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The LHC and the CMS detector
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New physics around the corner ?

⇒
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The HL-LHC upgrade

➜ New challenges between Run3 and HL-LHC:

➜ Pileup ×8 (25 → 200)
➜ Hit rate ×8 ( → 3.2 GHz.cm−2)
➜ Latency ×4 (3.2 → 12.8µs)
➜ Trigger rate ×8 ( 100 → 750 kHz)
➜ Radiation ×10 ( → 2 × 1016 neq.cm16)

The Inner Tracker (IT) needs to
be made more performant to
be able to cope with this
environment
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The CMS Inner Tracker

➜ Split in barrel and
endcaps.

➜ Around 2 billion pixels
for the whole IT.

➜ Around 5 m2 of active
silicon area.

➜ Crucial importance in
triggering and track
reconstruction.
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Hybrid pixel detectors

Bias voltage Electric field
Franz Glessgen January 26, 2023 6



Radiation damage in silicon

➜ Incoming particles can displace the silicon nuclei which produces deffects and charge traps.

➜ The bias voltage needs to be increased with increased radiation levels to collect enough charges.
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CMOS for HEP

➜ CMOS device: combination of 2 MOSFET transistors for low-power operation.

➜ Exclusive technology for modern integrated circuits.

➜ Modern way of building them (on high resistivity substrate) allows for their use
in HEP.

Current situation in HEP

➜ Full wafer litography for passive
sensors

➜ Increasing demand for large-scale
sensor wafer production

➜ Few large scale suppliers available

➜ Risk: single vendor scenario, pos-
sibility of not achieving the produc-
tion levels needed for increasing
silicon areas in tracking detectors.

Possible improvements
➜ Use a CMOS processing line on

large, high resistivity wafers.

➜ Access to more (industrial) vendors
for large-scale silicon production

➜ Additional features from CMOS
processes

➜ Poly-silicon resistors, MIM
capacitors for AC-coupling

➜ Additional metal layers for
redistribution layers
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Design

➜ Wafer built using stitching technology

➜ Sub-reticles (building blocks) define
specific areas of the sensor (edge,
center, ...)

➜ A few of these subreticles are enough
to build the whole sensor, without
limiting its size.

➜ LFoundry sensor submission:

➜ n+ in p implants
➜ 150 µm thickness
➜ 50 × 50 and 25 × 100µm2

pixel sizes investigated
➜ AC and DC-coupled pixels

tested
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➜ CMOS processes allows for the deposition of additional metal layers
over each pixel and leads to nice new features:

➜ AC coupling for noise reduction (capacitor M3)
➜ Redistribution of signal from the sensor to the bump bonds,

great to cover gaps between chips in a detector
➜ Shielding between the implant and the bump pad to avoid

cross-talk (measured cross-talk under 3 %, more than double
for other producers).

➜ 2 MΩ polysilicon resistor for pixel biasing, allows on-sensor
testing before flip-chipping (yield increase).

p-Stop

Poly-Si
field plate

Bias resistor

Contact to
bias grid

Bias grid

1st (2nd) metal
layer

n implant

n+ implant

Contact/
metal stack

 to bump pad
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Requirements

➜ Participation to the CMS market survey for the Inner Tracker sensors with the LFoundry submission

➜ List of requirements to meet in order to reach the Invitation to Tender and be able to include LFoundry
sensors in the production

Parameter Requirement Additional condition
Breakdown voltage > 300 V Before irradiation
Breakdown voltage > 600 V At 5 × 1015 neq.cm−2

Leakage current < 0.75 µA.cm−2 Before irradiation, at Vdep + 50V

Leakage current < 45 µA.cm−2 At 5 × 1015 neq.cm−2 , at 600V

Hit efficiency 99% Before irradiation, at Vdep + 50V

Hit efficiency 99 % At 5 × 1015 neq.cm−2, under VBD − 100 V and at −25oC
Hit efficiency 98 % At 1 × 1016 neq.cm−2, under VBD − 100 V and at −25oC

Franz Glessgen January 26, 2023 11



Sensors

Size Type Serial Number Irradiation dose (neq.cm−2) and TB location
25 × 100 DC 14C4S12 0.17× 1016, DESY
50 × 50 AC 12D6S4 0.44× 1016, DESY
25 × 100 DC 14C4S11 0.73× 1016, DESY
25 × 100 DC 12D6S12 0.82× 1016, DESY
25 × 100 DC 14C4S12 0.95× 1016, SPS
25 × 100 DC 12D6S12 1.65× 1016, SPS

1

➜ Intensive testing of the sensors in testbeam needed to compare to the requirements
and to the performance of the other producers.

➜ Total of 6 sensors tested in beam (DESY and SPS), two reirradiated and retested.

