.L.) Activ	rity [mBq/PMT]	
²³⁸ U	< 6.92	< 6.11	< 8.13	8 ± 2	< 15	
226 Ra	0.54 ± 0.09	0.60 ± 0.10	0.54 ± 0.21	0.6 ± 0.1	< 0.28	
228 Ra	< 0.55	< 0.65	< 0.95	0.7 ± 0.2	< 0.59	
228 Th	< 0.36	< 0.53	0.49 ± 0.2	0.6 ± 0.1	0.3 ± 0.1	
$^{235}\mathrm{U}$	$< 0.32 \ [< 6.43]$	$< 0.28 \ [< 5.66]$	$< 0.37 \; [< 9.51]$	0.37 ± 0.09	< 0.67	
60 Co	$\textbf{0.08}\pm\textbf{0.04}$	1.31 ± 0.11	2.02 ± 0.19	0.84 ± 0.09	0.60 ± 0.04	
$^{40}\mathrm{K}$	$\textbf{34.2} \pm \textbf{3.6}$	34.6 ± 3.7	26.3 ± 3.2	12 ± 2	12.0 ± 0.8	
$^{137}\mathrm{Cs}$	< 0.113	< 0.119	0.151 ± 0.058	_	< 0.1	
$^{54}\mathrm{Mn}$	$\textbf{0.17}\pm\textbf{0.04}$	< 0.146	< 0.189	_	_	
58 Co	0.24 ± 0.04	< 0.122	< 0.222	_	_	
			Detected/Limit ((90 % C.L.) Acti	vity $[mBq/cm^2]$	
$^{238}\mathrm{U}$	< 0.294	< 0.260	< 0.346	0.25 ± 0.06	< 3.569	
226 Ra	0.023 ± 0.004	0.026 ± 0.004	0.023 ± 0.009	0.019 ± 0.003	< 0.067	
228 Ra	< 0.023	< 0.028	< 0.040	0.022 ± 0.006	< 0.140	
228 Th	< 0.015	< 0.023	0.021 ± 0.009	0.019 ± 0.003	0.071 ± 0.017	
$^{235}\mathrm{U}$	$< 0.014 \; [< 0.273]$	$< 0.012 \ [< 0.241]$	$< 0.016 \ [< 0.404]$	0.012 ± 0.003	< 0.159	
60 Co	0.0036 ± 0.0016	0.055 ± 0.005	0.086 ± 0.008	0.026 ± 0.003	0.144 ± 0.010	
40 K	$\boldsymbol{1.45}\pm\boldsymbol{0.15}$	1.47 ± 0.16	1.12 ± 0.14	0.37 ± 0.06	2.86 ± 0.18	
$^{137}\mathrm{Cs}$	< 0.005	< 0.005	0.006 ± 0.002	-	< 0.024	
$^{54}\mathrm{Mn}$	0.0070 ± 0.0015	< 0.006	< 0.008	-	-	
$^{58}\mathrm{Co}$	$\textbf{0.0103} \pm \textbf{0.0018}$	< 0.005	< 0.009	_	-	

[1] Eur. Phys. J. C77 (2017) 890; [7] Astropart. Phys. 35 (2011) 43–49

Sample Simulation and Analysis

- Isotopes / chains of interest:
 - primordial: ²³⁸U, ²³²Th, ⁴⁰K
 - cosmogenic: ⁵⁴Mn, ⁴⁶Sc, ⁶⁰Co,...
 - anthropogenic: ¹³⁷Cs, ^{110m}Ag,...
 - \rightarrow decay products may mimic signals or leak into the signal region
- Typical sensitivities: < a few mBq/kg for exposures of 1-3 weeks and several kg sample mass (a few µBq/kg for radio-pure samples, longer exposure and higher mass)

