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Theory Predictions in Particle Physics

In particle theory observables are computed by Monte Carlo Tools (e.g.

SHERPA [Gleisberg, Hoeche, Krauss, Schonherr, Schumann, Siegert et al.], POWHEG [alioli, Nason, Oleari, Re],

HELAC-NLO [Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Papadopoulos et al.], MADGRAPH [aiwall,

Frederix, Frixione, Hirschi, Maltoni, Mattelaer et al.], HErwig-- [Belim, Gieseke, Grellscheid, Platzer, Rauch], €tc.)

— calculation factorizes into various perturbative and non-perturbative components

— development and implementation of each component involves highly complex
methods and algorithms

Components include:
= PDFs @
= hard scattering process ®
= parton showers ®

= hadronization ®

[Schalicke, Gleisberg, Hoche, Schumann,
Winter, Krauss, Soff]



OpenLoops

= Openloops is a numerical tool providing hard
scattering amplitudes to Monte Carlo
simulations.

= All components to NLO fully automated in
Openloops for QCD and EW corrections to
the SM.

[Schilicke, Gleisberg, Hache,
Schumann, Winter, Krauss, Soff]

OpenLoops constructs helicity and color summed scattering probabilitv densities

wie =y Y 1aum)? for L=0,1and wo =3 %" 2Re[ML }forL_l

from L-loop matrix elements M, .

o Wor = Z2Re [D«M }

col

Goal: automation at NNLO



Automation at NNLO

The public OpenLoops [Buccion,

Lang, Lindert, Maierhéfer, Pozzorini, Zhang, Zoller] already delivers some

components to NNLO:
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= Openloops is already being used in NNLO calculations in particular for the real
virtual components in €.g. MATRIX [Grazzini, Kallweit, Wiesemann], NNLOJET [Gehrmann-De
Ridder, Gehrmann, Glover, Huss, Walker, McMule [Banerjee, Engel, Signer, Ulrich].
L

NNLO in OpenLoops: require double virtual



Components to NLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram I':
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Calculation decomposed into:

= Numerical construction of tensor coefficient in 4-dim — OpenlLoops algorithm

[van Hameren; Cascioli, Maierhéfer, Pozzorini; Buccioni, Lang, Lindert, Maierhéfer, Pozzorini, Zhang, Zoller]
= Renormalization, restoration of (D-4)-dim numerator part by rational counterterms—
RNy = My + M(CT)I_ [Ossola, Papadopoulos, Pittau]

= Reduction and evaluation of tensor integrals — On-the-fly reduction
[Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]



Components to NNLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram I':
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color 59 tensor
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(D-dim denominator) ensor integral

Calculation decomposed into:

= Numerical construction of tensor coefficient in 4-dim — fully general algorithm,
implementation complete for QED and QCD

= Renormalization, restoration of (D-4)-dim numerator part by rational counterterms—

RMy = My + M(lclT)r MéCT) [Lang, Pozzorini, Zhang, Zoller]
currently working ‘on implémentation and validation
= Reduction and evaluation of tensor integrals — small in-house library for test

purposes, general solution: future projects
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Tree Level Algorithm



OpenlLoops Tree Level Algorithm: Example

input: external wavefunctions
Wi, Wz, W3, Wg, Ws

wy wy

W5

wy w3



OpenLoops Tree Level Algorithm: Example

Combine wy, ws into subtree wg:

We
wo wy

o i = [T el

wy w3

[]75 = vertex + propagator,
universal process-independent
Feynman rule



OpenlLoops Tree Level Algorithm: Example

Add next external leg:

w7
wo wy 5
ws We = [—%] af 7 Wsﬁ
wy = [M]Zﬁwfwf
wy w3

[«<]}5 = vertex + propagator,
universal process-independent

Feynman rule



OpenlLoops Tree Level Algorithm: Example

same on the other side:

i
wo wy
ws wg =[] 1/3 Wi g
wi =[]0 w5t g
g = [‘m‘gﬂlﬁwlawzﬁ
wy w3

[w«%iﬂ z,e = vertex,

universal process-independent
Feynman rule



OpenlLoops Tree Level Algorithm: Example

combine to full diagram:

Wg w7
E e wg = [0 wiwd
00900 wy = [“‘”<]lﬁW3an
Wy = [w{]lﬁwfthﬁ
wi ws My = [umf]aﬁwfwg
M,

I:\HHH/:I aB p—

universal process-independent
Feynman rule



OpenLoops Tree Level Algorithm

Recursively construct subtrees starting from external wavefunctions:

wS? (kay o) = —@ - -

X:e”m (kb' ki) o o
= W w, (Kb, ho) wle(ke, he)

process-dependent
model-dependent

Then contract into full diagram:

Mor(h) = -ZH3=Co,r~w:a(kavha)aaaabvvmkb.,hb)