➜ 7 different irradiation levels tested, 3 close to 1×1016 neq.cm−2
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IV measurements
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➜ Breakdown voltage higher than 600 V tested on 4 different sensors and for
fluences up to 1 × 1016 neq.cm−2
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Testbeam setup

➜ Two different testbeam locations: DESY (Hamburg), 5 GeV electrons and SPS (CERN), 120
GeV pions.

➜ The DAQ revolves around three elements:

➜ MIMOSA telescope for precise measurement of the tracks (but bad timing
measurement ≈ 115µs )

➜ FEI4 chip with sensor (used in ATLAS tracker) to reach a timing precision of 25 ns
➜ The Device Under Test (DUT) itself.

➜ Events are defined using a Trigger Logic Unit (TLU) that distributes the triggers and the
readout systems of the different hardware components are combined using the EUDAQ
software.
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Telescope alignment

➜ 6 telescope planes with a pixel size of 18.4 × 18.4µm2 are used for tracking
reaching a resolution of 3µm on the DUT plane.

➜ Telescope is roughly aligned by hand and the 6 positioning parameters of each
plane are then computed by minimizing the residues on each plane.

Franz Glessgen January 26, 2023 15



➜ Efficiency ε defined as

ε =
Number of detected tracks

Total number of tracks

➜ 99 % efficiency reached consistently
for sensors irradiated up to fluences
of 2 × 1016 neq.cm−2 within the
required bias interval.

➜ Different sensors tested in different
environments (SPS and DESY) at
similar irradiation levels have very
similar efficiency curves.
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Charge collection

➜ Energy deposition by charged particles crossing a medium can be described by the following
equation

∂f

∂x
=

∫ ∞

0
W (E) (f(x, ∆ − E) − f(x, ∆)) dE

where f(x, ∆) is the probability of depositing the energy ∆ when crossing a material of thickness
x and W (E) is the probability per unit path length of transferring an energy E to the medium.

➜ W (E) is computed using the Bethe-Bloch formula and the distribution of charge deposition is
then a Landau function with MPV

∆p = ζ

(
ln

2mc2β2γ2

I
+ ln

ζ

I
+ j − β2 − δ(βγ)

)
➜ If the incoming particles are electrons, the computations are much tougher (low mass,

interchangeability of incoming and target particles, . . . ) → detailed papers (Bichsel):

→ 10 GeV incoming electrons deposit around
41 keV in 148 µm thick silicon, a charge of
11400 e

17



Charge calibration

➜ Measuring the in-pixel charge deposition is a 3-step
process.

➜ Step 1: Measure the relation between ToT and the charge
measured by the chip (VCAL).

➜ Step 2: Measure the relation between VCAL and the
physical charge using Xray transitions of known energy. The
hit rate as a function of the pixel threshold is the integral of
the Xray spectrum.

➜ Step 3: Measure the ToT in testbeam and convert it pixel by
pixel to a charge in electrons.
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➜ The total charge deposition per
cluster is measured and fitted with a
convolution of a Landau and a
Gaussian distribution to account for
detector noise.

➜ The charge collection for a fresh
sensor is compatible with the
theoretical value.

➜ Reduction of charge collection with
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Resolution measurements

➜ The resolution of a sensor is
extracted from the distribution of the
residues r defined for each track as:
r = xDUT − xtelescope

➜ The resolution of a hit depends on
the DUT and the telescope
resolution

σhit =

√
σ2

DUT +
(

σtelescope

cos(θ)

)2

➜ The standard deviation σhit is
extracted from a fit to the distribution
of the residues and σtelescope is
obtained from simulation yielding
σDUT.
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➜ Resolution improves with increasing
2-pixel charge sharing.

➜ Resolution is worsened by 3-pixel
(and larger) clusters because of
threshold effects and non-linear
charge sharing.

➜ Resolution at optimal angle goes
from 2µm for an unirradiated sensor
to around 5µm for a fluence of
1.2 × 1016 neq.cm−2.
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Stitching

➜ Important aspect to test: does
stitching locally degrade the
performance of the sensor ?

➜ Per column efficiency shows no
difference to other columns for fresh
of irradiated sensors.
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➜ In-pixel measurement of charge collection for the columns adjacent to the stitching line is not
lower than the other columns

➜ In-pixel charge collection modulation because of the increased maximal charge range when it is
divided into 2 pixels (no ToT saturation).
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Summary

➜ The passive CMOS technology is promising in terms of
cost and throughput.

➜ The performances of the sensors match the requirements
for the HL-LHC Inner Tracker Upgrade.

➜ The LFoundry sensor submission has been nominated in
the PRR together with 2 other producers for its inclusion in
the Invitation to Tender.
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