2 Hamamatsu R12699-406-M4 PMTs

Comparison to Other HPGe Spectrometers

Detector	Location (Depth m.w.e.)	Mass [kg]	Efficiency [%]	FWHM [keV]	Rate 60-2700 keV [cnts/(kg·day)]	Ref.
Gator	LNGS (3600)	2.2	100.5	1.98	89.0 ± 0.7	[2]
Maeve	SURF (4300)	2.0	85	3.19	956.1	[3]
GeMPI 3	LNGS (3600)	2.2	98.7	2.20	24 ± 1	[8]
Belmont	Boulby (2805)	3.2	160	1.92	135.0	[3]
GeOroel	LSC (2450)	2.3	109	1.85	165.3	[4]
GeMSE	LVdA (620)	2.0	107.7	1.96	88 ± 1	[9]

[2] JINST 17 (2022) P08010
 [3] Eur. Phys. J. C80 (2020) 1044
 [4] Bandac, "Ultra-Low Background Services in the LSC", DS-Mat Meeting, GSSI, 2019

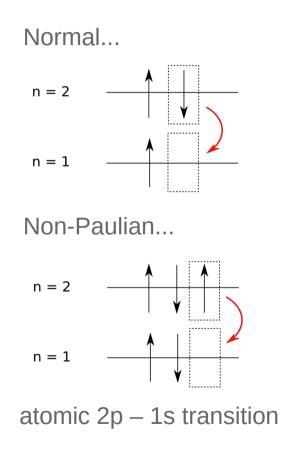
[8] N. Ackermann, private communication[9] JINST 17 (2022) P04005

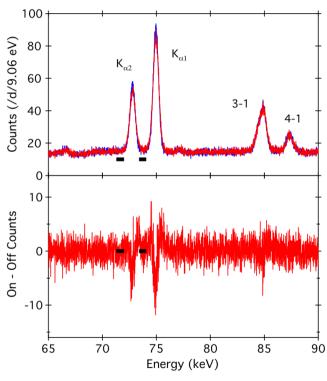
Tests of the Pauli-Exclusion-Principle (PEP)

- Two or more identical fermions cannot occupy the same quantum state within a quantum system simultaneously
- Messiah–Greenberg Superselection Rule

The symmetry of the wave function of a steady state is constant in time

 \rightarrow the symmetry of a quantum state can only change if a particle, which is new to the system, interacts with the state

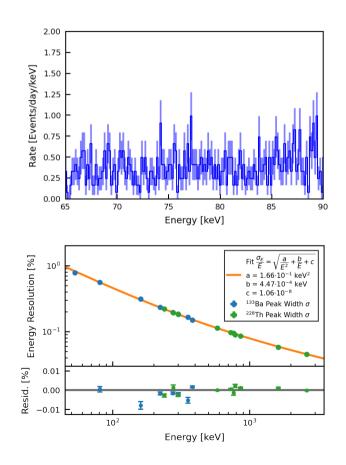

 Categorize PEP violation experiments by the "novelty" of the fermion-system interaction

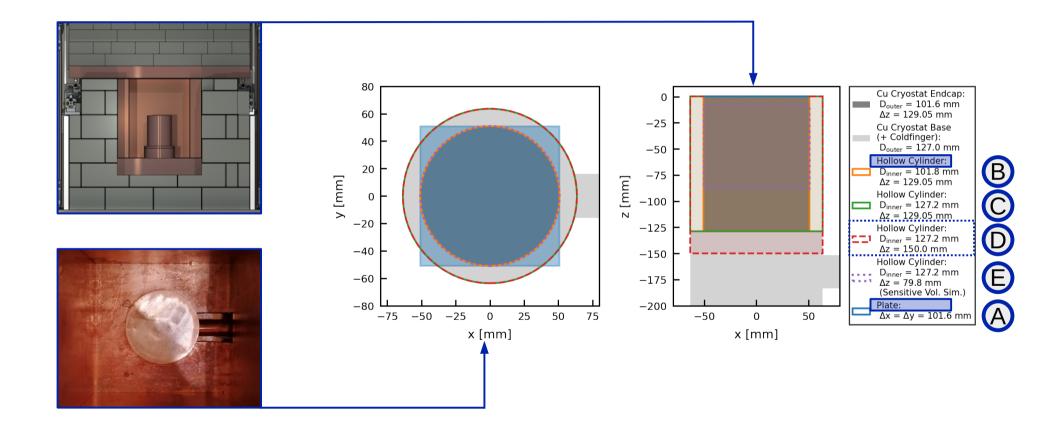


Ramberg-Snow Technique

- Search for PEP forbidden atomic transitions
- Type II: electrons from external current
 - → fermion has not previously interacted with the investigated system
- Here: current through Pb

