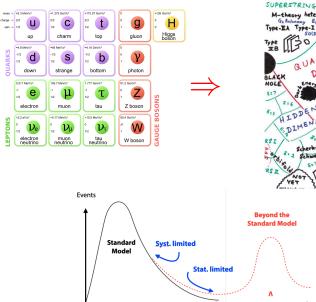


Characterization of passive CMOS sensors for the HL-LHC upgrade

UZH: Anna Machiolo, Arash Jofrehei, Weijie Jin

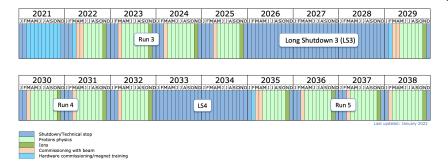

ETH: Malte Backhaus, Franz Glessgen, Branislav Ristic

The LHC and the CMS detector

EPTONS

New physics around the corner ?

Energy

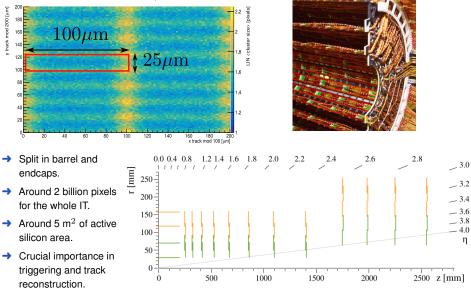

~ 1 TeV

SUS FNOT Unification M-theory heterotic \$0(10) YET COVIEY Ga holonomy EgxEg Type-ILA Type-I Matter THOUGH Anti-matter 50(32 Asymmetry DF ترالا QUANTUM QUAN, OTI ONS DIMENSIONS Energy (Supersymmetry) CP EE. Composit Higgs Gaugino Mediation Gauge Mediation HIDDEN DIMENSIONS Anomaly Mediation HATTER 5:3 NOT Scherk-440 Schwarz YET 5=1 THOUGHT OF

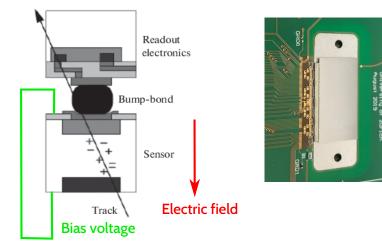
10-100 TeV

Grand

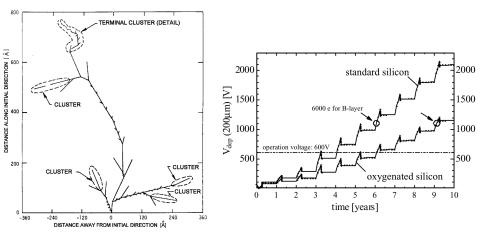
The HL-LHC upgrade


New challenges between Run3 and HL-LHC:

- → Pileup ×8 ($25 \rightarrow 200$)
- → Hit rate $\times 8$ ($\rightarrow 3.2$ GHz.cm⁻²)
- → Latency $\times 4$ (3.2 \rightarrow 12.8µs)
- → Trigger rate $\times 8$ ($100 \rightarrow 750$ kHz)
- → Radiation $\times 10$ ($\rightarrow 2 \times 10^{16}$ neq.cm¹⁶)


The Inner Tracker (IT) needs to be made more performant to be able to cope with this environment

The CMS Inner Tracker


LIN cluster size vs xmod ymod

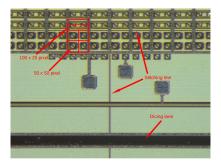
Hybrid pixel detectors

- Incoming particles can displace the silicon nuclei which produces deffects and charge traps.
- → The bias voltage needs to be increased with increased radiation levels to collect enough charges.

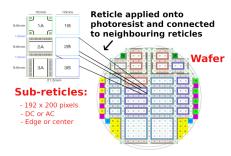
CMOS for HEP

- → CMOS device: combination of 2 MOSFET transistors for low-power operation.
- Exclusive technology for modern integrated circuits.
- Modern way of building them (on high resistivity substrate) allows for their use in HEP.

