 Science Foundation

Status of OpenLoops at Two Loops

Natalie Schär

27. January 2023
in collaboration with
S. Pozzorini and M. F. Zoller
based on
JHEP05(2022)161 (arXiv:2201.11615)

Theory Predictions in Particle Physics

> In particle theory observables are computed by Monte Carlo Tools (e.g.
> SHERPA [Gleisberg, Hoeche, Krauss, Schonherr, Schumann, Siegert et al.], POWHEG [Alioli, Nason, Oleari, Re], HELAC-NLO [Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Papadopoulos et al.], MADGRAPH [Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer et al., Herwig++ [Bellm, Gieseke, Grellscheid, Plätzer, Rauch], etc.)
> \rightarrow calculation factorizes into various perturbative and non-perturbative components
> \rightarrow development and implementation of each component involves highly complex methods and algorithms

Components include:

- PDFs
- hard scattering process
- parton showers
- hadronization

OpenLoops

- OpenLoops is a numerical tool providing hard scattering amplitudes to Monte Carlo simulations.
- All components to NLO fully automated in OpenLoops for QCD and EW corrections to the SM.

OpenLoops constructs helicity and color summed scattering probability densities $\mathcal{w}_{L L}=\sum_{h} \sum_{\text {col }}\left|\overline{\mathcal{M}}_{L}(h)\right|^{2}$ for $L=0,1$ and $\mathcal{W}_{0 L}=\sum_{h} \sum_{\text {col }} 2 \operatorname{Re}\left[\overline{\mathcal{M}}_{L}(h) \overline{\mathcal{M}}_{0}^{*}(h)\right]$ for $L=1$ from L-loop matrix elements $\overline{\mathcal{M}}_{L}$.
Example:

$$
\mathcal{W}_{01}=\sum_{h} \sum_{\text {col }} 2 \operatorname{Re}\left[\bigcirc^{*} \leqslant \operatorname{tamem}^{*}+\ldots\right]
$$

Goal: automation at NNLO

Automation at NNLO

The public OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller] already delivers some components to NNLO:

- OpenLoops is already being used in NNLO calculations in particular for the real virtual components in e.g. MATRIX [Grazzini, Kallweit, Wiesemann], NNLOJET [Gehrmann-De Ridder, Gehrmann, Glover, Huss, Walker], McMule [Banerjee, Engel, Signer, Ulrich].
- NNLO in OpenLoops: require double virtual

Components to NLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim \rightarrow OpenLoops algorithm [van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]
- Renormalization, restoration of (D-4)-dim numerator part by rational counterterms \rightarrow $\mathrm{RM}_{1, \Gamma}=\mathcal{M}_{1, \Gamma}+\mathcal{M}_{0,1, \Gamma}^{(\mathrm{CT})} \quad$ [Ossola, Papadopoulos, Pittau]
- Reduction and evaluation of tensor integrals \rightarrow On-the-fly reduction [Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

Components to NNLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim \rightarrow fully general algorithm, implementation complete for QED and QCD
- Renormalization, restoration of (D-4)-dim numerator part by rational counterterms \rightarrow $\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\mathcal{M}_{1,1, \Gamma}^{(C T)}+\mathcal{M}_{0,2, \Gamma}^{(C T)} \quad$ [Lang, Pozzorini, Zhang, Zoller] currently working on implementation and validation
- Reduction and evaluation of tensor integrals \rightarrow small in-house library for test purposes, general solution: future projects

Outline

Tree Level Algorithm
One Loop Algorithm
Two Loop AlgorithmReducible DiagramsIrreducible DiagramsTimings and Accuracy
Implementation of Rational Terms
Tensor Integral Reduction Tool
Summary

Tree Level Algorithm

OpenLoops Tree Level Algorithm: Example

> input: external wavefunctions
> $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$

OpenLoops Tree Level Algorithm: Example

Combine w_{4}, w_{5} into subtree w_{6} :

$$
w_{6}^{\gamma}=\left[-v^{\gamma}\right]_{\alpha \beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta}
$$

$\left[-v^{2}\right]_{\alpha \beta}^{\gamma}=$ vertex + propagator, universal process-independent Feynman rule

OpenLoops Tree Level Algorithm: Example

Add next external leg:

$$
\begin{aligned}
& w_{6}^{\gamma}=\left[v^{\gamma}\right]_{\alpha \beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta} \\
& w_{7}^{\gamma}=[\text { m }]_{\alpha \beta}^{\gamma} w_{3}^{\alpha} w_{6}^{\beta}
\end{aligned}
$$

$$
\begin{gathered}
{[\text { universal process-independent }} \\
\text { Feynman rule }
\end{gathered}
$$

OpenLoops Tree Level Algorithm: Example

same on the other side:

$$
\begin{aligned}
& w_{6}^{\gamma}=[\overbrace{\alpha \beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta} \\
& w_{7}^{\gamma}=[\cdots<]_{\alpha \beta}^{\gamma} w_{3}^{\alpha} w_{6}^{\beta} \\
& \widetilde{w}_{8}^{\gamma}=\left[\cdots \xi^{2}\right]_{\alpha \beta}^{\gamma} w_{1}^{\alpha} w_{2}^{\beta}
\end{aligned}
$$

[wo $\%]_{\alpha \beta}^{\gamma}=$ vertex, universal process-independent Feynman rule

OpenLoops Tree Level Algorithm: Example

combine to full diagram:

$$
\begin{aligned}
& w_{6}^{\gamma}=[\underbrace{\vartheta}]_{\alpha \beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta} \\
& w_{7}^{\gamma}=[\text { w. }]_{\alpha \beta}^{\gamma} w_{3}^{\alpha} w_{6}^{\beta} \\
& \widetilde{w}_{8}^{\gamma}=[\text { wig }]_{\alpha \beta}^{\gamma} w_{1}^{\alpha} w_{2}^{\beta} \\
& \mathcal{M}_{0}=[\text { weu }]_{\alpha \beta} w_{7}^{\alpha} w_{8}^{\beta}
\end{aligned}
$$

$$
\begin{gathered}
{[\text { une }]_{\alpha \beta}=} \\
\text { universal process-independent } \\
\text { Feynman rule }
\end{gathered}
$$