= diagrams constructed using universal Feynman rules

= identical subtrees are recycled in multiple tree and loop diagrams



One Loop Algorithm



OpenLoops Algorithm at One Loop

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram I':

M=

M1 Hr
_ N(a1) i _ afBocog]
=Gr day = =ar Nug-p dgg———
~— D(qy) —— D(3;)
color v r  tensor coefficient

4-dim numerator,

t inte |
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Calculation decomposed into:

= Numerical construction of tensor coefficient in 4-dim — Openloops algorithm

[van Hameren; Cascioli, Maierhéfer, Pozzorini; Buccioni, Lang, Lindert, Maierhéfer, Pozzorini, Zhang, Zoller]
= Renormalization, restoration of (D-4)-dim numerator part by rational counterterms—
R¥yr = My p + M) [Ossola, Papadopoutos, Pittau]

= Reduction and evaluation of tensor integrals — On-the-fly reduction
[Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]



One Loop Algorithm: Example

External subtrees constructed in tree
level algorithm (together with tree

25 Wi diagrams):
59 W2, W3 — We
W2
w3
We
Wa



One Loop Algorithm: Example

Open Loop:

Diagram factorizes into chain of

W5 M segments: N =Sy --- Sy

We

Wa

segment = loop vertex + loop

propagator + external subtree(s)




One Loop Algorithm: Example

Construct first segment S; attaching

the external subtree w;.
Ws w1

No=1
N1 =No - S1(w)
We

Wa

segment = loop vertex + loop

wi | we  ws wa
L & % £ propagator + external subtree(s)




One Loop Algorithm: Example

Add second segment attaching the

subtree wg.
Wg w1
N =1
N1 =No - S1(w)
Ws No = N7 - 52(W6)
Wa
1

segment = loop vertex + loop

Wi We Wi propagator + external subtree(s)




One Loop Algorithm: Example

Add third segment.

Wg w1
No=1
N1 =No - S1(w)
We No = N1 - Sa(we)
N3 = Na - S3(wa)
Wa
1

segment = loop vertex + loop

propagator + external subtree(s)

I
20000 -
00 5

w



One Loop Algorithm: Example

Add last segment.

Ws w1
No=1
N1 =No - S1(w)
Ws N2 =N1 . 52(W6)
N3 = Na - S3(wa)
Wy Na = N3 - Sa(ws)
!

segment = loop vertex + loop

propagator + external subtree(s)




One Loop Algorithm: Example

Close the loop (contract open

Lorentz/spinor indices).
Ws w1
No=1
N1 =No - S1(w)
Ws No = N; -52(W6)
N3 = Na - S3(wa)
Ws Na=N3- 54(W5):N455N
N
A N = Tr(Nagh)




OpenLoops One Loop Algorithm

One Loop Amplitude:

_ - TN (q)] _
Mur=ar quDoDl'“Dqu :

Diagram is cut open resulting in a chain, which into segments:
Ninlq) = Sa(q) = »
];11 ) D, D, Dun  Dna Dy

Chain is constructed recursively, recursion step: A, = N,_; - S-
Implemented at level of tensor coefficients in & = A7y ..y, afT - gl

Segment = vertex + propagator + subtree(s)

Ba Ba
[s20)] = = [Yoa + Zoawa®] 7 WS
Ba—1 Ba—1

Exploit factorization to construct 1l diagrams from universal process-independent
building blocks.

10



Two Loop Algorithm



OpenLoops Algorithm at Two Loops

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram I:

Mo =

: K1 gHr V1 Vs
_ Nla1, a) 9 a4, a,
= a2 Dy 5) =GQr prvy--vs, | 4@ dqz—p(, =
q1, a2 N——— q1, @
. Vv r,s tensor coefficient N
4-dim numerator,
tensor integral

(D-dim denominator)

Calculation decomposed into:
= Numerical construction of tensor coefficient in 4-dim
= Renormalization, restoration of (D-4)-dim numerator part by rational counterterms
RV, = Mo, r + M)+ MDD (Lang, Pozzorini, Zhang, Zoler

= Reduction and evaluation of tensor integrals

11



Two Loop Algorithm: Re

Distinguish irreducible (@4) and reducible (D‘Q DQ) diagrams.

Exploit numerator factorization:

e, = [VP@] ™ Poray (V@] 2

chain 1 bridge chain 2

12



Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible (@4) and reducible (D‘Q, DQ) diagrams.

Exploit numerator factorization:

chain 1 bridge chain 2

1. Construct chain 1 using extension of one-loop algorithm, perform first
loop integration.

12



Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible (@4) and reducible (D‘Q DQ) diagrams.