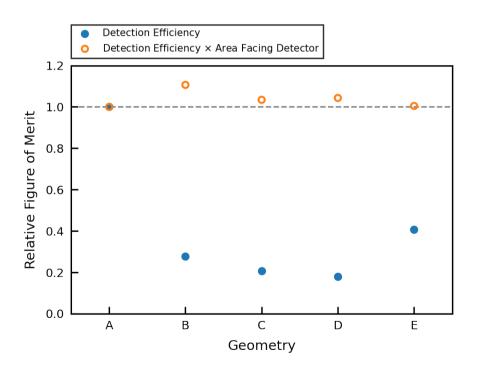
→ e.g., $1s-2p_{3/2} K_{\alpha_1}$: 74.961 keV (allowed) / 73.713 keV (forbidden)



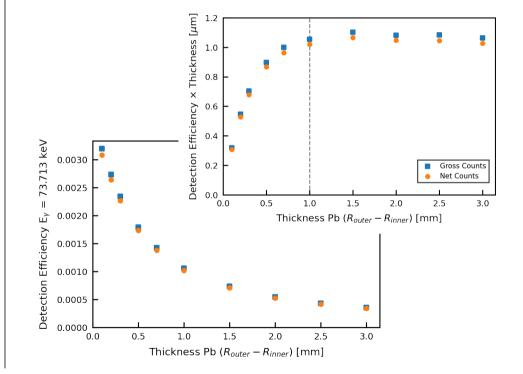

[10] Found Phys 42, 1015–1030 (2012)

PEP Studies in Gator

- Integrated background rate in the ROI (65-90 keV): (4.4±0.3) d⁻¹kg⁻¹
- Resolution (FWHM) at 74.96 keV: ~ 1.05 keV
- Low activity material selection based on previous screenings or new measurements on demand
 - Roman Pb sheets from Lemer Pax with <0.2 Bq/kg
 - OFHC copper and PTFE for support from XENON experiments
 - High current cables currently being screened
- Aim for currents up to 180 A (first step: 100 A)

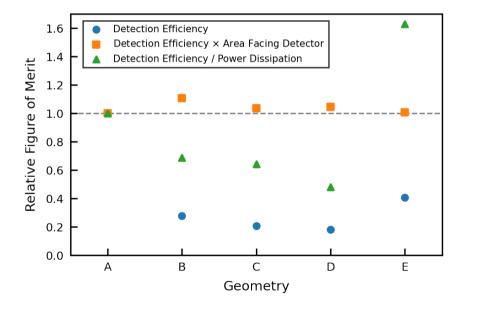


Simulations – Investigated Geometries Pb Conductor

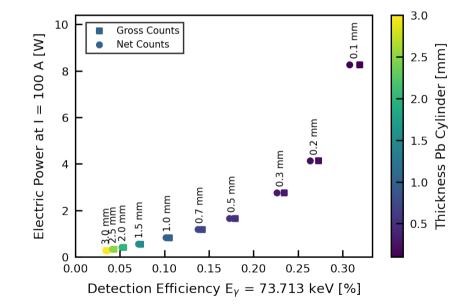


Detection Efficiency

Geometries

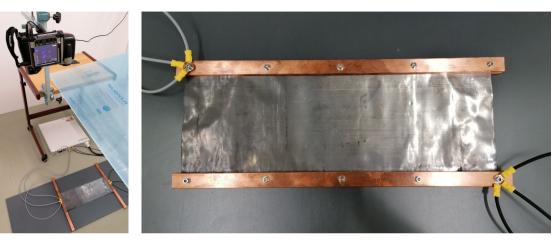


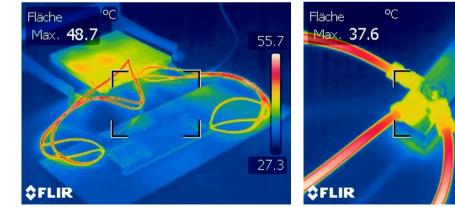
Thickness (Geom. D)