OpenLoops Tree Level Algorithm

Recursively construct subtrees starting from external wavefunctions:

$$
\begin{aligned}
w_{a}^{\sigma_{a}}\left(k_{a}, h_{a}\right) & =\underbrace{\frac{X_{\sigma_{b} \sigma_{c}}^{\sigma_{a}}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}}}_{\text {model-dependent }} \underbrace{w_{b}^{\sigma_{b}}\left(k_{b}, h_{b}\right) w_{c}^{\sigma_{c}}\left(k_{c}, h_{c}\right)}_{\text {process-dependent }}
\end{aligned}
$$

Then contract into full diagram:

$$
\mathcal{M}_{0, \Gamma}(h)=: w_{a}: w_{b}:=C_{0, \Gamma} \cdot w_{a}^{\sigma_{a}}\left(k_{a}, h_{a}\right) \delta_{\sigma_{a} \sigma_{b}} \widetilde{w}_{b}^{\sigma_{b}}\left(k_{b}, h_{b}\right)
$$

- diagrams constructed using universal Feynman rules
- identical subtrees are recycled in multiple tree and loop diagrams

One Loop Algorithm

OpenLoops Algorithm at One Loop

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim \rightarrow OpenLoops algorithm [van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]
- Renormalization, restoration of (D-4)-dim numerator part by rational counterterms \rightarrow $\hat{R}_{1, \Gamma}=\mathcal{M}_{1, \Gamma}+\mathcal{M}_{0,1, \Gamma}^{(C T)}$ [Ossola, Papadopoulos, Pittau]
- Reduction and evaluation of tensor integrals \rightarrow On-the-fly reduction [Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

One Loop Algorithm: Example

External subtrees constructed in tree level algorithm (together with tree diagrams):
$w_{2}, w_{3} \rightarrow w_{6}$

One Loop Algorithm: Example

> Open Loop:

Diagram factorizes into chain of segments: $\mathcal{N}=S_{1} \cdots S_{N}$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Construct first segment S_{1} attaching the external subtree w_{1}.

$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Add second segment attaching the subtree w_{6}.

$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right) \\
& \mathcal{N}_{2}=\mathcal{N}_{1} \cdot S_{2}\left(w_{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Add third segment.

$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right) \\
& \mathcal{N}_{2}=\mathcal{N}_{1} \cdot S_{2}\left(w_{6}\right) \\
& \mathcal{N}_{3}=\mathcal{N}_{2} \cdot S_{3}\left(w_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Add last segment.

$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right) \\
& \mathcal{N}_{2}=\mathcal{N}_{1} \cdot S_{2}\left(w_{6}\right) \\
& \mathcal{N}_{3}=\mathcal{N}_{2} \cdot S_{3}\left(w_{4}\right) \\
& \mathcal{N}_{4}=\mathcal{N}_{3} \cdot S_{4}\left(w_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Close the loop (contract open

 Lorentz/spinor indices).$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right) \\
& \mathcal{N}_{2}=\mathcal{N}_{1} \cdot S_{2}\left(w_{6}\right) \\
& \mathcal{N}_{3}=\mathcal{N}_{2} \cdot S_{3}\left(w_{4}\right) \\
& \mathcal{N}_{4}=\mathcal{N}_{3} \cdot S_{4}\left(w_{5}\right)=\mathcal{N}_{4}{ }_{\beta_{0}}^{\beta_{N}} \\
& \mathcal{N}=\operatorname{Tr}\left(\mathcal{N}_{4}{ }_{\beta_{0}}{ }^{\beta_{N}}\right)
\end{aligned}
$$

OpenLoops One Loop Algorithm

One Loop Amplitude:

$$
\mathcal{M}_{1, \Gamma}=c_{1, \Gamma} \int \mathrm{~d} \bar{q} \frac{\operatorname{Tr}[\mathcal{N}(q)]}{D_{0} D_{1} \cdots D_{N_{1}-1}}=
$$

Diagram is cut open resulting in a chain, which factorizes into segments:

Chain is constructed recursively, recursion step: $\mathcal{N}_{n}=\mathcal{N}_{n-1} \cdot S_{n}$.

Segment $=$ vertex + propagator + subtree (s)

$$
\left[S_{a}(q)\right]_{\beta_{a-1}}^{\beta_{a}}=\underbrace{\frac{w_{a}}{\downarrow_{a}}}_{\beta_{a-1}}{ }_{D_{a}}=\left[Y_{\sigma_{a}}+Z_{\sigma_{a}, \nu} q^{\nu}\right]_{\beta_{a-1}}^{\beta_{a}} w_{a}^{\sigma_{a}}\left(k_{a}\right)
$$

Exploit factorization to construct 11 diagrams from universal process-independent building blocks.

Two Loop Algorithm

OpenLoops Algorithm at Two Loops

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim
- Renormalization, restoration of (D-4)-dim numerator part by rational counterterms $\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\mathcal{M}_{1,1, \Gamma}^{(\mathrm{CT})}+\mathcal{M}_{0,2, \Gamma}^{(\mathrm{CT})}$ [Lang, Pozzorini, Zhang, Zoller]
- Reduction and evaluation of tensor integrals

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible (D^{-}) and reducible (
Exploit numerator factorization:

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible ($D^{-<}$) and reducible (∞, ∞) diagrams.

Exploit numerator factorization:

1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.

$$
\mathcal{N}_{n}^{(1)}=\mathcal{N}_{n-1}^{(1)} s_{n}^{(1)}, \quad \mathcal{N}_{0}^{(1)}=\mathbb{1}, \quad\left[\mathcal{M}^{(1)}\right]^{\alpha_{1}}=\int \mathrm{d} \bar{q}_{1} \frac{\operatorname{Tr}\left[\mathcal{N}_{N_{1}}^{(1)}\left(q_{1}\right)\right]^{\alpha_{1}}}{\mathcal{D}^{(1)}\left(\bar{q}_{1}\right)}
$$

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible ($\Phi^{-<}$) and reducible ($\infty^{-\infty}, \infty$) diagrams.

Exploit numerator factorization:

1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.
2. Connect bridge using tree algorithm
\rightarrow treat first loop as external "subtree".

$$
P_{n}=P_{n-1} S_{n}^{(B)}\left(w_{n}^{(B)}\right), \quad w_{0}^{(B)}=\left[\mathcal{M}^{(1)}\right]^{\alpha_{1}}, \quad P_{-1}=\mathbb{1}
$$

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible ($\left(D^{-}\right)$and reducible ($(\infty-\infty)$ diagrams.