Current situation in HEP

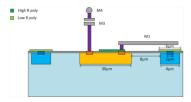

- Full wafer litography for passive sensors
- Increasing demand for large-scale sensor wafer production
- → Few large scale suppliers available
- Risk: single vendor scenario, possibility of not achieving the production levels needed for increasing silicon areas in tracking detectors.

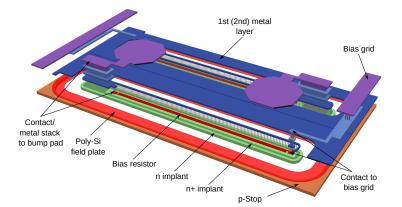
Possible improvements


- → Use a CMOS processing line on large, high resistivity wafers.
- Access to more (industrial) vendors for large-scale silicon production
- Additional features from CMOS processes
 - Poly-silicon resistors, MIM capacitors for AC-coupling
 - Additional metal layers for redistribution layers

Design

- ➔ LFoundry sensor submission:
 - → n⁺ in p implants
 - 150 μm thickness
 - → 50 × 50 and 25 × 100µm² pixel sizes investigated
 - AC and DC-coupled pixels tested




- → Wafer built using stitching technology
 - Sub-reticles (building blocks) define specific areas of the sensor (edge, center, ...)
 - A few of these subreticles are enough to build the whole sensor, without limiting its size.

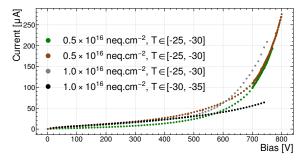
- CMOS processes allows for the deposition of additional metal layers over each pixel and leads to nice new features:
 - → AC coupling for noise reduction (capacitor M3)
 - Redistribution of signal from the sensor to the bump bonds, great to cover gaps between chips in a detector
 - Shielding between the implant and the bump pad to avoid cross-talk (measured cross-talk under 3 %, more than double for other producers).
 - 2 MΩ polysilicon resistor for pixel biasing, allows on-sensor testing before flip-chipping (yield increase).

Requirements

- → Participation to the CMS market survey for the Inner Tracker sensors with the LFoundry submission
- → List of requirements to meet in order to reach the Invitation to Tender and be able to include LFoundry sensors in the production

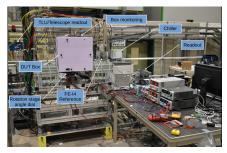
Parameter	Requirement	Additional condition
Breakdown voltage	> 300 V	Before irradiation
Breakdown voltage	> 600 V	At $5 imes 10^{15} \ { m n}_{ m eq}.{ m cm}^{-2}$
Leakage current	< 0.75 μ A.cm $^{-2}$	Before irradiation, at $V_{dep} + 50V$
Leakage current	< 45 µA.cm ⁻²	At $5 imes 10^{15} \ { m n}_{ m eq}.{ m cm}^{-2}$, at $600V$
Hit efficiency	99%	Before irradiation, at $V_{dep} + 50V$
Hit efficiency	99 %	At $5 \times 10^{15} \text{ n}_{eq}$.cm $^{-2}$, under $V_{BD} - 100 \text{ V}$ and at -25^{o}C
Hit efficiency	98 %	At $1 \times 10^{16} \text{ n}_{eq}.\text{cm}^{-2}$, under $V_{\text{BD}} - 100 \text{ V}$ and at -25^{o}C

	RUN 4		RUN 5		RUN 6		Run 4+5		Run 4+5+6	
	1E16 1 MeV n_eq	Grad								
BPIX L1	0.73	0.40	1.16	0.63	1.63	0.89	1.88	1.03	3.51	1.91
BPIX L2	0.20	0.11	0.31	0.18	0.44	0.25	0.51	0.29	0.94	0.55
FPIX R1	0.48	0.31	0.77	0.50	1.08	0.70	1.25	0.81	2.34	1.50
FPIX R2	0.23	0.17	0.36	0.27	0.51	0.38	0.59	0.44	1.11	0.82