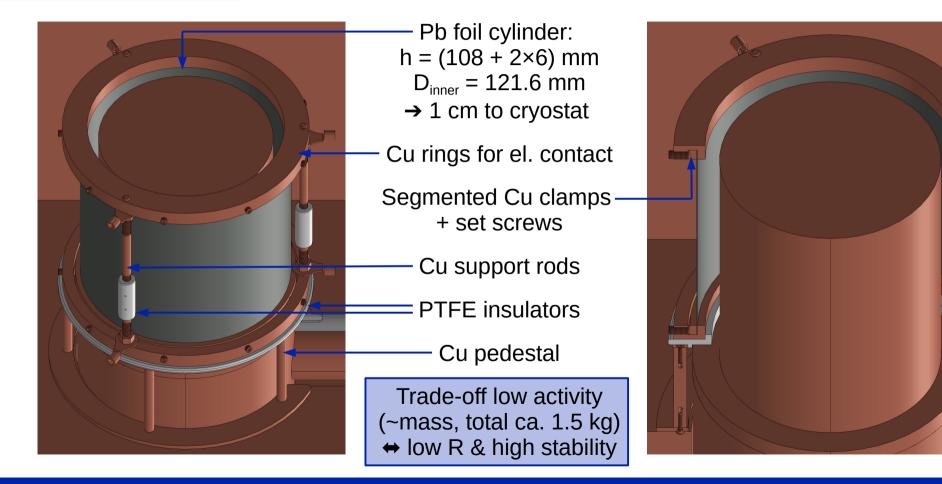
Power Dissipation

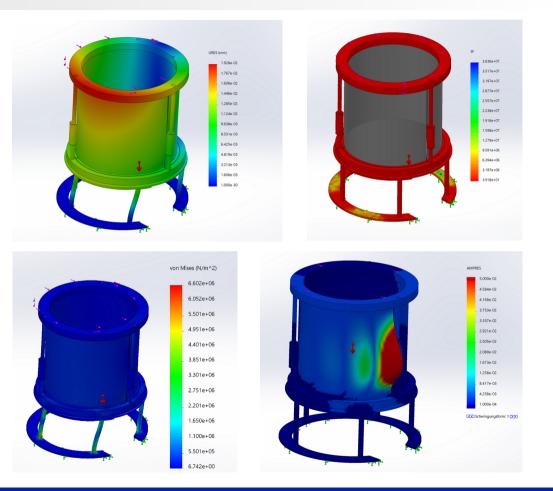
Geometries



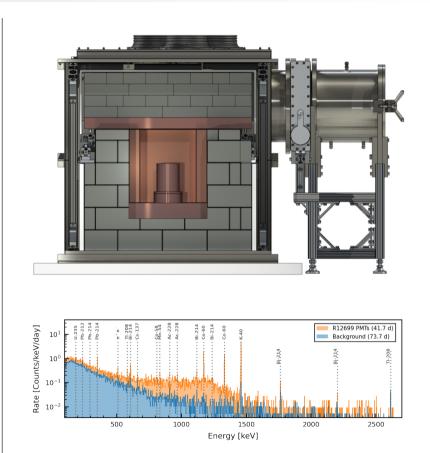

Thickness (Geom. D)