Exploit numerator factorization:

1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.
2. Connect bridge using tree algorithm
\rightarrow treat first loop as external "subtree".
3. Construct chain 2 using extension of one-loop algorithm
\rightarrow treat first loop + bridge as external "subtree".

$$
\mathcal{N}_{n}^{(2)}=\mathcal{N}_{n-1} S_{n}^{(2)}\left(w_{n}^{(2)}\right), \quad w_{1}^{(2)}=\left[\mathcal{M}^{(1)}\right]^{\alpha_{1}} P_{\alpha_{1} \alpha_{2}}, \quad \mathcal{N}_{0}^{(2)}=\mathbb{1}
$$

Two Loop Algorithm: Irreducible Diagrams

Two-loop numerator factorizes:

$$
\begin{gathered}
\mathcal{N}\left(q_{1}, q_{2}\right)=\left.\mathcal{N}^{(1)}\left(q_{1}\right) \mathcal{N}^{(2)}\left(q_{2}\right) \mathcal{N}^{(3)}\left(q_{3}\right) \nu_{0}\left(q 1, q_{2}\right) \nu_{1}(q 1, q 2)\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)} \\
\mathcal{N}^{(i)}\left(q_{i}\right)=s_{0}^{(i)}\left(q_{i}\right) s_{1}^{(i)}\left(q_{i}\right) \cdots s_{N_{i}-1}^{(i)}\left(q_{i}\right)
\end{gathered}
$$

Building blocks $\mathcal{K}_{\mathbf{n}}$ for algorithm:

- $\mathcal{N}^{(1)}, \mathcal{N}^{(2)}, \mathcal{N}^{(3)} 3$ chains
- $s_{a}^{(1)}, s_{a}^{(2)}, s_{a}^{(3)}$ their segments
- ν_{0}, ν_{1} vertices connecting chains
- $u_{0}=2 \sum_{\text {col }} \subset \mathcal{M}_{0}^{*}$ Born and color
\Rightarrow Construct Born-loop interference recursively from building blocks:

$$
\mathcal{U}_{n}=\mathcal{U}_{n-1} \mathcal{K}_{n}, \quad \mathcal{K}_{n} \in\left\{\mathcal{U}_{0}, \mathcal{N}^{(i)}, s_{a}^{(i)}, \mathcal{V}_{j}\right\}
$$

Factorization results in freedom of choice for two-loop algorithm.

- CPU cost ~ \# multiplications
- determine most efficient variant through cost simulation

Two Loop Algorithm: Irreducible Diagrams

6 8 6 8 8

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.

$$
\mathcal{N}_{n}^{(3)}\left(q_{3}\right)=\mathcal{N}_{n-1}^{(3)} S_{n}^{(3)}, \quad \mathcal{N}_{0}^{(3)}=\mathbb{1}
$$

Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \mathcal{C} \mathcal{M}_{0}^{*}(h)$ as the initial condition.

$$
\mathcal{U}_{n}^{(1)}=\mathcal{U}_{n-1}^{(1)} s_{n}^{(1)}, \quad \mathcal{U}_{0}^{(1)}=2 \sum_{c o l} C \mathcal{M}_{0}^{*}
$$

Two Loop Algorithm: Irreducible Diagrams

\# active helicities in $\mathcal{U}_{0}^{(1)}=64$
6
6
En
6
6

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex.

$$
\mathcal{U}_{n}^{(1)}\left(h_{n+1}, h_{n+2}, \ldots\right)=\sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}\left(h_{n}, h_{n+1}, h_{n+2} \ldots\right) S_{n}^{(1)}\left(h_{n}\right), \quad \mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}^{(1)}\left(h_{1}, h_{2}, \ldots, h_{\left.N_{1}+N_{2}+N_{3}\right)}\right)
$$

Two Loop Algorithm: Irreducible Diagrams

\# active helicities in $\mathcal{U}_{1}^{(1)}=32$

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{\text {col }} C \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex.

$$
\mathcal{U}_{n}^{(1)}\left(h_{n+1}, h_{n+2}, \ldots\right)=\sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}\left(h_{n}, h_{n+1}, h_{n+2} \ldots\right) S_{n}^{(1)}\left(h_{n}\right), \quad \mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}^{(1)}\left(h_{1}, h_{2}, \ldots, h_{\left.N_{1}+N_{2}+N_{3}\right)}\right.
$$

Two Loop Algorithm: Irreducible Diagrams

\# active helicities in $\mathcal{U}_{2}^{(1)}=16$
6
E
En
6
6

$$
=8 \times 2
$$

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex.

$$
\mathcal{U}_{n}^{(1)}\left(h_{n+1}, h_{n+2}, \ldots\right)=\sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}\left(h_{n}, h_{n+1}, h_{n+2} \ldots\right) S_{n}^{(1)}\left(h_{n}\right), \quad \mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}^{(1)}\left(h_{1}, h_{2}, \ldots, h_{\left.N_{1}+N_{2}+N_{3}\right)}\right)
$$

Two Loop Algorithm: Irreducible Diagrams

\# active helicities in $\mathcal{U}_{3}^{(1)}=8$

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{\text {col }} C \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex. Large \# of helicities summed in this step (one-loop complexity).

$$
\mathcal{U}_{n}^{(1)}\left(h_{n+1}, h_{n+2}, \ldots\right)=\sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}\left(h_{n}, h_{n+1}, h_{n+2} \ldots\right) S_{n}^{(1)}\left(h_{n}\right), \quad \mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}^{(1)}\left(h_{1}, h_{2}, \ldots, h_{\left.N_{1}+N_{2}+N_{3}\right)}\right)
$$

Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{\text {col }} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex. Large \# of helicities summed in this step (one-loop complexity).
3. Attach $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ first to ν_{1}, then to ν_{0}, sum helicities of $\mathcal{N}^{(3)}\left(q_{3}\right), \nu_{1}, \nu_{0}$.

$$
\left.\left[\mathcal{U}^{(13)]}{ }_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}}=\left[\mathcal{U}^{(1)}\right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}}\left[\mathcal{N}^{(3)}{ }_{\beta_{0}^{(3)}}^{\substack{(3)}}\left[\nu_{0}^{((q 1)}, q 2\right)\right]^{(1)}\right]_{0}^{(1)} \beta_{0}^{(2)} \beta_{0}^{(3)}\left[\nu_{1}(q 1, q 2)\right]_{\beta_{N_{1}}^{(1)} \beta_{N_{2}}^{(2)} \beta_{N_{3}}^{(3)}}\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}
$$

Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex. Large \# of helicities summed in this step (one-loop complexity).
3. Attach $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ first to $\mathcal{\nu}_{1}$, then to $\mathcal{\nu}_{0}$, sum helicities of $\mathcal{N}^{(3)}\left(q_{3}\right), \nu_{1}, \mathcal{\nu}_{0}$.
4. Attach $\mathcal{N}^{(2)}\left(q_{2}\right)$ segments to previously constructed object, sum helicities on-the-fly.

$$
\mathcal{U}_{n}^{(123)}=\mathcal{U}_{(n-1)}^{(123)} s_{n}^{(2)}, \quad \mathcal{U}_{0}^{(123)}=\mathcal{U}^{(13)}=\mathcal{U}^{(1)}\left(q_{1}\right) \mathcal{N}^{(3)}\left(q_{3}\right) \mathcal{V}_{1}(q 1, q 2) \mathcal{V}_{0}(q 1, q 2)
$$

Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex. Large \# of helicities summed in this step (one-loop complexity).
3. Attach $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ first to $\mathcal{\nu}_{1}$, then to $\mathcal{\nu}_{0}$, sum helicities of $\mathcal{N}^{(3)}\left(q_{3}\right), \nu_{1}, \mathcal{\nu}_{0}$.
4. Attach $\mathcal{N}^{(2)}\left(q_{2}\right)$ segments to previously constructed object, sum helicities on-the-fly.

Completely general and highly efficient algorithm. Fully implemented for QED and QCD corrections to the SM.

Numerical Stability

Validate and measure numerical stability of two-loop algorithm without computing tensor integrals using pseudotree test.

- Cut two propagators of two-loop diagram
- Insert random wavefunctions $e_{1}, e_{2}, e_{3}, e_{4}$ saturating indices
- Set q_{1}, q_{2} to random constant values, contract tensor coefficients $\mathcal{N}_{\mu_{1} \ldots \mu_{r} \nu_{1} \ldots \nu_{s}}$ with fixed-value tensor integrand $\frac{q_{1}^{\mu_{1}} \ldots q_{1}^{\mu_{r}} q_{2}^{\nu_{1}} \ldots q_{1}^{\nu_{s}}}{\mathcal{D}\left(q_{1}, q_{2}\right)}$
- Compare to computation with well-tested tree level algorithm

Typical accuracy around 10^{-15} in double (DP) and 10^{-30} in quad (QP) precision, always much better than 10^{-17} in QP \Rightarrow Establish QP as benchmark for DP

Numerical Stability: Irreducible Diagrams

Numerical stability of scattering probability density $\mathcal{W}_{02}^{(2 L, p r)}$ in double ($\mathrm{pr}=\mathrm{DP}$) vs quad ($\mathrm{pr}=\mathrm{QP}$) precision in pseudotree mode.

$$
\mathcal{A}_{\mathrm{DP}}=\log _{10}\left(\frac{\left|\mathcal{W}_{02}^{(2 \mathrm{~L}, \mathrm{DP})}-\mathcal{W}_{02}^{(2 \mathrm{~L}, \mathrm{QP})}\right|}{\operatorname{Min}\left(\left|\mathcal{W}_{02}^{(2 \mathrm{~L}, \mathrm{DP})}\right|,\left|\mathcal{W}_{02}^{(2 \mathrm{~L}, \mathrm{QP})}\right|\right)}\right)
$$

The plot shows the fraction of points with $\mathcal{A}_{\mathrm{DP}}>\mathcal{A}_{\text {min }}$ for 10^{5} uniform random points.
Excellent numerical stability. Essential for full calculation, tensor integrals will be main source of instabilities.

Efficiency: Irreducible Diagrams

Construction of tensor coefficients for QED, QCD and SM (NNLO QCD) processes
(single intel i7-6600U, 2.6 GHz, 16GB RAM, 1000 points)

Strong CPU performance, comparable to real-virtual corrections in OpenLoops.

Implementation of Rational Terms

Renormalization and Rational Terms at NNLO

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim
- Renormalization, restoration of (D-4)-dim numerator part by rational counterterms $\mathrm{R}_{\mathcal{M}_{2, \Gamma}}=\mathcal{M}_{2, \Gamma}+\mathcal{M}_{1,1, \Gamma}^{(\mathrm{CT})}+\mathcal{M}_{0,2, \Gamma}^{(\mathrm{CT})}$ [Lang, Pozzorini, Zhang, Zoller]
- Reduction and evaluation of tensor integrals

One-loop rational terms

Amputated one-loop diagram γ (bar denotes quantities in \mathbf{D} dimensions):

$$
\begin{gathered}
\overline{\mathcal{M}}_{1, \gamma}=C_{1, \gamma} \int \mathrm{~d} \bar{q}_{1} \frac{\overline{\mathcal{N}}\left(q_{1}\right)}{\overline{\mathcal{D}}\left(\bar{q}_{1}\right)}=C_{1, \gamma} \int \mathrm{~d} \bar{q}_{1} \frac{\overbrace{\mathcal{N}\left(q_{1}\right)}^{4-\mathrm{dim}}+\overbrace{\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)}^{(\mathrm{D}-4) \text {-dim }}}{\mathcal{D}\left(\bar{q}_{1}\right)}=\overbrace{D_{1}\left(q_{1}\right.}^{D_{N-1}} \underbrace{p_{2}}_{D_{1}} \\
\Rightarrow \delta \mathcal{R}_{1, \gamma}=C_{1, \gamma} \int \mathrm{~d} \bar{q}_{1} \frac{\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)}{\mathcal{D}\left(\bar{q}_{1}\right)}
\end{gathered}
$$

The ε-dim numerator parts $\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)=\overline{\mathcal{N}}\left(\bar{q}_{1}\right)-\mathcal{N}\left(q_{1}\right)$ contribute only via interaction with $\frac{1}{\varepsilon}$ UV poles
\Rightarrow Can be restored through rational counterterm $\delta \mathcal{R}_{1, \gamma}$ [Ossola, Papadopoulos, Pittau]

Finite set of process-independent rational terms in renormalisable models.
No rational terms of IR origin at one-loop [Bredenstein, Denner, Dittmaier, Pozzorini].

