Antenna subtraction in colour space: automation and application to high-multiplicity processes

Matteo Marcoli

Zurich PhD Seminars 2022

27 January 2023

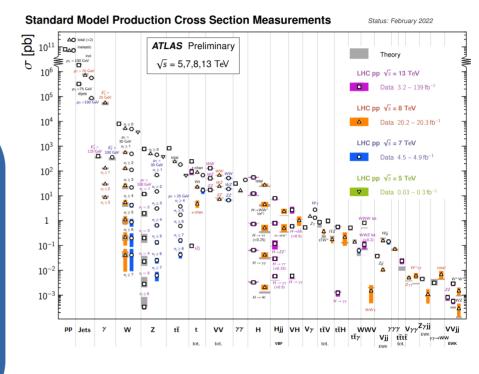
Swiss National Science Foundation

European Research Council Established by the European Commission

Precision Phenomenology

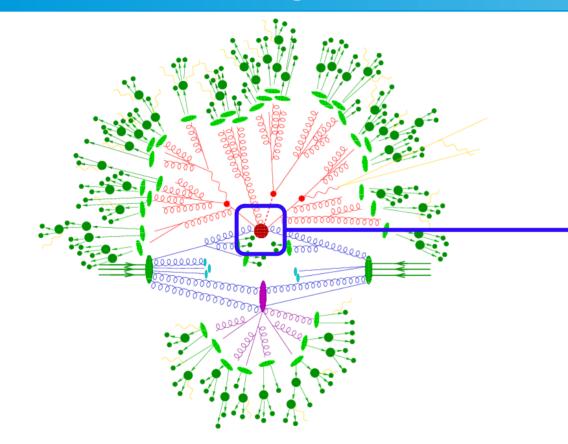
Precise theoretical predictions are crucial to **probe the Standard Model** and search for **new physics**.

- How are precision calculations
 performed?
- Can we define a **universal** approach?
- How can we address high-multiplicity processes?



ATL-PHYS-PUB-2022-009

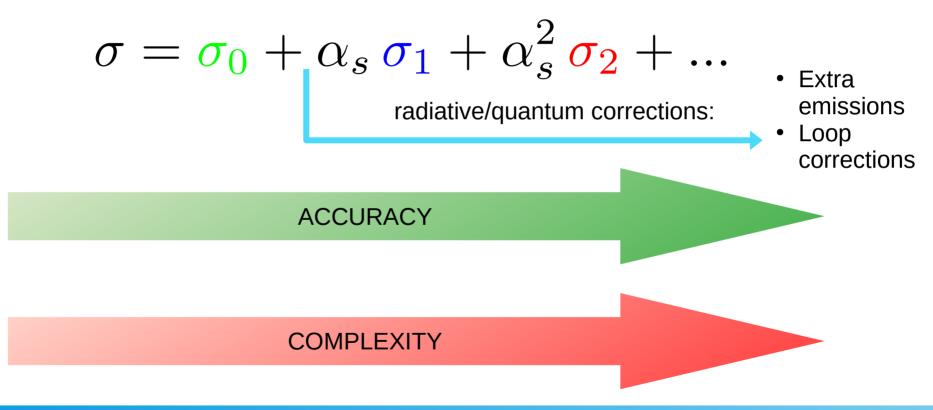
Hard Scattering



Hard scattering:

- scale: ~TeV (LHC);
- QCD can be studied perturbatively (α_s ~ 0.1);
- Determines the **size** of the cross section and the **shape** of the distributions;

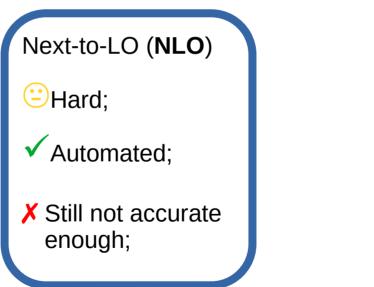
Theoretical predictions are computed as an **expansion** in the **small parameter** a_s :



Theoretical predictions are computed as an **expansion** in the **small parameter** a_s :

$$\sigma = \sigma_0 + \alpha_s \,\sigma_1 + \alpha_s^2 \,\sigma_2 + \dots$$

Leading Order (**LO**) ✓ Easy; ✗ Not accurate;



Next-to-NLO (NNLO)
Harder;
✓ Computed for many processes;
✗ Not automated;
✗ Mostly 2 → 2;

Problem: in perturbative calculations infinities emerge, in the form of divergent integrals!