Exploit numerator factorization:

- [MvEn] Poray (V@] 2

chain 1 bridge chain 2

1. Construct chain 1 using extension of one-loop algorithm, perform first
loop integration.

2. Connect bridge using tree algorithm
— treat first loop as external "subtree".

Pp = Pn—lsﬁs)(wﬁs)% W(()B) = [M(l)] al. P_1=1

12



Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible (@4) and reducible (D‘Q DQ) diagrams.

Exploit numerator factorization:

e, = [VP@] ™ Poray (V@] 2

chain 1 bridge chain 2

1. Construct chain 1 using extension of one-loop algorithm, perform first

loop integration.

2. Connect bridge using tree algorithm
— treat first loop as external "subtree".

3. Construct chain 2 using extension of one-loop algorithm
— treat first loop + bridge as external "subtree".

NP = NPy, W) = [M(l)] haray N

12



Two Loop Algorithm: Irreducible Diagrams

Two-loop numerator :
N1, a2) = ND(qy) N (q) NC)(g3)
NO@) = 5@ P -5

|q3ﬂ—(q1+q2>

Building blocks /C,, for algorithm:

s N, A @) A3 3 chains

a1 (p) '
w s 5@ s6) their segments

l(/’i . , v, vertices connecting chains

= Uy = 22 , Mg Born and color
col

= Construct Born-loop interference recursively from building blocks:

Up=U,_1Kn, Kn€ {uO,N(")‘s},"),vj}

Factorization results in freedom of choice for two-loop algorithm.
= CPU cost ~ # multiplications
= determine most efficient variant through cost simulation

13



Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain A//®)(g).

N (g = MO SO O g

n—17n

14



Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain A//®)(g).

2. Construct longest chain NV (q;) using tp=2Y",CM; (h) as the initial condition.

14



Two Loop Algorithm: Irreducible Diagrams

# active helicities in 1) =64
—8x2

X2

X2

1. Construct shortest chain A//®)(g).

2. Construct longest chain NV (q;) using tp=2Y",CM; (h) as the initial condition.
Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in ¢4, sum helicities of ext. subtrees at each
vertex.

UMD b1 b ) = U (b, by bz Sy, ulD =Dy

..... h
hn ; Ny +Np+N3)

14



Two Loop Algorithm: Irreducible Diagrams

# active helicities in 1/{))=32
—gx2

X2

N

1. Construct shortest chain A//®)(g).

2. Construct longest chain NV (q;) using tp=2Y",CM; (h) as the initial condition.
Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in ¢4, sum helicities of ext. subtrees at each
vertex.

UD (hyy1s bgns o) = ugl(hn, bsts bnga - - S (ha), uél) = uél)(hl, hy

..... h
hn ; Ny +Np+N3)

14



Two Loop Algorithm: Irreducible Diagrams

# active helicities in 1\ =16
—gx2

PN

1. Construct shortest chain A//®)(g).

2. Construct longest chain NV (q;) using tp=2Y",CM; (h) as the initial condition.
Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in ¢4, sum helicities of ext. subtrees at each
vertex.

UD (hyy1s bgns o) = ugl(hn, bsts bnga - - S (ha), uél) = uél)(hl, hy

..... h
hn ; Ny +Np+N3)

14



Two Loop Algorithm: Irreducible Diagrams

# active helicities in 1" =8

1. Construct shortest chain A//®)(g).

2. Construct longest chain NV (q;) using tp=2Y",CM; (h) as the initial condition.
Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in ¢4, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

UD (hyy1s bgns o) = ugl(hn, bsts bnga - - S (ha), uél) = uél)(hl, hy

..... h
hn ; Ny +Np+N3)

14



Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain A//®)(g).

2. Construct longest chain NV (q;) using tp=2Y",CM; (h) as the initial condition.
Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in ¢4, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N(W(g), N)(gs) first to vy, then to Vv, sum helicities of A ®)(g3), V1, V0.

@ ) (1) 4(2) 4(3)
u(13)) Fny = @) ifl W) s {\/’mm m} 0 70 T0 |y (g1, q2)
B
0

e L 16608 lag——(a1+a2)

14



Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain A//®)(g).

2. Construct longest chain NV (q;) using tp=2Y",CM; (h) as the initial condition.
Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in ¢4, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N(W(g), N)(gs) first to vy, then to Vv, sum helicities of A ®)(g3), V1, V0.

4. Attach ~®)(qy) segments to previously constructed object, sum helicities

on-the-fly.
U1 _ u((lllzfi)sﬁz), uélB) = u(3) = /(M(g)N ) (g3)V1 (a1, 42) Vg (a1, a2

14



Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain A//®)(g).

2. Construct longest chain NV (q;) using tp=2Y",CM; (h) as the initial condition.
Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in ¢4, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N(W(g), N)(gs) first to vy, then to Vv, sum helicities of A ®)(g3), V1, V0.

4. Attach ~®)(qy) segments to previously constructed object, sum helicities
on-the-fly.

Completely general and highly efficient algorithm.
Fully implemented for QED and QCD corrections to the SM.