Heat-Up Tests

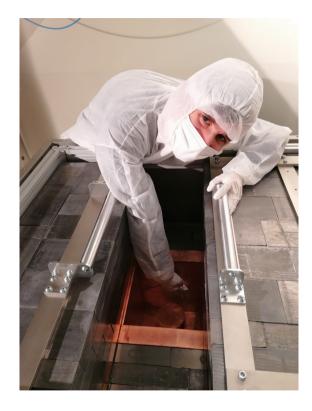

- Heat dissipation tests with flat geometry in 2 configurations for 42×14.7×0.05 cm³ Pb sheet (estimate 1.4 / 12.1 W Pb only)
- Currents up to 100 A, clamped in Cu bars (Ø 2×1.6 cm², $\rho_{Cu} \approx 0.08 \rho_{Pb}$), 27-28°C ambient temperature
- Significant heat-up of 3×4 mm² cables (estimate 32 W, resulting in increased R), Pb sheet / Cu bars mostly unaffected


28.2

Setup Design

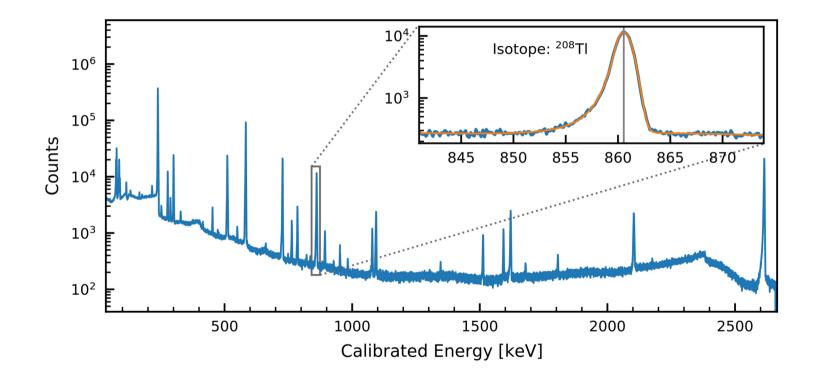

Stability Simulations

- SolidWorks stability simulations: static (stress, displacement, strain, safety factor) + buckling
- Gravity + different force / torque scenarios (shown: extreme case, i.e. gravity + 10 N lateral force top + 1 Nm torque)
- Minimum safety factor:
 - 570 (gravity only)
 - 39 (extreme case)

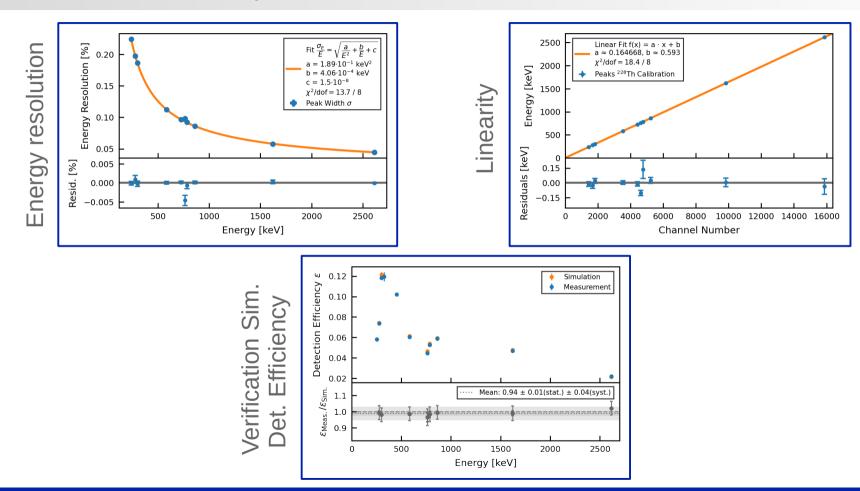


Summary and Outlook

- Low-background germanium counting facility Gator for high-sensitivity gamma-ray spectrometry
- Integrated background rate (100-2700 keV) of (82.0±0.7) d⁻¹kg⁻¹ comparable to world's most sensitive HPGe detectors
- Prospective material screenings for LEGEND-1000, DARWIN,...
- Search for Pauli-Exlusion-Principle forbidden atomic transitions in lead

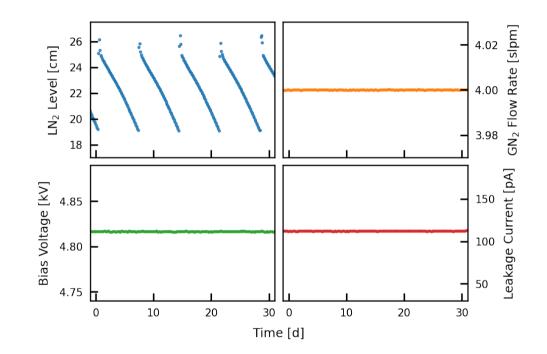


Thank you for your attention! Questions?