Problem: in perturbative calculations infinities emerge, in the form of divergent integrals!

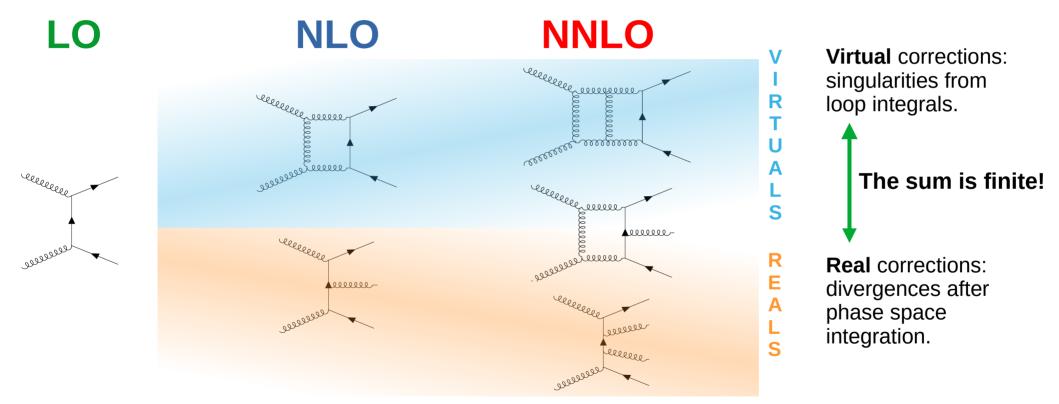


Two types of divergences:

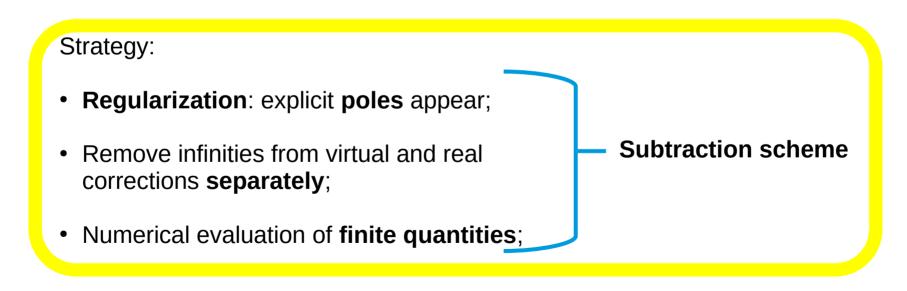
• Ultraviolet: cured by renormalization;

• Infrared: cancel in the final result for physical observables. To achieve the cancellation is highly non trivial!

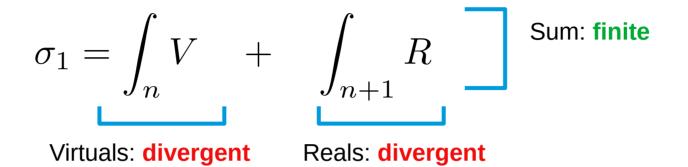
Infrared (IR) divergences arise both in virtual and real corrections.



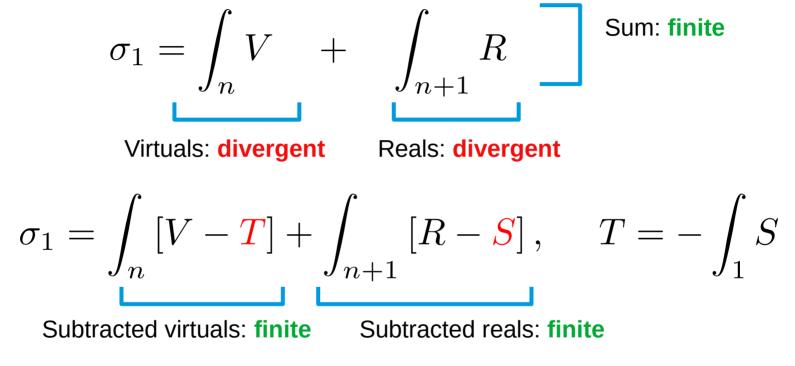
- Infrared divergences are due to the emission of particles with small momentum (soft limit) or with a momentum alligned to other hard particles (collinear limit).
- The cross section calculation is ultimately done with Monte Carlo numerical simulations. Computers can't deal with infinities.