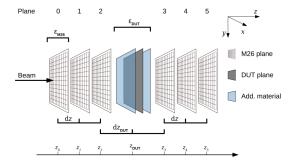

Sensors

Size	Type	Serial Number	Irradiation dose (neq.cm $^{-2}$) and TB location
25×100	DC	14C4S12	$0.17 imes 10^{16}$, DESY
50×50	AC	12D6S4	$0.44 imes 10^{16}$, DESY
25×100	DC	14C4S11	$0.73 imes10^{16}, \mathrm{DESY}$
25×100	DC	12D6S12	$0.82 imes 10^{16}$, DESY
25×100	DC	14C4S12	$0.95 imes 10^{16}$, SPS
25×100	DC	12D6S12	$1.65 imes 10^{16}$, SPS

- Intensive testing of the sensors in testbeam needed to compare to the requirements and to the performance of the other producers.
- → Total of 6 sensors tested in beam (DESY and SPS), two reirradiated and retested.
- → 7 different irradiation levels tested, 3 close to 1×10¹⁶ neq.cm⁻²

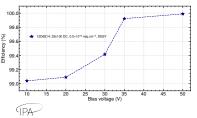


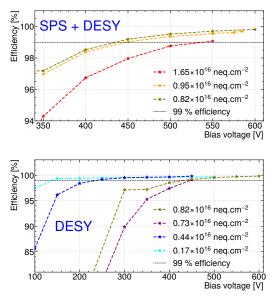
IV measurements,


→ Breakdown voltage higher than 600 V tested on 4 different sensors and for fluences up to 1 × 10¹⁶ neq.cm⁻²

- Two different testbeam locations: DESY (Hamburg), 5 GeV electrons and SPS (CERN), 120 GeV pions.
- → The DAQ revolves around three elements:
 - $\Rightarrow\,$ MIMOSA telescope for precise measurement of the tracks (but bad timing measurement $\approx\,115\mu \text{s}$)
 - \rightarrow FEI4 chip with sensor (used in ATLAS tracker) to reach a timing precision of 25 ns
 - → The Device Under Test (DUT) itself.
- Events are defined using a Trigger Logic Unit (TLU) that distributes the triggers and the readout systems of the different hardware components are combined using the EUDAQ software.

- → 6 telescope planes with a pixel size of 18.4 × 18.4µm² are used for tracking reaching a resolution of 3µm on the DUT plane.
- Telescope is roughly aligned by hand and the 6 positioning parameters of each plane are then computed by minimizing the residues on each plane.

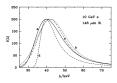

→ Efficiency ε defined as


Irradiated sensors

 $\varepsilon = \frac{\text{Number of detected tracks}}{\text{Total number of tracks}}$

- → 99 % efficiency reached consistently for sensors irradiated up to fluences of 2 × 10¹⁶ neq.cm⁻² within the required bias interval.
- Different sensors tested in different environments (SPS and DESY) at similar irradiation levels have very similar efficiency curves.

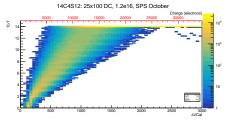
 Energy deposition by charged particles crossing a medium can be described by the following equation

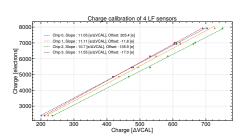

$$\frac{\partial f}{\partial x} = \int_0^\infty W(E) \left(f(x, \Delta - E) - f(x, \Delta) \right) dE$$

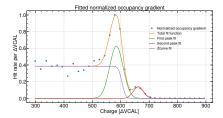
where $f(x, \Delta)$ is the probability of depositing the energy Δ when crossing a material of thickness x and W(E) is the probability per unit path length of transferring an energy E to the medium.