Two-loop rational terms

Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, Zoller]

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}(\underbrace{\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}}_{\begin{array}{c}
\text { subtract } \\
\text { subdivergences }
\end{array}}+\underbrace{\delta \mathcal{R}_{1, \gamma}}_{\begin{array}{c}
\text { restore } \tilde{\mathcal{N}} \text {-terms } \\
\text { from subdiagrams }
\end{array}}) \cdot \mathcal{M}_{1, \Gamma / \gamma}+(\underbrace{\delta Z_{2, \Gamma}}_{\begin{array}{c}
\text { subtract remaining } \\
\text { local divergence }
\end{array}}+\underbrace{\delta \mathcal{R}_{2, \Gamma}}_{\begin{array}{c}
\text { restore remaining } \\
\tilde{\mathcal{N}} \text {-term }
\end{array}})
$$

Example:

- Divergences from subdiagrams γ and remaining local one subtracted by usual UV counterterms $\delta Z_{1, \gamma}, \delta Z_{2, \Gamma}$.
- Additional UV counterterm $\delta \tilde{Z}_{1, \gamma} \propto \frac{\left(\bar{q}_{1}-q_{1}\right)^{2}}{\varepsilon}$ for subdiagrams with mass dimension 2.
- $\delta \mathcal{R}_{2, \Gamma}$ is a two-loop rational term stemming from the interplay of $\tilde{\mathcal{N}}$ with UV poles, generally contains $1 / \varepsilon$ poles.
- Finite set of process-independent rational terms of UV origin.
- Available for QED and QCD corrections to the SM. [Lang, Pozzorini, Zhang, Zoller,2021]
- Rational terms of IR origin currently under investigation.

Implementation of Renormalization, Rational Terms at NNLO

Status:

- Implementation of new tree (e.g. Eseeof) and one-loop (e.g. Qu<) universal Feynman rules, complete
- Validation of new 11 tensor structures using pseudotree-test, complete
- Ongoing: Validation of implementation of two-loop rational terms, computation of first full amplitudes for simple processes \rightarrow require tensor integrals

Pole Cancellation Check

\rightarrow ensure UV poles cancel
$\mathbf{R} \overline{\mathcal{M}}_{2, r}=\left[m<\hat{\}}+m \ll\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right)+m \delta\left(\delta Z_{2, \Gamma}+\delta \mathcal{R}_{2, r}\right)\right]_{\substack{\text { dim } \\ \text { numerad }}}$

- nontrivial, in general $\delta \mathcal{R}_{2, \Gamma}$ contains $\frac{1}{\varepsilon}$ poles
- intermediate result in full calculation

Implementation of Renormalization, Rational Terms at NNLO

Status:

- Implementation of new tree (e.g. Eserof) and one-loop (e.g. Gu<) universal Feynman rules, complete
- Validation of new 1 tensor structures using pseudotree-test, complete
- Ongoing: Validation of implementation of two-loop rational terms, computation of first full amplitudes for simple processes \rightarrow require tensor integrals

Pole Cancellation Check

\rightarrow ensure UV poles cancel
$\mathbf{R} \overline{\mathcal{M}}_{2, r}=\left[m<\hat{\}}+m<\bar{\delta}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right)+m \delta\left(\delta Z_{2, \Gamma}+\delta \mathcal{R}_{2, r}\right)\right]_{4 \text { dim }}$

- nontrivial, in general $\delta \mathcal{R}_{2, \Gamma}$ contains $\frac{1}{\varepsilon}$ poles
- intermediate result in full calculation

Implementation of Renormalization, Rational Terms at NNLO

Status:

- Implementation of new tree (e.g. Emero) and one-loop (e.g. Gu<) universal Feynman rules, complete
- Validation of new 1 tensor structures using pseudotree-test, complete
- Ongoing: Validation of implementation of two-loop rational terms, computation of first full amplitudes for simple processes \rightarrow require tensor integrals

Pole Cancellation Check

\rightarrow ensure UV poles cancel
$\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\left[m<\hat{\xi}+m<\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right)+m \alpha\left(\delta Z_{2, \Gamma}+\delta \mathcal{R}_{2, \Gamma}\right)\right]_{\substack{4 \text { dim } \\ \text { numer }}}$

- nontrivial, in general $\delta \mathcal{R}_{2, \Gamma}$ contains $\frac{1}{\varepsilon}$ poles
- intermediate result in full calculation

Implementation of Renormalization, Rational Terms at NNLO

Status:

- Implementation of new tree (e.g. Emero) and one-loop (e.g. Gu<) universal Feynman rules, complete
- Validation of new 1 tensor structures using pseudotree-test, complete
- Ongoing: Validation of implementation of two-loop rational terms, computation of first full amplitudes for simple processes \rightarrow require tensor integrals

Pole Cancellation Check
\rightarrow ensure UV poles cancel
$\mathbf{R} \overline{\mathcal{M}}_{2, r}=\left[m<\hat{\}}+m \ll\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right)+m \delta\left(\delta Z_{2, \Gamma}+\delta \mathcal{R}_{2, r}\right)\right]_{\substack{\text { dim } \\ \text { numerad }}}$

- nontrivial, in general $\delta \mathcal{R}_{2, \Gamma}$ contains $\frac{1}{\varepsilon}$ poles
- intermediate result in full calculation

Tensor Integral Reduction Tool

Tensor Integral Reduction Tool

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

$$
=\underbrace{C_{2}, \Gamma}_{\text {color }} \int \mathrm{d} \bar{q}_{1} \int \mathrm{~d} \bar{q}_{2} \underbrace{\frac{\mathcal{N}\left(q_{1}, q_{2}\right)}{\mathcal{D}\left(\bar{q}_{1}, \bar{q}_{2}\right)}}_{\begin{array}{c}
\text { 4-dim numerator, } \\
\text { (D-dim denominator) }
\end{array}}=C_{2, \Gamma} \sum_{r, s} \underbrace{\mathcal{N}_{\mu_{1}} \cdots \mu_{r} \nu_{1} \cdots \nu_{s}}_{\text {tensor coefficient }} \underbrace{\int \mathrm{d} \bar{q}_{1} \int \mathrm{~d}_{2} \bar{q}_{2} \frac{q_{1}^{\mu_{1}} \cdots q_{1}^{\mu_{r}} q_{2}^{\nu_{1}} \cdots q_{2}^{\nu_{s}}}{\mathcal{D}\left(\bar{q}_{1}, \bar{q}_{2}\right)}}_{\text {tensor integral }}
$$

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim
- Renormalization, restoration of (D-4)-dim numerator part by rational counterterms $\mathrm{R}_{\overline{\mathcal{M}}_{2, \Gamma}}=\mathcal{M}_{2, \Gamma}+\mathcal{M}_{1,1, \Gamma}^{(\mathrm{CT})}+\mathcal{M}_{0,2, \Gamma}^{(\mathrm{CT})}$ [Lang, Pozzorini, Zhang, Zoller]
- Reduction and evaluation of tensor integrals