Subtraction scheme at NLO



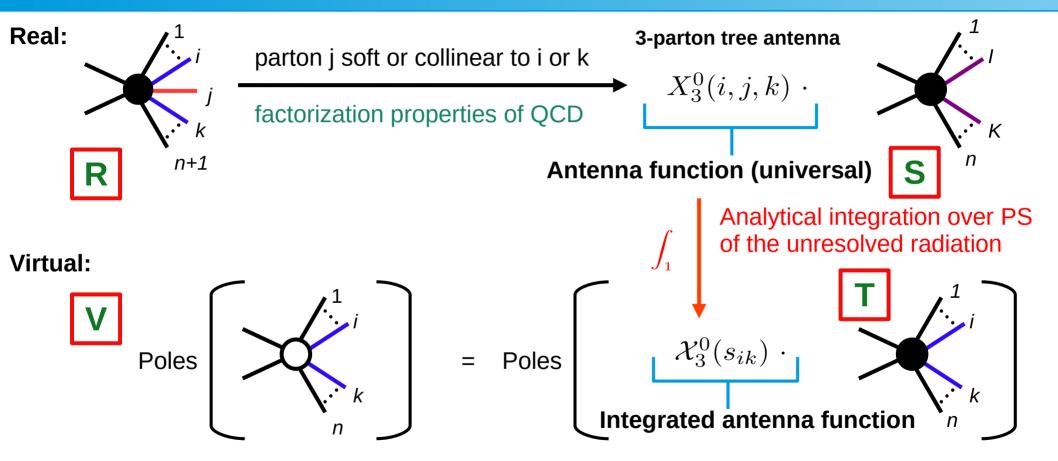
Subtraction scheme at NLO



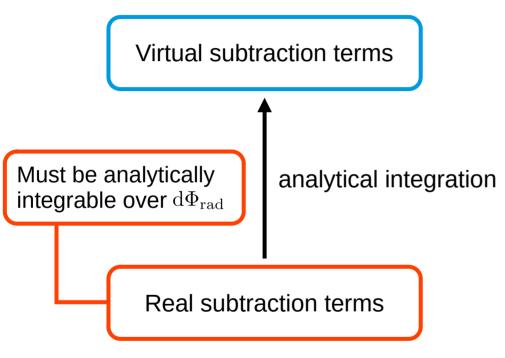
T: virtual subtraction term

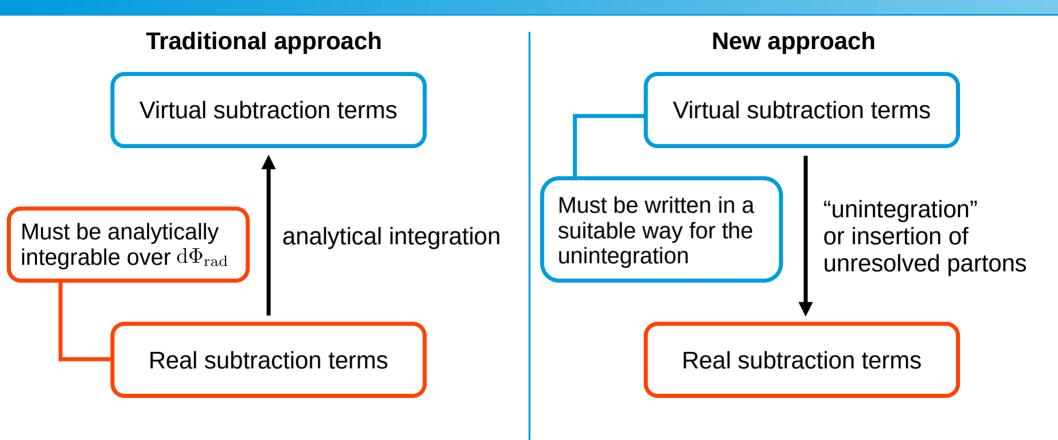
S: real subtraction term

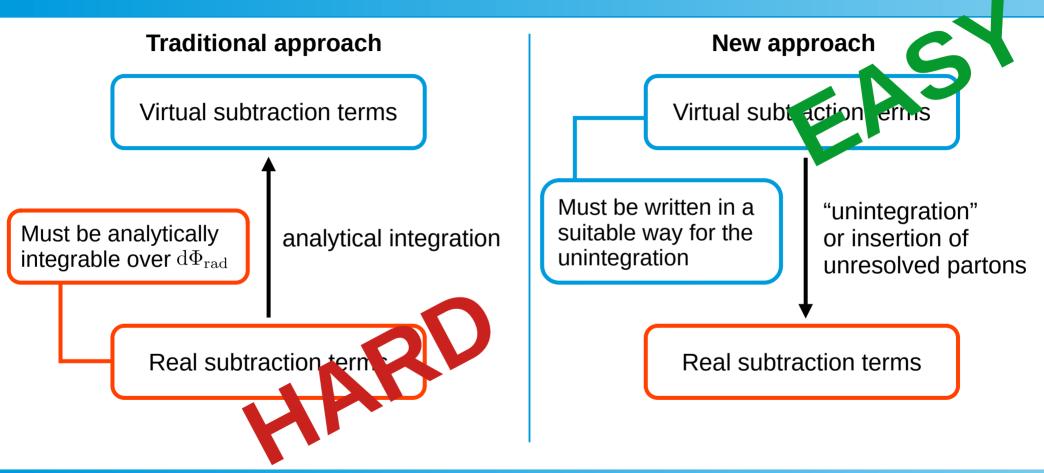
Antenna Subtraction (NLO)



Traditional approach

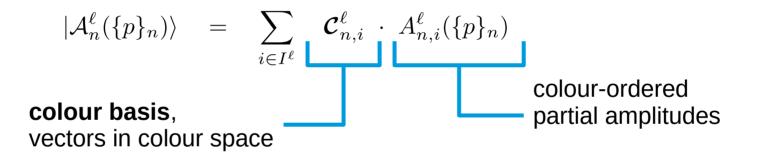






Colour space

The IR singularity structure of loop amplitudes in QCD is best described in **colour space**. An n-parton *l*-loop QCD amplitude can be written as:



Colour space

IR singularity structure of (renormalised) one- and two-loop amplitudes:

 $|\mathcal{A}_{n}^{1}\rangle = \mathbf{I}^{(1)}(\epsilon, \mu_{r}^{2})|\mathcal{A}_{n}^{0}\rangle + \text{ finite terms}$

 $|\mathcal{A}_n^2\rangle = \mathbf{I}^{(1)}(\epsilon, \mu_r^2)|\mathcal{A}_n^1\rangle + \mathbf{I}^{(2)}(\epsilon, \mu_r^2)|\mathcal{A}_n^0\rangle + \text{ finite terms}$