14



Numerical Stability

Validate and measure numerical stability of two-loop algorithm without computing
tensor integrals using pseudotree test.

= Cut two propagators of two-loop diagram
= Insert random wavefunctions ej, e, €3, e4 saturating indices

= Set g1, g2 to random constant values, contract tensor coefficients

G*lghr gt qvs
. g 3 1 1 2 1
Noui...pppvr...vswith fixed-value tensor integrand T Dlana)

= Compare to computation with well-tested tree level algorithm
Typical accuracy around 10~% in double (DP) and 10~3° in quad (QP) precision,
always much better than 10~17 in QP = Establish QP as benchmark for DP

15



Numerical Stability: Irreducible Diagrams

Numerical stability of scattering probability density Wégl"m) in double (pr=DP) vs
quad (pr=QP) precision in pseudotree mode.

2L,DP 2L,QP
App = logyg Wy 20 W, )
= - 5L,DP 3T,QP
Min(jWZH PRI W QP)))
Process: gg — tt Process: dd — uug
10°4 o Y 104 o ° .
.
107! O
. 2
o °
10
L] é O
10734 10°*
10744 O 104 L]
—17 —16 —15 14 —13 -12 - 8 5 3 2
ey A T N e

The plot shows the fraction of points with App > Amin for 10° uniform random points.

Excellent numerical stability. Essential for full calculation, tensor integrals will be
main source of instabilities.

16



Efficiency: Irreducible Diagrams

Construction of tensor coefficients for QED, QCD and SM (NNLO QCD) processes

(single intel i7-6600U, 2.6 GHz, 16GB RAM, 1000 points)

= 2 — 2 process: 10-300ms/psp
= 2 — 3 process: 65-9200ms/psp

Runtime o # diagrams

g time/psp/diagram ~ 150 us

10" 4 Cdd — un

Constant ratios between NNLO
. T - — double virtual (VV) and
- real-virtual (RV):

full

tyv /LRy

T o ' ' MY ~ 441 (full RV)

- fall
0 Ry

t 5 A
- . . — YW~ 9+ 3 (tensor coefficients)
10% 10* 10 10° tRv

Niags

Strong CPU performance, comparable to real-virtual corrections in OpenLoops.

17



Implementation of Rational Terms



Renormalization and Rational Terms at NNLO

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram I:

Mo =

5 m .
N(aqy, q gHl gt gt L gYs
_ 1, 92) - o 1 D 2
= @ ———— =Cr Nugprv dg [dg ———————
1 1 —
D(a1, 32) D(a1, 32)
M o3 tensor coeffncnent <

4-dim numerator, v |
tensor integral
(D-dim denominator) e

Calculation decomposed into:
= Numerical construction of tensor coefficient in 4-dim

= Renormalization, restoration of (D-4)-dim numerator part by rational counterterms

RM = My + ,\4"1 ) . u‘(T‘ [Lang, Pozzorini, Zhang, Zoller]

= Reduction and evaluation of tensor integrals

18



One-loop rational terms

Amputated one-loop diagram ~ (bar denotes quantities in D dimensions):

4dim  (D-4)-dim

_ —_— Dy,

My = Ci [ dan N(fn) =Gy dfhw = ofp P

' ' D(q1) ' D(q1) .
N(q)
D(q1)
The e-dim numerator parts N'(g1) = N(G1) — NV(q1) contribute only via interaction
with 1 UV poles
= Can be restored through rational counterterm 7R _ [Ossola, Papadopoulos, Pittau]

= 6R, , = Ciy [ day

RMi, = My, + +0Ry -
~—~—
D—dim, renormalised 4—dim numerator and rational counterterm

Finite set of process-independent rational terms in renormalisable models.

No rational terms of IR origin at one-loop [Bredenstein, Denner, Dittmaier, Pozzorini].

19



Two-loop rational terms

Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, Zoller]

RMz,r:Mz.r+Z( +6Z1,4+ Ry, )~M1m+( +  ORyr )
Y \N—— ~—~—
subtract restore N -terms subtract remaining  restore remaining
subdivergences from subdiagrams local divergence N -term
Example:

RMor = w@ +w<§( +62,,+6R, ) + ( + Ry 1)
4-dim

numerators

= Divergences from subdiagrams « and remaining local one subtracted by usual UV
counterterms ,
= Additional UV counterterm 67, _ o< ‘%90 for subdiagrams with mass dimension 2.

= OR, [ is a two-loop rational term stemming from the interplay of A/ with UV poles,
generally contains 1/e poles.

= Finite set of process-independent rational terms of UV origin.
= Available for QED and QCD corrections to the SM. [Lang, Pozzorini, Zhang, Zoller,2021]
= Rational terms of IR origin currently under investigation.