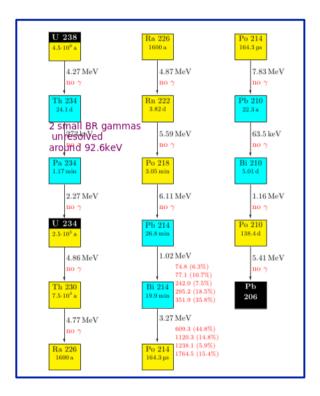


Appendix

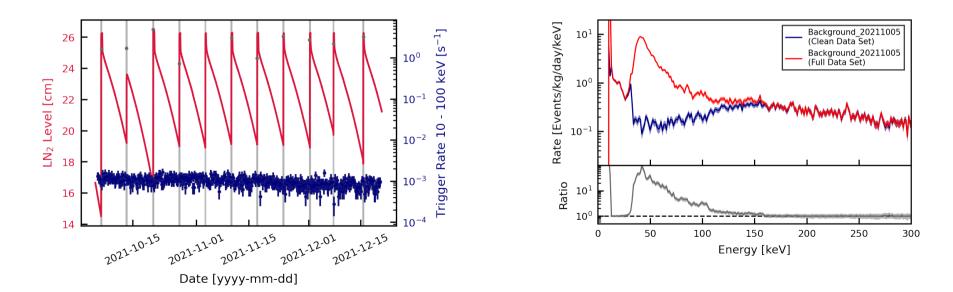
Calibration Example: Th-228



Calibration Example: Th-228


Monitoring Operations Parameters

- Remote monitoring (incl. alarms) of operations parameters to ensure detector stability and data quality
 - Trigger rate 100-2700 keV
 - Dewar LN₂ level → weekly refills
 - GN₂ purge gas flow (4 slpm)
 - Bias voltage (4817±3) V
 → Energy ROI in MCA range
 - Leakage current
 - Room temperature & pressure


Background Contributions

- Low E (< 100 keV): electronic noise
- Higher E: detector & shielding materials, environmental radon
 - ²³⁸U, ²³²Th and ²³⁵U found naturally in minerals, daughters from α/β -decays detected in whole detector range
 - Gaseous ²²²Rn from ²³⁸U chain from rock / water
 → ventilation, enclosure, GN₂ purge
 → traced via ²¹⁴Bi decays
 - ⁴⁰K (present in Earth mantle)
 - Cosmogenic ⁶⁰Co (in Cu shield and enclosure)
 - Anthropogenic ¹³⁷Cs

Reproducible Low-Energetic Noise

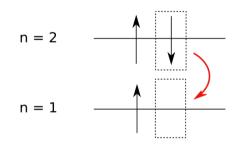
- Observed low-energetic noise, temporally correlated with LN₂ dewar refills, that might leak into the ROI (contributes for energies of up to ~ 150 keV)
- Unbiased removal of affected data sets based only on derivative of LN₂ level

The Pauli-Exclusion-Principle (PEP)

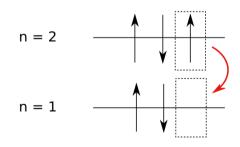
Wolfgang Pauli

- Two or more identical fermions cannot occupy the same quantum state within a quantum system simultaneously
- Example: (*n*, *l*, *m*_l, *m*_s) for electrons in atoms
- Concerning the exchange of two identical particles, the total wave function is antisymmetric (symmetric) for fermions (bosons) → different statistics