Tensor Integral Reduction Tool

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

$$
=\underbrace{C_{2}, \Gamma}_{\text {color }} \int \mathrm{d} \bar{q}_{1} \int \mathrm{~d} \bar{q}_{2} \underbrace{\frac{\mathcal{N}\left(q_{1}, q_{2}\right)}{\mathcal{D}\left(\bar{q}_{1}, \bar{q}_{2}\right)}}_{\begin{array}{c}
\text { 4-dim numerator, } \\
\text { (D-dim denominator) }
\end{array}}=C_{2, \Gamma} \sum_{r, s} \underbrace{\mathcal{N}_{\mu_{1}} \cdots \mu_{r} \nu_{1} \cdots \nu_{s}}_{\text {tensor coefficient }} \underbrace{\int \mathrm{d} \bar{q}_{1} \int \mathrm{~d}_{2} \bar{q}_{2} \frac{q_{1}^{\mu_{1}} \cdots q_{1}^{\mu_{r}} q_{2}^{\nu_{1}} \cdots q_{2}^{\nu_{s}}}{\mathcal{D}\left(\bar{q}_{1}, \bar{q}_{2}\right)}}_{\text {tensor integral }}
$$

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim
- Renormalization, restoration of (D-4)-dim numerator part by rational counterterms $\mathbf{R M}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\mathcal{M}_{1,1, \Gamma}^{(C T)}+\mathcal{M}_{0,2, \Gamma}^{(C T)} \quad$ [Lang, Pozzorini, Zhang, Zoller]
- Reduction and evaluation of tensor integrals \rightarrow wide range of methods and tools possible: analytical and numerical, in-house and external, and mixtures thereof

Tensor Integral Reduction Tool

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

$$
=\underbrace{C_{2, \Gamma}}_{\text {color }} \int \mathrm{d} \bar{q}_{1} \int \mathrm{~d} \bar{q}_{2} \underbrace{\frac{\mathcal{N}\left(q_{1}, q_{2}\right)}{\mathcal{D}\left(\bar{q}_{1}, \bar{q}_{2}\right)}}_{\begin{array}{c}
\text { 4-dim numerator, } \\
\text { (D-dim denominator) }
\end{array}}=C_{2, \Gamma} \sum_{r, s} \underbrace{\mathcal{N}_{\mu_{1}} \cdots \mu_{r} \nu_{1} \cdots \nu_{s}}_{\text {tensor coefficient }} \underbrace{\int \mathrm{d} \bar{q}_{1} \int \mathrm{~d}_{2} \bar{q}_{2} \frac{q_{1}^{\mu_{1}} \cdots q_{1}^{\mu_{r}} q_{2}^{\nu_{1}} \cdots q_{s}^{\nu_{s}}}{\mathcal{D}\left(\bar{q}_{1}, \bar{q}_{2}\right)}}_{\text {tensor integral }}
$$

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim
- Renormalization, restoration of (D-4)-dim numerator part by rational counterterms $\mathrm{R}_{\mathcal{M}_{2, \Gamma}}=\mathcal{M}_{2, \Gamma}+\mathcal{M}_{1,1, \Gamma}^{(\mathrm{CT})}+\mathcal{M}_{0,2, \Gamma}^{(\mathrm{CT})}$ [Lang, Pozzorini, Zhang, Zoller]
- Reduction and evaluation of tensor integrals \rightarrow wide range of methods and tools possible: analytical and numerical, in-house and external, and mixtures thereof
Currently working on small in-house tensor integral library for test purposes, 2 and 3 point topologies with off-shell external legs and massless propagators.

Summary

Summary

New algorithm for two loop tensor coefficients:

- Fully general algorithm
- Excellent numerical stability
- Highly efficient, comparable to real virtual contribution
- Exploit factorization for ideal order of building blocks.
- Efficient treatment of helicities and ranks in loop momenta.
- Fully implemented for NNLO QED and QCD Corrections to SM

Current and future projects

- Implementation of two-loop UV and rational counterterms
- Tensor integrals (in-house framework, external tools or mixture thereof)

Backup

Tensor Integral Reduction Tool: Covariant Decomposition

Example: Rank 2 tensor integral, 2 independent external momenta $\mathbf{p}_{1}, \mathbf{p}_{2}$

$$
\begin{gathered}
I^{\mu \nu}=\int d \bar{q}_{1} d \bar{q}_{2} \frac{\bar{q}_{1}^{\mu} \bar{q}_{2}^{\nu}}{D_{1} \cdot D_{2} \cdot D_{3} \cdot D_{4} \cdot D_{5}} \\
D_{1}=\bar{q}_{1}^{2}, D_{2}=\left(\bar{q}_{1}+p_{1}\right)^{2}, D_{3}=\left(\bar{q}_{1}+p_{1}+p_{2}\right)^{2}, D_{4}=\bar{q}_{2}^{2}, D_{5}=\left(-\bar{q}_{1}-\bar{q}_{2}\right)^{2}
\end{gathered}
$$

Covariant decomposition, final tensor structure can only contain external momenta, metric tensors:

$$
I^{\mu \nu}=C_{1} p_{1}^{\mu} p_{1}^{\nu}+C_{2} p_{2}^{\mu} p_{2}^{\nu}+C_{3} g^{\mu \nu}+C_{4} p_{1}^{\mu} p_{2}^{\nu}+C_{5} p_{2}^{\mu} p_{1}^{\nu}
$$