20


https://arxiv.org/abs/2107.10288

Implementation of ormalization, Rational Terms at NN

Status:

= Implementation of new tree (e.g. M) and one-loop (e.g. @)

universal Feynman rules, complete
= Validation of new 1l tensor structures using pseudotree-test, complete

= Ongoing: Validation of implementation of two-loop rational terms,
computation of first full amplitudes for simple processes — require tensor

integrals

Pole Cancellation Check
— ensure UV poles cancel

R Maor = {WQ i %(521,7 +021, +0Ry ) + w@< (6Z,r + 6Ry 1) }
4-dim

numerators,

= nontrivial, in general R, r contains é poles
= intermediate result in full calculation

21



rmalization, Rational Terms at NN

Status:

= Implementation of new tree (e.g. M) and one-loop (e.g. @)

universal Feynman rules, complete

= Validation of new 1l tensor structures using pseudotree-test, complete

= Ongoing: Validation of implementation of two-loop rational terms,
computation of first full amplitudes for simple processes — require tensor

integrals

Pole Cancellation Check
— ensure UV poles cancel

RMy = {WQ 4 %(521,7 +0Z1,+0R,) + W‘x<((522_,r +0R, 1) }
4-dim

numerators,

= nontrivial, in general 072, - contains é poles
= intermediate result in full calculation
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Implementation of ormalization, Rational Terms at NN

Status:

= Implementation of new tree (e.g. M) and one-loop (e.g. @)

universal Feynman rules, complete
= Validation of new 1l tensor structures using pseudotree-test, complete

= Ongoing: Validation of implementation of two-loop rational terms,
computation of first full amplitudes for simple processes — require

tensor integrals

Pole Cancellation Check
— ensure UV poles cancel

R Maor = {WQ i %(521,7 +021, +0Ry ) + w@< (6Z,r + 6Ry 1) }
4-dim

numerators,

= nontrivial, in general R, r contains é poles
= intermediate result in full calculation
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Implementation of ormalization, Rational Terms at NN

Status:

= Implementation of new tree (e.g. M) and one-loop (e.g. @)

universal Feynman rules, complete
= Validation of new 1l tensor structures using pseudotree-test, complete

= Ongoing: Validation of implementation of two-loop rational terms,
computation of first full amplitudes for simple processes — require

tensor integrals

Pole Cancellation Check
— ensure UV poles cancel

R Maor = {WQ i %(521,7 +021, +0Ry ) + w@< (6Z,r + 6Ry 1) }
4-dim

numerators,

= nontrivial, in general R, r contains é poles
= intermediate result in full calculation

21



Tensor Integral Reduction Tool



Tensor Integral Reduction Tool

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram I':

Mo =

Na1, 92) z : ) Cd @t q, ;s
1 ) 9 >
— =Gr Nyq-oprvg- dg [dgp ————————
ql @) D(qy, d2)

oS} tensor coeffncnent

4- dlm numerator,

tensor integral
(D-dim denominator) e

Calculation decomposed into:
= Numerical construction of tensor coefficient in 4-dim

= Renormalization, restoration of (D-4)-dim numerator part by rational counterterms

(CT) CT)

RMy = My + M L+ M( 5 r ILang, Pozzorini, Zhang, Zoller]

= Reduction and evaluat|on of tensor integrals

22



Tensor Integral Reduction Tool

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram I':

Mo =

N(ar, a2) 9 9 9 ‘/"')7
= o, —Gr E Nul vy day fday —————————
D(q1 ) Pla1, 92)

oS} tensor coeffncnent

4 dlm numerator, |
tensor integral
(D-dim denominator) e

Calculation decomposed into:
= Numerical construction of tensor coefficient in 4-dim
= Renormalization, restoration of (D-4)-dim numerator part by rational counterterms

RN = Mo+ M(CT) + M(CTjr [Lang, Pozzorini, Zhang, Zoller]
= Reduction and evaluat|on of tensor integrals— wide range of methods and tools

possible: analytical and numerical, in-house and external, and mixtures thereof

22



Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.

For one diagram I

Mo =

g J w1y P ,
N(a1, a2) z : q q q-
2 ﬁ =Gr N[.Ll vy dg; mul’—
1,3
— .

oS} tensor coeffncnent

4-dim numerator, |
tensor integral
(D-dim denominator) e

Calculation decomposed into:
= Numerical construction of tensor coefficient in 4-dim

= Renormalization, restoration of (D-4)-dim numerator part by rational counterterms

(CTjr [Lang, Pozzorini, Zhang, Zoller]

RM2r7M2r+M(CT) + M
= Reduction and evaluation of tensor integrals— wide range of methods and tools
possible: analytical and numerical, in-house and external, and mixtures thereof
Currently working on small in-house tensor integral library for test purposes, 2 and 3 point

topologies with off-shell external legs and massless propagators.
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Summary



Summ

New algorithm for two loop tensor coefficients:
= Fully general algorithm
= Excellent numerical stability
= Highly efficient, comparable to real virtual contribution

= Exploit factorization for ideal order of building blocks.
= Efficient treatment of helicities and ranks in loop momenta.

