

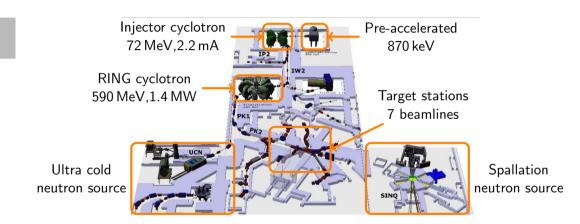
Sichen Li :: Scientific Computing, Theory and Data :: Paul Scherrer Institut

Detection and Forecasting of Particle Accelerator Interlocks

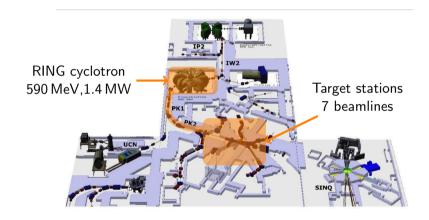
Zurich PhD Seminar, January 27, 2023

- Introduction and problem formulation
- Model 1: Recurrence Plot Convolutional Neural Network model
- Model 2: Logistic Lasso regression model
- Model comparison in classification and real-time metrics
- Conclusion and outlook

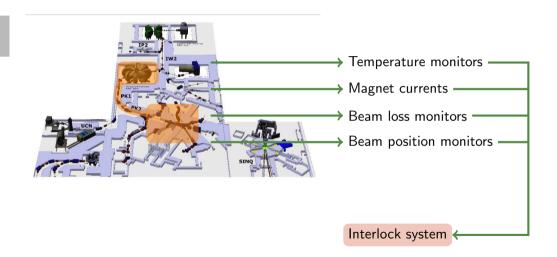
Introduction - High Intensity Proton Accelerators



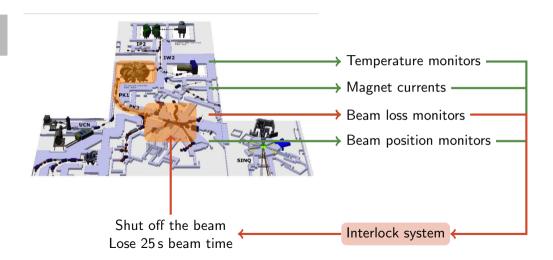
Introduction - Focus region



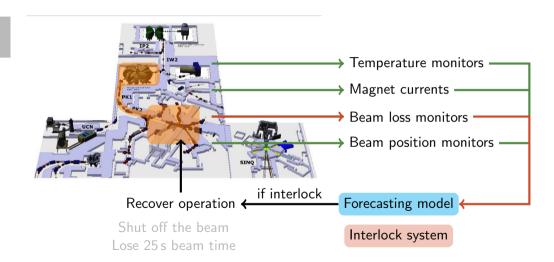
Introduction - Interlock system



Introduction - Interlock system

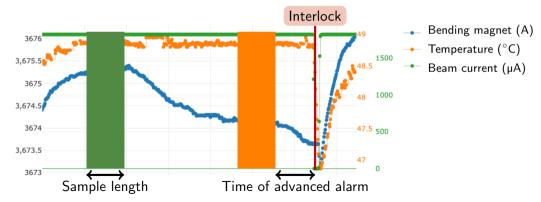


Introduction - Interlock system

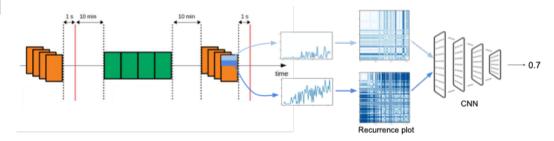


Introduction - Problem formulation

- Binary classification
- Class Positive (1): interlock samples close to interlock
- Class Negative (0): stable samples far from interlock

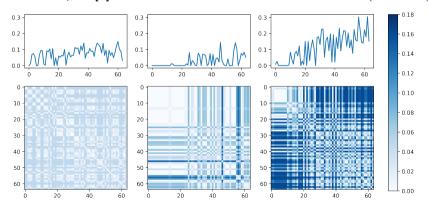


Recurrence Plot - Convolutional Neural Network [1]



- 1. Take the two classes of samples, of size (376, sample length)
- 2. Transform each 1D time series into 2D Recurrence Plot
- 3. Train with *CNN* and get probability output $\in [0,1]$

- 1D series \rightarrow 2D image for developed CNN to exploit
- Detect hidden dynamical patterns
- Global recurrence plot [2]: a distance matrix within a cutoff limit ϵ (trainable)



RPCNN: Complex model, yet high FP rate!