→ W(E) is computed using the Bethe-Bloch formula and the distribution of charge deposition is then a Landau function with MPV

$$\Delta_p = \zeta \left(\ln \frac{2mc^2 \beta^2 \gamma^2}{I} + \ln \frac{\zeta}{I} + j - \beta^2 - \delta(\beta \gamma) \right)$$

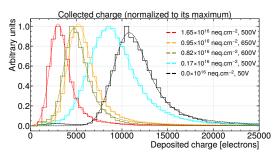

→ If the incoming particles are electrons, the computations are much tougher (low mass, interchangeability of incoming and target particles, ...) → detailed papers (Bichsel):

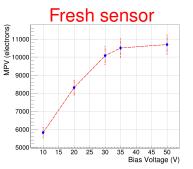



 \rightarrow 10 GeV incoming electrons deposit around 41 keV in 148 μm thick silicon, a charge of 11400 e

Charge calibration

- Measuring the in-pixel charge deposition is a 3-step process.
- Step 1: Measure the relation between ToT and the charge measured by the chip (VCAL).
- Step 2: Measure the relation between VCAL and the physical charge using Xray transitions of known energy. The hit rate as a function of the pixel threshold is the integral of the Xray spectrum.
- Step 3: Measure the ToT in testbeam and convert it pixel by pixel to a charge in electrons.

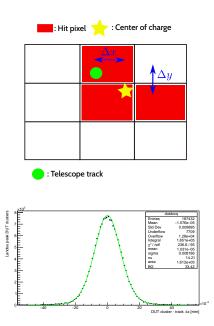




- The total charge deposition per cluster is measured and fitted with a convolution of a Landau and a Gaussian distribution to account for detector noise.
- The charge collection for a fresh sensor is compatible with the theoretical value.
- Reduction of charge collection with increasing fluence.

Irradiated sensors

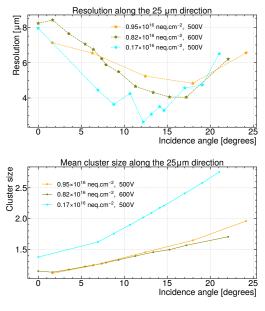
Resolution measurements


The resolution of a sensor is extracted from the distribution of the residues r defined for each track as:

 $r = x_{\text{DUT}} - x_{\text{telescope}}$

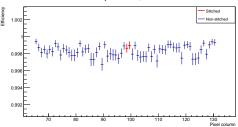
 The resolution of a hit depends on the DUT and the telescope resolution

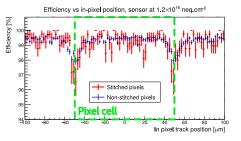

$$\sigma_{\rm hit} = \sqrt{\sigma_{\rm DUT}^2 + \left(\frac{\sigma_{\rm telescope}}{\cos(\theta)}\right)^2}$$

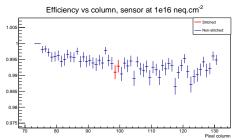

The standard deviation σ_{hit} is extracted from a fit to the distribution of the residues and σ_{telescope} is obtained from simulation yielding σ_{DUT}.

Irradiated sensors

- Resolution improves with increasing 2-pixel charge sharing.
- Resolution is worsened by 3-pixel (and larger) clusters because of threshold effects and non-linear charge sharing.
- Resolution at optimal angle goes from 2μm for an unirradiated sensor to around 5μm for a fluence of 1.2 × 10¹⁶ neq.cm⁻².






ÍPA

Stitching

- Important aspect to test: does stitching locally degrade the performance of the sensor ?
- Per column efficiency shows no difference to other columns for fresh of irradiated sensors.



Efficiency vs column, fresh sensor

- In-pixel measurement of charge collection for the columns adjacent to the stitching line is not lower than the other columns
- In-pixel charge collection modulation because of the increased maximal charge range when it is divided into 2 pixels (no ToT saturation).

- The passive CMOS technology is promising in terms of cost and throughput.
- → The performances of the sensors match the requirements for the HL-LHC Inner Tracker Upgrade.
- The LFoundry sensor submission has been nominated in the PRR together with 2 other producers for its inclusion in the Invitation to Tender.