= Fully implemented for NNLO QED and QCD Corrections to SM

Current and future projects
= Implementation of two-loop UV and rational counterterms

= Tensor integrals (in-house framework, external tools or mixture thereof)
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Tensor Integral Reduction Tool: Covariant Decomposition

Example: Rank 2 tensor integral, 2 independent external momenta pp, p2

s . a'as
" = | dq1dg
D1 -Dy-D3-Dy- Ds

Dy =32, D, = (g1 + p1)? D3 = (G + p1 + p2)%, Da= g3, Ds = (—G1 — Go)>

Covariant decomposition, final tensor structure can only contain external momenta,
metric tensors:

" = C pl'pl + G pb'py + G g + Cu pi'py + Cs pl pY

Use projectors to determine coefficients Gy, Gy, C3, Cy, Cs:

p1,p1, MY P} (p1-p2)®> P} Pipip2 PipLp2 G

P2, P2, 1" (prp2)* P s PP Ppp | |G
g M| = p? p3 d p1-p2 p1-p2 G C=M-1.]
Juv 2 2 2 .2 2 = - ° o

P1,P2, P P1.P2 P53 P1-P2  P1-P2  PiP3 (p1-p2) Gy

P2, 1, IM p3pip2 Pipip2 pip2 (pip2)®  pipd G

——
| = scalar integrals ] c

We have now related /*¥ to coefficients C depending only on scalar integrals /.

Our test library contains automated Mathematica implementation of this approach.
Challenge: inversion and simplification of M only feasible at low ranks in g1, go.



Tensor Integral Reduction Tool: Interface to FIRE

Interface to FIRE [smimov, Chukharey) — express scalar integrals in terms of D;
Example:
~ .~ (p1:q1)(p1-92)
h = " = | dgid
1= P1,P1y / q1 q2D1~D2~D3-D4~D5

D1 =33,D= (g1 + p1)?, D3 = (G1 + p1 + p2)?, Da = 33, D5 = (—q1 — G2)°

Find p1.q1 = 3(D2 — D1 — p2),  p1.g2 = 3(Ds — Ds — p?),
where we introduced an additional propagator Dg = (G + p1)? for p1.qo.

1 2 2
L(Dy — Dy — p?)(Ds — Da —
/1:P1MP1V’W:/dC_hdt_724( 21 i pll)( 16 14 Opl)
DI D} DI.D}-D}- DY

. _ _ - Ds
Example : G[{2,1,1,0,—1,0}] = quldq2 57Dy D;
These expressions are now ready for reduction.

Interface to FIRE automated in our test library.

Remaining steps: ¢ expansion of coefficients, implementation of master integrals
from literature or numerical evaluation thereof.



On-The-Fly Helicity Summation at NLO

Final result: wg, = 5 Z | 2Re [Mm) Mo*(n)]
L ah col

Instead of w(s, 1) = [ sate. », construct ue =" [2 > CM(’)‘(M)] N(a, )

a

Perform on-the-fly helicity summation (succioni, Pozzorini, zoller, for each diagram:

= Use Born-color interfernce u=23"_,cMm; (h) as initial condition,
begin the recursion with maximal helicities.

= Exploit factorization to sum helicities in each recursion step:
>, tolh) N, b) = wa { . Zh2 [Zhl Ug(hy, by, -~->51<h1>} Sa(ho) - } Sn(hy)
= (in renormalizable theories) each segment:

= increases rank by 1 (or 0)
= decreases total helicities by a factor of # helicities of subtree in the
segment

Minimal helicities with maximal rank, complexity is kept low in final
recursion steps.



On-The-Fly Helicity Summation: Example

Ws

Wy

2X 2X 2% 2X

Wi We

s 2

Wi

We

2= #h

000 5

In each recursion step:
= increase rank by 1

= decrease total helicities by a
factor of # helicities of
wavefunction in the segment

helicities=32,
rank=0



On-The-Fly Helicity Summation: Example

Ws

Wy

Wi

Wi

We

2= #h

000 5

In each recursion step:
= increase rank by 1

= decrease total helicities by a
factor of # helicities of
wavefunction in the segment

helicities=16,
rank=1



On-The-Fly Helicity Summation: Example

Ws

Wy

Wi

We

<

s 2

Wi

We

2= #h

000 5

In each recursion step:
= increase rank by 1

= decrease total helicities by a
factor of # helicities of
wavefunction in the segment

helicities=4,
rank=2



On-The-Fly Helicity Summation: Example

Ws

Wy

Wi

We

<

s 2

Wi

We

2= #h

000 5

«
e
w

In each recursion step:
= increase rank by 1

= decrease total helicities by a
factor of # helicities of
wavefunction in the segment