 $I^{(1)}$ and $I^{(2)}$ are infrared insertion operators in colour space:

$$\boldsymbol{I}^{(1)}(\boldsymbol{\epsilon}, \mu_r^2) = \sum_{(i,j)} \left(\boldsymbol{T}_i \cdot \boldsymbol{T}_j \right) \mathcal{I}^{(1)}_{ij}(\boldsymbol{\epsilon}, \mu_r^2)$$

$$\begin{split} \boldsymbol{I}^{(2)}(\epsilon,\mu_r^2) &= -\frac{1}{2}\sum_{(i,j)}\sum_{(k,l)} \left(\boldsymbol{T}_i \cdot \boldsymbol{T}_j\right) \left(\boldsymbol{T}_k \cdot \boldsymbol{T}_l\right) \mathcal{I}^{(1)}_{ij}(\epsilon,\mu_r^2) \mathcal{I}^{(1)}_{kl}(\epsilon,\mu_r^2) \\ &- \frac{b_0 N_c}{\epsilon}\sum_{(i,j)} \left(\boldsymbol{T}_i \cdot \boldsymbol{T}_j\right) \mathcal{I}^{(1)}_{ij}(\epsilon,\mu_r^2) + \sum_{(i,j)} \left(\boldsymbol{T}_i \cdot \boldsymbol{T}_j\right) \mathcal{I}^{(2)}_{ij}(\epsilon,\mu_r^2) \end{split}$$