Use projectors to determine coefficients $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$:

$$
\underbrace{\left(\begin{array}{l}
p_{1 \mu} p_{1 \nu} I^{\mu \nu} \\
p_{2}{ }_{\mu} p_{2} I^{\mu \nu} \\
g_{\mu \nu} \\
I^{\mu \nu} \\
p_{1 \mu} p_{2} I^{\mu \nu} \\
p_{2} p_{\nu} I^{\mu \nu}
\end{array}\right)}_{I=\text { scalar integrals }}=\underbrace{\left(\begin{array}{ccccc}
p_{1}^{4} & \left(p_{1} \cdot p_{2}\right)^{2} & p_{1}^{2} & p_{1}^{2} p_{1} \cdot p_{2} & p_{1}^{2} p_{1} \cdot p_{2} \\
\left(p_{1} \cdot p_{2}\right)^{2} & p_{2}^{2} & p_{2}^{4} & p_{2}^{2} p_{1} \cdot p_{2} & p_{2}^{2} p_{1} \cdot p_{2} \\
p_{1}^{2} & p_{2}^{2} & d & p_{1} \cdot p_{2} & p_{1} \cdot p_{2} \\
p_{1}^{2} p_{1} \cdot p_{2} & p_{2}^{2} p_{1} \cdot p_{2} & p_{1} \cdot p_{2} & p_{1}^{2} p_{2}^{2} & \left(p_{1} \cdot p_{2}\right)^{2} \\
p_{2}^{2} p_{1} \cdot p_{2} & p_{1}^{2} p_{1} \cdot p_{2} & p_{1} \cdot p_{2} & \left(p_{1} \cdot p_{2}\right)^{2} & p_{1}^{2} p_{2}^{2}
\end{array}\right)}_{M} \underbrace{\left(\begin{array}{c}
C_{1} \\
C_{2} \\
C_{3} \\
C_{4} \\
C_{5}
\end{array}\right)}_{C} \Rightarrow C=M^{-1} \cdot I .
$$

We have now related $I^{\mu \nu}$ to coefficients C depending only on scalar integrals I.
Our test library contains automated Mathematica implementation of this approach.
Challenge: inversion and simplification of M only feasible at low ranks in \bar{q}_{1}, \bar{q}_{2}.

Tensor Integral Reduction Tool: Interface to FIRE

Interface to FIRE [Smirnov, Chukharev] \rightarrow express scalar integrals in terms of $\boldsymbol{D}_{\boldsymbol{i}}$

Example:

$$
\begin{gathered}
I_{1}=p_{1 \mu} p_{1_{\nu}} I^{\mu \nu}=\int d \bar{q}_{1} d \bar{q}_{2} \frac{\left(p_{1} \cdot \bar{q}_{1}\right)\left(p_{1} \cdot \bar{q}_{2}\right)}{D_{1} \cdot D_{2} \cdot D_{3} \cdot D_{4} \cdot D_{5}} \\
D_{1}=\bar{q}_{1}^{2}, D_{2}=\left(\bar{q}_{1}+p_{1}\right)^{2}, D_{3}=\left(\bar{q}_{1}+p_{1}+p_{2}\right)^{2}, D_{4}=\bar{q}_{2}^{2}, D_{5}=\left(-\bar{q}_{1}-\bar{q}_{2}\right)^{2}
\end{gathered}
$$

Find $p_{1} \cdot q_{1}=\frac{1}{2}\left(D_{2}-D_{1}-p_{1}^{2}\right), \quad p_{1} \cdot q_{2}=\frac{1}{2}\left(D_{6}-D_{4}-p_{1}^{2}\right)$,
where we introduced an additional propagator $D_{6}=\left(\bar{q}_{2}+p_{1}\right)^{2}$ for $p_{1} \cdot q_{2}$.

$$
\iota_{1}=p_{1 \mu} p_{1_{\nu}} I^{\mu \nu}=\int d \bar{q}_{1} d \bar{q}_{2} \frac{\frac{1}{4}\left(D_{2}-D_{1}-p_{1}^{2}\right)\left(D_{6}-D_{4}-p_{1}^{2}\right)}{D_{1}^{1} \cdot D_{2}^{1} \cdot D_{3}^{1} \cdot D_{4}^{1} \cdot D_{5}^{1} \cdot D_{6}^{0}}
$$

\rightarrow Scalar integrals in I_{1} are now uniquely identified by exponents of $\left\{D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, D_{6}\right\}$
Example: $G[\{2,1,1,0,-1,0\}]=\int d \bar{q}_{1} d \bar{q}_{2} \frac{D_{5}}{D_{1}{ }^{2} \cdot D_{2} \cdot D_{3}}$
These expressions are now ready for reduction.
Interface to FIRE automated in our test library.
Remaining steps: ε expansion of coefficients, implementation of master integrals from literature or numerical evaluation thereof.

On-The-Fly Helicity Summation at NLO

Final result: $\mathcal{W}_{01}=\sum_{h} \sum_{\text {col }} 2 \operatorname{Re}\left[\overline{\mathcal{M}}_{1}(h) \overline{\mathcal{M}}_{0}^{*}(h)\right]$
Instead of $\mathcal{N}(q, h)=\prod s_{\mathcal{A}(q, h)}$, construct $\mathcal{U}(q)=\sum_{h}\left[2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)\right] \mathcal{N}(q, h)$
Perform on-the-fly helicity summation [Buccioni, Pozzorini, Zoller], for each diagram:

- Use Born-color interfernce $\mathcal{U}_{0}=2 \sum_{\text {col }} \mathcal{C} \mathcal{M}_{0}^{*}(h)$ as initial condition, begin the recursion with maximal helicities.
- Exploit factorization to sum helicities in each recursion step:

$$
\sum_{h} u_{0}(h) \mathcal{N}(q, h)=\sum_{h_{N}}\left[\cdots \sum_{h_{2}}\left[\sum_{h_{1}} u_{0}\left(h_{1}, h_{2}, \ldots\right) s_{1}\left(h_{1}\right)\right] s_{2}\left(h_{2}\right) \cdots\right] s_{N}\left(h_{N}\right)
$$

- (in renormalizable theories) each segment:
- increases rank by 1 (or 0)
- decreases total helicities by a factor of \# helicities of subtree in the segment

Minimal helicities with maximal rank, complexity is kept low in final recursion steps.

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment
$2 \times 2 \times 2 \times 2 \times \quad 2=\# h$

helicities $=32$,
rank=0

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment
helicities $=16$,
rank=1

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment

helicities $=4$,
rank=2

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment

helicities $=2$,
rank=3

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment

helicities $=1$,
rank=4

Symmetrization at One-Loop

OpenLoops uses symmetrized tensor coefficients:

$$
\sum_{r=0}^{R} \mathcal{N}_{\mu_{1} \cdots \mu_{r}} q^{\mu_{1}} \cdots q^{\mu_{r}}=\sum_{\substack{m_{n}=0 \\ m_{0}+m_{2}+t_{2} m_{0} \leq R}} \mathcal{N}_{n_{0} n_{1} n_{2} n_{3}}\left(q^{0}\right)^{n_{0}}\left(q^{1}\right)^{n_{1}}\left(q^{2}\right)^{n_{2}}\left(q^{3}\right)^{n_{3}}
$$