The New Electron Conundrum


- Categorize experiments by how "new" the fermion-system interaction can be assumed to be
 - **Type I**: fermion has not previously interacted with any other fermions
 - primordial system formation
 - recently created fermions e.g. from β decay or pair production (Type Ia)
 - **Type II**: fermion has not previously interacted with that investigated system
 - distant fermions brought to interact with system e.g. Ramberg-Snow technique
 - nearby fermions brought to interact with system e.g. electrons in the Fermi sea of a conductor (Type IIa)
 - **Type III**: fermion within investigated system
 - violate the Messiah-Greenberg superselection rule

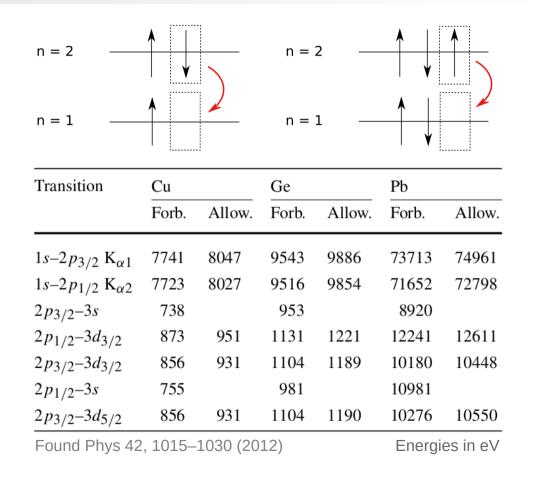
The New Electron Conundrum


	Туре	Experimental limit	$\frac{1}{2}\beta^2$ limit	Referen
Process	51			
Atomic transitions			3×10^{-2}	[23]
$\beta^- + Pb \rightarrow Pb$	Ia		1.4×10^{-3}	This wo
e_{pp}^{-} + Ge \rightarrow Ğe	Ia		1.7×10^{-26}	[48]
e_{I}^{p} + Cu \rightarrow Ču	П		4.5×10^{-28}	[8]
$e_I^- + Cu \rightarrow Cu$	П		6.0×10^{-29}	[9]
$e_I + Cu \rightarrow Cu$	П		1.5×10^{-27}	This w
$e_I + e_{a} + Pb \rightarrow Pb$	П		2.6×10^{-39}	This w
$e_f + Pb \rightarrow Pb$	Па	27	3×10^{-44}	[49]
$I \rightarrow I + X$ -ray	Ш	$\tau > 2 \times 10^{27} \text{ sec}$	6.5×10^{-46}	[13]
$I \rightarrow I + X$ -ray $I \rightarrow \tilde{I} + X$ -ray	Ш	$\tau > 4.7 \times 10^{30}$ sec	0.5 × 10	
Nuclear transitions			1.7×10^{-44}	[38]
$^{12}C \rightarrow ^{12}\ddot{C} + \gamma$	Ш	$\tau > 6 \times 10^{27} \text{ y}$	1.7 × 10	[3]
$^{12}C \rightarrow ^{12}\tilde{C} + \gamma$	Ш	$\tau > 4.2 \times 10^{24}$ y	2.2×10^{-57}	[11]
$^{12}C \rightarrow ^{12}\tilde{C} + \gamma$	Ш	$\tau > 5.0 \times 10^{31}$ y	2.2×10^{-57} 2.3×10^{-57}	[51]
$160 \rightarrow 16\tilde{0} + \gamma$	Ш	$\tau > 4.6 \times 10^{26}$ y	2.3 × 10	[3]
$^{12}C \rightarrow ^{12}\ddot{N} + \beta^- + \bar{\nu}_e$	Шa	$\tau > 3.1 \times 10^{24}$ y		[11]
$^{12}C \rightarrow ^{12}\ddot{N} + \beta^{-} + \bar{\nu}_{e}$	Шa	$\tau > 3.1 \times 10^{30}$ y	6.5×10^{-34}	[35]
$^{12}C \rightarrow ^{12}\bar{N} + \beta^{-} + \bar{\nu}_{e}$	Шa	$\tau > 0.97 \times 10^{27}$ sec $\tau > 2.6 \times 10^{24}$ y	0.3 × 10	[3]

Found Phys 42, 1015–1030 (2012)

Normal...