[Catani '98] [Bern, De Freitas, Dixon '03] [Becher, Neubert '09]

- Colour charge dipole structure;
- Retain full colour correlations;
- Universal;

We exploit this to write down the IR singularities of loop matrix elements as:

 $Poles\left\{|\mathcal{M}_{n}^{1}|^{2}\right\} = Poles\left\{2\operatorname{Re}\langle\mathcal{A}_{n}^{1}|\mathcal{A}_{n}^{0}\rangle\right\} = 2Poles\left\{\langle\mathcal{A}_{n}^{0}|\mathcal{J}^{(1)}|\mathcal{A}_{n}^{0}\rangle\right\}$

 $Poles\left\{|\mathcal{M}_{n}^{2}|^{2}\right\} = Poles\left\{2\operatorname{Re}\langle\mathcal{A}_{n}^{2}|\mathcal{A}_{n}^{0}\rangle + \langle\mathcal{A}_{n}^{1}|\mathcal{A}_{n}^{1}\rangle\right\} = 2Poles\left\{2\operatorname{Re}\langle\mathcal{A}_{n}^{1}|\mathcal{J}^{(1)}|\mathcal{A}_{n}^{0}\rangle - \langle\mathcal{A}_{n}^{0}|\mathcal{J}^{(1)}\otimes\mathcal{J}^{(1)}|\mathcal{A}_{n}^{0}\rangle - \frac{\beta_{0}N_{c}}{\epsilon}\langle\mathcal{A}_{n}^{0}|\mathcal{J}^{(1)}|\mathcal{A}_{n}^{0}\rangle + \langle\mathcal{A}_{n}^{0}|\mathcal{J}^{(2)}|\mathcal{A}_{n}^{0}\rangle\right\}$

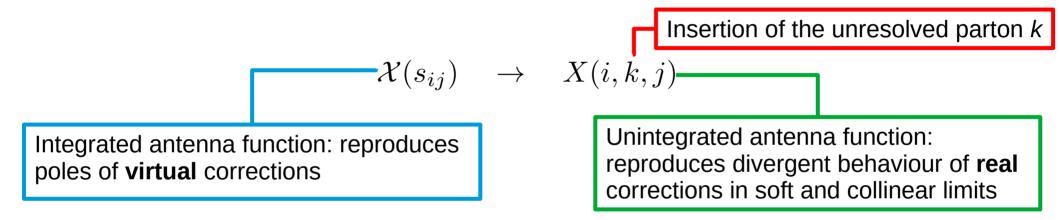
 $\mathcal{J}^{(1)}$ and $\mathcal{J}^{(2)}$ are analogous to $\mathbf{I}^{(1)}$ and $\mathbf{I}^{(2)}$, but are constructed using integrated antenna functions:

- exact extraction of virtual IR poles;
- explicit connection with real IR divergences via the correspondence of integrated and unintegrated antenna functions;

The structure of the IR divergences for real emissions is obtained from the previous expressions replacing integrated antenna functions with their unintegrated counterparts:

$$\mathcal{X}(s_{ij}) \rightarrow X(i,k,j)$$

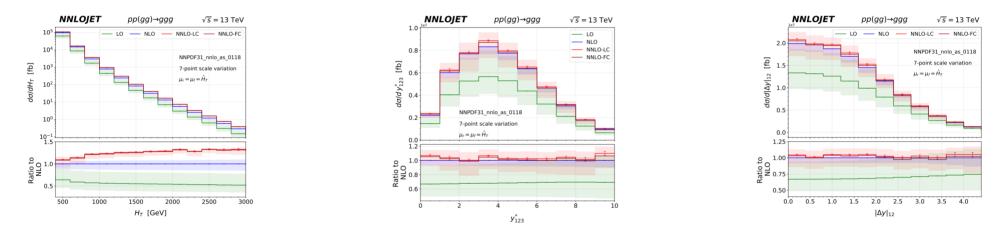
The structure of the IR divergences for real emissions is obtained from the previous expressions replacing integrated antenna functions with their unintegrated counterparts:



- Cancellation of IR divergences;
- Systematic generation of the subtraction infrastructure;
- Knowledge of all the antenna functions is crucial;

Status

- Colorful antenna subtraction: a formalism to achieve a **systematic and automatable** extraction of IR singularities at NNLO for any number of external partons;
- Successful calculation of $gg \rightarrow ggg$ at NNLO in the **gluons-only** assumption (see 2203.13531);

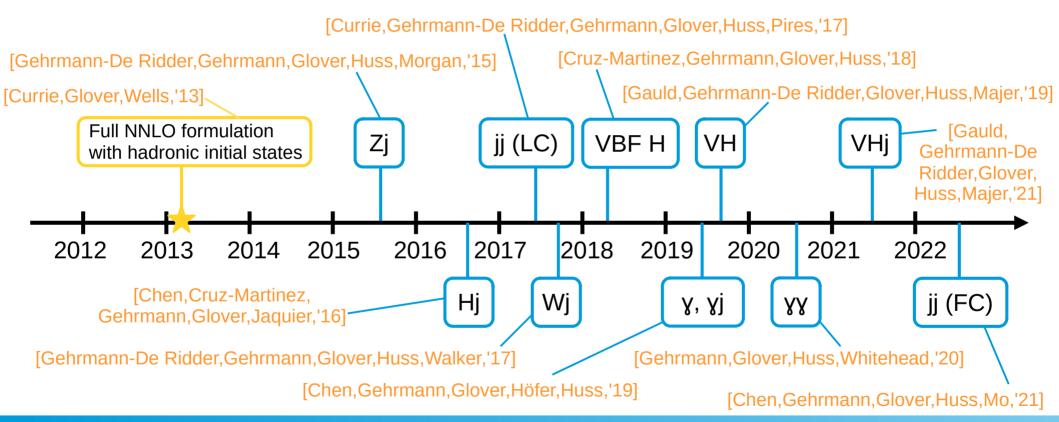


 Work in progress towards full 3-jet production at NNLO: complete establishment of this approach;

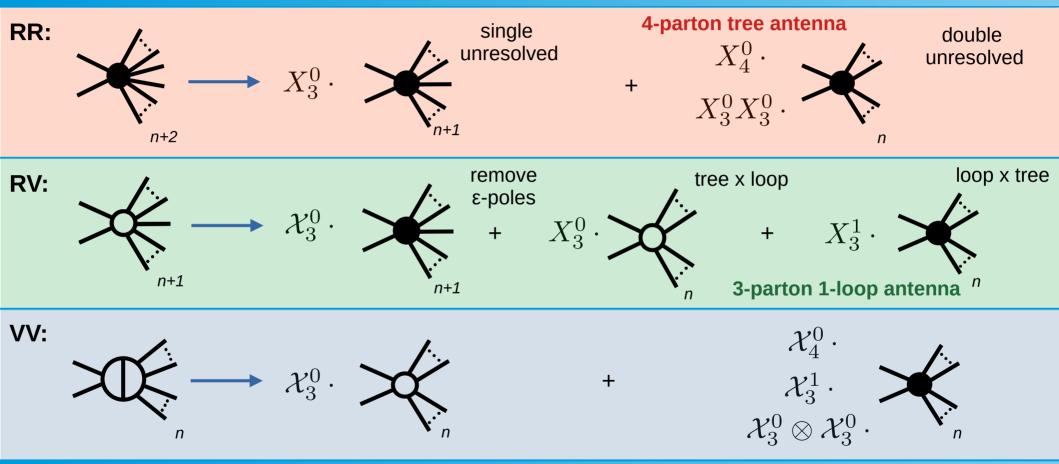
Thanks for your attention!

Antenna Subtraction

Succesfully applied to a variety of LHC processes in the past decade with NNLOJET:



Antenna Subtraction (NNLO)



- Single insertion from VV to RV;
- New terms at RV level:
 - ε-finiteness;
 - Oversubtraction;
 - Large angle soft radiation;
- Single insertion from RV to RR;
- Double insertion from VV to RR (iterated or simultaneous);