helicities=2,
rank=3



On-The-Fly Helicity Summation: Example

Ws Wi

We

Wy

In each recursion step:
= increase rank by 1

= decrease total helicities by a
factor of # helicities of
wavefunction in the segment

helicities=1,
rank=4



Symmetrization at One-Loop

OpenlLoops uses tensor coefficients:
R
Z/Vﬂl“'urq, 1ooeghn = Z/\/"om"z"z (qg)”o (ql)nl (q2>,72 (q3)n3
r=0

notmmy ins<R

R
M1 ... gHr

. grl--.qr
Example: Dﬁ% =My = E QN qu oDiDaD;

=0

# components in A for R = 4
= without symmetrization: Zf:o 4" = 341

= with symmetrization: (R;‘l) =70

Bookkeeping in numerical code:
Map ng, n1, n2, n3 onto one-dimensional array ¢(ng, n1, nz, n3):

34+n3—1 2+n3+np—1 14+n3+ny+n;—1
U(no, ny,mp,n3) = (1) (Brrimt) 4 (VI Y) ong oy 4oy np + 1

— extension to two loops: use ({1, £2) for coefficients related to (g1, g2).

Symmetrization greatly reduces number of operations required in numerator
construction.



Symmetrization at One-Loop

OpenlLoops uses symmetrized tensor coefficients:

R

Z/Vﬂl“'urqm gl = Z/\/"om"z"z (qg)”o (ql)nl (q2>,72 (‘73)n3

=0

notmmy ins<R

R
M1 ... gHr

. grl--.qr
Example: Dﬁ% =My = E QN qu oDiDaD;

=0

# components in A for R = 4
= without symmetrization: Zf:o 4" = 341

= with symmetrization: (R;‘l) =70

Map ng, n1, n2, n3 onto one-dimensional array ¢(ng, n1, nz, n3):

3+n3—1 2+n3+np—1 14+n3+ny+n;—1
U(no, ny,mp,n3) = (1) (Brrimt) 4 (VI Y) ong oy 4oy np + 1

— extension to two loops: use ({1, £2) for coefficients related to (g1, g2).

Symmetrization greatly reduces number of operations required in numerator
construction.



Symmetrization at One-Loop

OpenlLoops uses symmetrized tensor coefficients:

R

Z/\/M___”'qm cghr = E/\’"omnzng (qo)ﬂo (ql)nl (q2>n2 (qa)m

=0

notmmy ins<R

R
M1 ... ghtr
. ghl...gHr
Example: Dﬁ% =M =Y AN, qu DyD10,D3

r=0

# components in A for R = 4
= without symmetrization: Zf:o 4" = 341

= with symmetrization: (R;‘l) =70

Map ng, n1, n2, n3 onto one-dimensional array ¢(ng, n1, nz, n3):

rank 0 1 2
a(€) 1 e ‘ q! ‘ 2 ‘ 7 °q° ‘ %4t ‘ e ‘ 43 ‘ ‘ q ‘ qtq® ‘ P ‘ g ‘ ¢
¢ 1] 2 | | s 6 | 7 | & | o | w0 | um [ 12 | 1 | 1 |

— extension to two loops: use ({1, £2) for coefficients related to (g1, g2).

Symmetrization greatly reduces number of operations required in numerator
construction.



Two Loop Algorithm: Naive Approach

1. construct chains N (q), N®)(qz), V) (g3) using one-loop algorithm.



Two Loop Algorithm: Naive Approach

L+ 13

1. construct chains N (q), N®)(qz), V) (g3) using one-loop algorithm.

2. combine with vertex v, closing indices 8{),5{),57)



Two Loop Algorithm: Naive Approach

L+ 1 3 3K

1. construct chains N (q), N®)(qz), V) (g3) using one-loop algorithm.
2. combine with vertex v, closing indices vall’,ﬁﬁg,ﬁﬁ;

3. combine with vertex 1y, closing indices 5,55



Two Loop Algorithm: Naive Approach

L+ 1 3 3K

construct chains N (q;), N (g2), N®)(g3) using one-loop algorithm.
combine with vertex v, closing indices vall’,ﬁﬁg,ﬁﬁ;

combine with vertex v, closing indices 5”,5(,5"

= ©® P =

multiply Born-color interference, sum over helicities, map momenta

Zh U (h) [N(l)(ql,h):l I:,’\"(Z)(qz,h)} {,\'(’*><q3.h>— [\’\:m m} {\rm

m} |q3‘>*(‘71+qZ)



Two Loop Algorithm: Observations and Challenges

4.