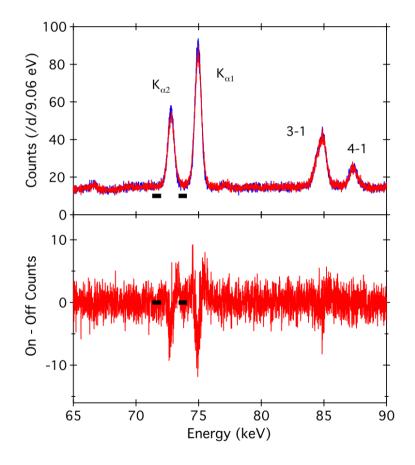
Non-Paulian...


atomic 2p - 1s transition

Atomic Theory

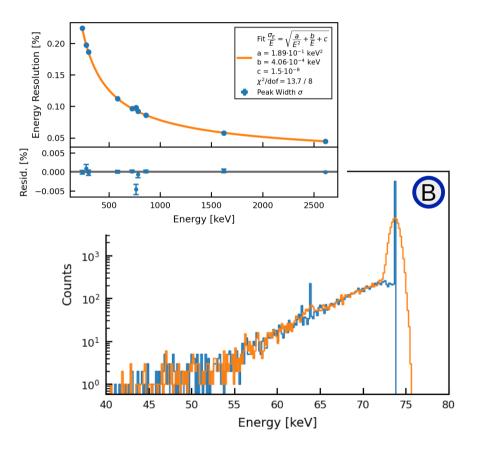
- Objective: capture of free electron onto atom via PEP violating process
- Capture probability:

$$\sigma_D = \sum_{n \ge 2} \frac{8\pi}{3\sqrt{3}} \frac{\alpha^5}{n^3} \frac{Z_{eff}^4}{K(K + E_n)}$$


- → P_{cpt} = 0.009 (0.058) for Pb (Cu)
- Cascade
- X-ray energies:
 - → energy shifted down due to additional shielding of the nuclear charge

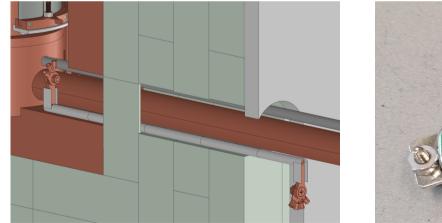
The Experiments – Current Through Lead

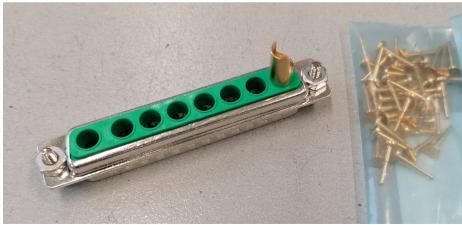
- Ramberg-Snow concept → Type II experiment
- Compare current-on/-off data in regions with minimal sqrt(B)/ε_{ROI}
- Increased width and background in current-on weakens constraint on ${}^1\!\!/_2\beta^2$
- Resulting 3σ upper limit:


$$\frac{1}{2}\beta^2 < \frac{N_{3\sigma}}{N_{new}\epsilon_x P_{cpt}N_{int}} = 1.5 \times 10^{-27}$$

Found Phys 42, 1015–1030 (2012)

Geant4 Simulations


- Geant4 simulations with framework for sample efficiency simulations*
- Number of simulated gammas: 10⁷ 10⁸ (depending on thickness)
- Gamma energy: 73.713 keV (energy of PEP violating Pb K_{α1})
- Reduced length (0.1 µm) and energy (250 eV) cuts in *PhysicsList*
- Energy-resolution smearing, binning according to Gator MCA



*https://github.com/Physik-Institut-UZH/Gator_2020

Electrical Connections

- Agilent 5761A high current supply (0-6V, 0-180A)
- High current DSUB (40 A/pin) connector in top plate
- Multiple cables for flexibility and heat dissipation
- Segmented OFHC Cu rod with PTFE insulation into sample chamber