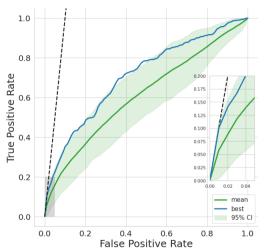
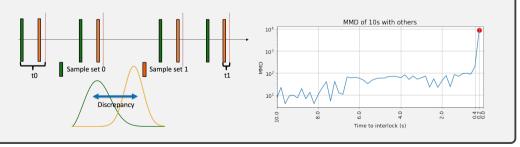


Figure: The Receiver Operating Characteristic (ROC) curve of best and mean RPCNN results.

Problem - Interlocks are abrupt events

- Two sample test [3]: Statistically compare $Maximum\ Mean\ Discrepancy\ (MMD)$ of samples taken at t_0 and t_1 before all interlocks
- 0.2 s is abruptly different, essentially no gradual change
- ullet Positive class of RPCNN is taken before $1\,\mathrm{s} o \mathrm{fail}$ to capture the difference



Model 2 - Logistic LASSO regression

Penalized regression with the Least Absolute Shrinkage and Selection Operator

- 1. Class Positive (1): interlock samples, taken $t_1 = 0.2s$ before interlock Class Negative (0): stable samples, taken $t_0 = 10$ s before interlock
- 2. Input $\{\mathbf{x}_i \in \mathbb{R}^d\}_{i=1}^n$, label $\{y_i\}_{i=1}^n \in \{\pm 1\}$, fit weight $\omega \in \mathbb{R}^d$ Minimize Loss

min_{$$\omega$$} $L = \min_{\omega} \frac{1}{n} \sum_{i=1}^{n} \log \left[1 + \exp\left(-y_i \cdot \omega^T \mathbf{x}_i\right)\right] + \underbrace{\lambda \|\omega\|}_{\text{regularization}}$

sparse

interpretablity

Simple linear

3. Also a probability output $\in [0,1]$

Model comparison – classification metric

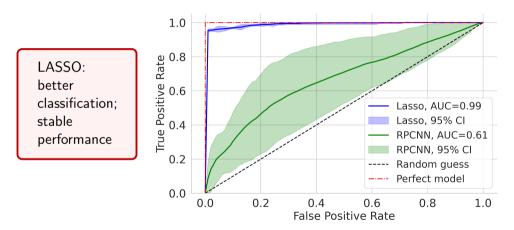


Figure: The Receiver Operating Characteristic (ROC) curves of both models.

- True positive (TP), False positive (FP) according to 1min inspection window
- Beam time saved T_s in any given time: $T_s := 19 \cdot N_{TP} 6 \cdot N_{FP}$

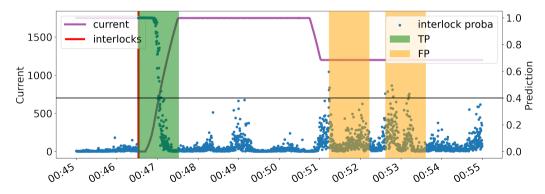
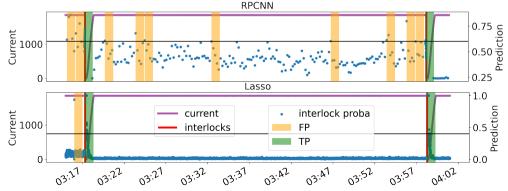


Figure: Examples of real-time TP and FP of the LASSO model.

Model comparison - Beam time saved

Model	N_{TP}	$N_{TP}/N_{int}(\%)$	N_{FP}	T_s (Min/day)
RPCNN	277	23.2	5408	-10.53
LASSO	1134	95.1	1214	5.63

Table: Real-time metrics of both models in 2 months with $N_{int} = 1192$.



- Formulate forecasting problem into binary classification
- ullet RPCNN model transforms 1D time series into 2D images o complex, high false positive, improper input
- Two sample MMD test shows beam interruptions are more abrupt than gradual
- LASSO model outperforms RPCNN in both classification and real-time metrics
- Further experiments on real-time implementation, specific types of interlocks and recover operations are ongoing

Wir schaffen Wissen – heute für morgen

Thanks to

- Mélissa Zacharias
- Dr. Jochem Snuverink
- Dr. Jaime Coello de Portugal
- Dr. Davide Reggiani
- Prof. Dr. Fernando Perez-Cruz
- Dr. Andreas Adelmann

S Li, M Zacharias, et al.

A novel approach for classification and forecasting of time series in particle accelerators. *Information*, 12(3):121, 2021.

I Jirousek et al.

The concept of the proscan patient safety system.

Proc. ICALEPCS'9, pages 13-17, 2003.