Zh Ug(h) [N(l)(ql,h):l [.,w'(Q)(qzh)} {,\'(3)(@3.»» L\:wu u;.s::J L\]]usl.ul “‘”J ’

4 a3 ——(a1+92)

. construct chains N (q1), N®(q), N)(q3) using one-loop algorithm

1
2.
3

combine with vertex V1, closing indices 5§,

. combine with vertex 1y, closing indices 8,595

sum over helicities, map momenta, multiply Born-color interference

Observations:

complexitiy of each step depends on ranks in g1, g2 and helicities
step 2, 3 are performed for 6, 3 open spinor/Lorentz indices

step 2, 3 are performed at maximal ranks

all steps are performed for all helicities

Very inefficient: most expensive steps performed for maximal number of
components and helicities.



Helicity Bookkeeping

For a set of particles £ = {1,2,..., N} the helicity configurations are
identified as:
1,3 for fermions with helicity s = —1/2,1/2
Ap =14 1,2,3 for gauge bosons withs = —1,0,1 Vpeé&
0 for scalars with s = 0 or unpolarized particles
Each particle is assigned a base 4 helicity label

hp = A\, 4P7 1,

which can be used to define a similar numbering scheme for a set of
particles:
Es=Apay,-.-,pa,} has the helicity label,

ha=>_h,.

pPEE,



Merging

Example:

After one dressing step subsequent
dressing steps are identical.

Topology (scalar propagators) is
identical for both diagrams.

Diagrams can be merged.

For diagrams A,B with identical
segments after n dressing steps (exploit
factorization):

Up g =Up T’(JVA,B) = numerator - Born - color

Up+Ug = Upp - Spi1- - Sy) + Up B Sp1 - Sn)

=Upa+UsB) Spp1 SN

Only perform dressing steps n+1 to N
once.

Highly efficient way of dressing a large
number of diagrams for complicated

processes.



Explicit dressing steps

Triple vertex loop segment:

(i)

[59¢a 1)y =

a—1

By By . .
*k"’ o { |:Y/Z:| piG) + {Z/Z L/} q() gi } ng(kiav h(al))
B¢ B

(i)
BaZy

Quartic vertex segments:

. 2189 g :
[5a #)] o = = 1] e D) W, (i, D)

with hS) = ) + ) and ki, = ki, + kia,.
Dressing step for a segment with a triple vertex:

50 50
_ (1)
|:Nn H1-- }J,,(h )][(1) - {[an;#l,“u,(h 1)} (1) |: 1n} 3(1)
0

31

31 3
(1) (OB 1 1
+ [Nn—l;uz...;l,(hn 1)} 3(1) [Zln [I.l} q(l) } W/SU)(kn' hg ))



Processes considered in performance tests

corrections | process type | massless fermions | massive fermions process
QED 22 e = ete™ = ete™
23 e — ete” = efe
QCD 22 u — gg — ul
u,d — dd — uli
u - 88 — 88
u t uu — ttg
u t gg — tt
u t gg — ttg
2—-3 u,d = dd — ulg
u - 88 — 888
u,d - ud - Wtgg
u,d — un — WTW-g
u t ut — ttH
t gg — ttH




Memory usage of the two-loop algorithm

virtual-virtual memory [MB] real-virtual [MB]
hard process segment-by-segment ‘ diagram-by-diagram || coefficients ‘ full
ete” —efe 18 8 6 23
ete” — ete™y 154 25 22 54
gg — uu 75 31 10 26
gg — tt 94 35 15 34
gg — ttg 2000 441 152 213
ud — Whgg 563 143 54 90
uo — WTW-g 264 67 36 67
ut — ttH 82 28 14 40
gg — ttH 604 145 50 90
ul — ttg 323 83 41 74
g8 — g8 271 94 41 b5
dd — ui 18 10 9 20
dd — ulig 288 85 39 68
gg — ggg 6299 1597 623 683




Implementation of Renormalization, Rational Terms

Example (from arXiv:2001.11388v3) :

2 K
.2 uv _po wp vo no _vp o (s)
~ie" (g"g" + """ +8"78"") (E ORy 4y
— \/_/
tensor structure LAl rational
counterterms

where k=1,2 is the loop order.

For NNLO need to implement:
= universal Feynman rules for new tensor structures

= new rational counterterms



Tensor Integrals

At NNLO require:
= One-loop tensor integrals

= One-loop diagrams with counterterm insertions: up to O(¢), new
topolgies due to squared propagator,
e. Q fd_ 9 la — [mipr

g q1D0D0D1D2 :

= Solution for 671 o §° integrals, stemming from resotration of
(D — 4)-dimensional numerator parts.

= Integrals for reducible double-virtual, virtual, real-virtual and
loop-squared diagrams available in public OpenLoops.

= Two-loop tensor integrals

= irreducible double-virtual diagrams:

qulqum i ql()qgl...gs_ = [[RSTFASTE
D(g) DO (a2) DO)(as) B——(q1+92)
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