A Gretton et al.

A kernel two-sample test.

The Journal of Machine Learning Research, 13(1):723-773, 2012.

J Stetson et al.

The commissioning of PSI Injector 2 for high intensity, high quality beams.

Proc. Cyclotrons'13, pages 36-9, 1992.

P F Carmona et al.

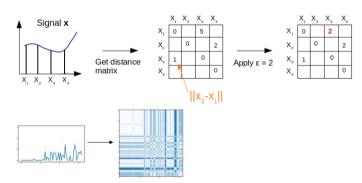
Continuous beam scanning intensity control of a medical proton accelerator using a simulink generated FPGA gain scheduled controller.

Proc. PCaPAC'12, pages 242-247.

Backup: Recurrence Plot (RP) of time series

• Global recurrence plot / Distance plot [2]: a distance matrix within a cutoff limit arepsilon

$$D_{ij} = \begin{cases} ||x_i - x_j||, & ||x_i - x_j|| \le \varepsilon \\ \varepsilon, & ||x_i - x_j|| > \varepsilon \end{cases}$$



The Recurrence Plot - Convolutional Neural Network (RPCNN) model

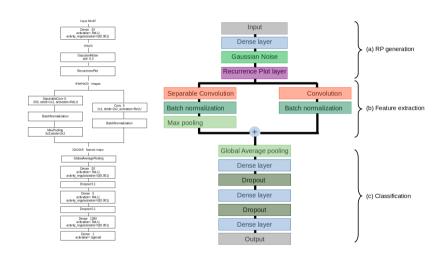
- Recurrence plot: detect hidden dynamical patterns
- 1D time series -> 2D image for developed CNN to exploit
- Global recurrence plot^[2]: a distance matrix within a cutoff limit ε (trainable)

$$D_{ij} = \begin{cases} ||x_i - x_j||, & ||x_i - x_j|| \le \varepsilon, & i, j \text{ are indices} \\ \varepsilon, & ||x_i - x_j|| > \varepsilon \end{cases}$$

$$\begin{vmatrix} 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.2 & 0.1 & 0.1 & 0.1 \\ 0.0 & 0.2 & 0.4 & 0.6 & 0.1 \\ 0.0 & 0.2 & 0.4 & 0.6 & 0.1 \\ 0.0 & 0.2 & 0.4 & 0.6 & 0.1 \\ 0.0 & 0.2 & 0.4 & 0.6 & 0.1 \\ 0.0 & 0.2 & 0.4 & 0.6 & 0.1 \\ 0.0 & 0.2 & 0.4 & 0.6 & 0.1 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 &$$

(a) uncorrelated stochastic (b) starting to grow (c) stochastic with a linear trend

Backup: model structure^[5]

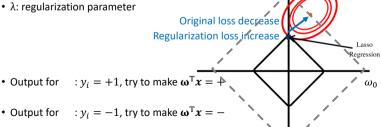


LASSO model

- Input $X := \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^d$, Output $Y := \{y_i\}_{i=1}^n \in \{\pm 1\}$, weight $\omega \in \mathbb{R}^d$
- Least Absolute Shrinkage and Selection Operator
- Loss function L

$$\min_{\boldsymbol{\omega}} L = \min_{\boldsymbol{\omega}} \underbrace{\frac{1}{N} \sum_{i=1}^{N} \log[1 + \exp(-\mathbf{y}_{i} \cdot \boldsymbol{\omega}^{T} \boldsymbol{x}_{i})]}_{\text{logistic loss}} + \underbrace{\lambda \|\boldsymbol{\omega}\|_{L1}}_{\text{regularization}}$$

- Simple, sparse model -> interpretability
- λ: regularization parameter



• Output for $y_i = -1$, try to make $\mathbf{\omega}^T \mathbf{x} = -1$

Two-sample test – preliminary results

- Currently use a fast test called the Mean embeddings (ME) test
- $\alpha = 0.01$
- 0.2s is significantly different, while 0.4s is slightly different from others

	0.2	0.4	0.6	0.8
0.2	Same $\widehat{\lambda_n}$ =1.2	Different $\widehat{\lambda_n}$ =4935.6	Different $\widehat{\lambda_n}$ =8102.1	Different $\widehat{\lambda_n}$ =7999.4
0.4		Same $\widehat{\lambda_n}$ =5.6	Different $\widehat{\lambda_n}$ =177.0	Different $\widehat{\lambda_n}$ =165.3
0.6			Same $\widehat{\lambda_n}$ =2.6	Same $\widehat{\lambda_n}$ =3.7
0.8				Same $\widehat{\lambda_n}$ =3.6