Example:

$$
=\mathcal{M}_{1}=\sum_{r=0}^{R} c_{1} \mathcal{N}_{\mu_{1} \ldots \mu_{r}} \int \mathrm{~d} q \frac{q^{\mu} \ldots q^{\mu_{r}}}{D_{0} D_{1} D_{2} D_{3}}
$$

\# components in \mathcal{N} for $R=4$

- without symmetrization: $\sum_{r=0}^{R} 4^{r}=341$
- with symmetrization: $\quad\binom{R+4}{R}=70$

Bookkeeping in numerical code:

Map $n_{0}, n_{1}, n_{2}, n_{3}$ onto one-dimensional array $\ell\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$:

$$
\ell\left(n_{0}, n_{1}, n_{2}, n_{3}\right)=\binom{3+n_{3}-1}{n_{3}-1}+\binom{2+n_{3}+n_{2}-1}{n_{3}+n_{2}-1}+\binom{1+n_{3}+n_{2}+n_{1}-1}{n_{3}+n_{2}+n_{1}-1}+n_{3}+n_{2}+n_{1}+n_{0}+1
$$

\rightarrow extension to two loops: use $\left(\ell_{1}, \ell_{2}\right)$ for coefficients related to (q_{1}, q_{2}).
Symmetrization greatly reduces number of operations required in numerator construction.

Symmetrization at One-Loop

OpenLoops uses symmetrized tensor coefficients:

$$
\sum_{r=0}^{R} \mathcal{N}_{\mu_{1} \cdots \mu_{r}} q^{\mu_{1}} \cdots q^{\mu_{r}}=\sum_{\substack{n_{1}=0 \\ n_{0}+n_{1}+n_{2}+n_{3} \leq R}} \mathcal{N}_{n_{0} n_{1} n_{2} n_{3}}\left(q^{0}\right)^{n_{0}}\left(q^{1}\right)^{n_{1}}\left(q^{2}\right)^{n_{2}}\left(q^{3}\right)^{n_{3}}=\mathcal{N}(\ell) q(\ell)
$$

Example:

$$
\mathcal{M}_{1}=\sum_{r=0}^{R} c_{1} \mathcal{N}_{\mu_{1} \ldots \mu_{r}} \int d q \frac{q^{\mu_{1} \ldots q^{\mu_{r}}}}{D_{0} D_{1} D_{2} D_{3}}
$$

\# components in \mathcal{N} for $R=4$

- without symmetrization: $\sum_{r=0}^{R} 4^{r}=341$
- with symmetrization: $\quad\binom{R+4}{R}=70$

Bookkeeping in numerical code:

Map $n_{0}, n_{1}, n_{2}, n_{3}$ onto one-dimensional array $\ell\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$:

$$
\ell\left(n_{0}, n_{1}, n_{2}, n_{3}\right)=\binom{3+n_{3}-1}{n_{3}-1}+\binom{2+n_{3}+n_{2}-1}{n_{3}+n_{2}-1}+\binom{1+n_{3}+n_{2}+n_{1}-1}{n_{3}+n_{2}+n_{1}-1}+n_{3}+n_{2}+n_{1}+n_{0}+1
$$

\rightarrow extension to two loops: use $\left(\ell_{1}, \ell_{2}\right)$ for coefficients related to (q_{1}, q_{2}).
Symmetrization greatly reduces number of operations required in numerator construction.

Symmetrization at One-Loop

OpenLoops uses symmetrized tensor coefficients:

$$
\sum_{r=0}^{R} \mathcal{N}_{\mu_{1} \cdots \mu_{r}} q^{\mu_{1}} \cdots q^{\mu_{r}}=\sum_{\substack{n_{1}=0 \\ n_{0}+n_{1}+n_{2}+n_{3} \leq R}} \mathcal{N}_{n_{0} n_{1} n_{2} n_{3}}\left(q^{0}\right)^{n_{0}}\left(q^{1}\right)^{n_{1}}\left(q^{2}\right)^{n_{2}}\left(q^{3}\right)^{n_{3}}=\mathcal{N}(\ell) q(\ell)
$$

Example:

$$
\int=\mathcal{M}_{1}=\sum_{r=0}^{R} c_{1} \mathcal{N}_{\mu_{1} \ldots \mu_{r}} \int d q \frac{q^{\mu_{1} \ldots q^{\mu_{r}}}}{D_{0} D_{1} D_{2} D_{3}}
$$

\# components in \mathcal{N} for $R=4$

- without symmetrization: $\sum_{r=0}^{R} 4^{r}=341$
- with symmetrization: $\quad\binom{R+4}{R}=70$

Bookkeeping in numerical code:

Map $n_{0}, n_{1}, n_{2}, n_{3}$ onto one-dimensional array $\ell\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$:

rank	0	1				2									
$q(\ell)$	1	q^{0}	q^{1}	q^{2}	q^{3}	$q^{0} q^{0}$	$q^{0} q^{1}$	$q^{0} q^{2}$	$q^{0} q^{3}$	$q^{1} q^{1}$	$q^{1} q^{2}$	$q^{1} q^{3}$	$q^{2} q^{2}$	$q^{2} q^{3}$	$q^{3} q^{3}$
ℓ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

\rightarrow extension to two loops: use $\left(\ell_{1}, \ell_{2}\right)$ for coefficients related to (q_{1}, q_{2}).
Symmetrization greatly reduces number of operations required in numerator construction.

Two Loop Algorithm: Naive Approach

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm.

$$
\left[\mathcal{N}^{(1)}\left(q_{1}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}}\left[\mathcal{N}^{(2)}\left(q_{2}\right)\right]_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}}\left[\mathcal{N}^{(3)}\left(q_{3}\right)\right]_{\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(3)}}
$$

Two Loop Algorithm: Naive Approach

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm.
2. combine with vertex \mathcal{V}_{1}, closing indices $\beta_{N_{1}}^{(1)}, \beta_{N_{2}}^{(2)}, \beta_{N_{3}}^{(3)}$

$$
\left[\mathcal{N}^{(1)}\left(q_{1}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}}\left[\mathcal{N}^{(2)}\left(q_{2}\right)\right]_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}}\left[\mathcal{N}^{(3)}\left(q_{3}\right)\right]_{\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(3)}}\left[\nu_{1}\left(q 1, q_{2}\right)\right]_{\beta_{N_{1}}^{(1)} \beta_{N_{2}}^{(2)} \beta_{N_{3}}^{(3)}}
$$

Two Loop Algorithm: Naive Approach

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm.
2. combine with vertex \mathcal{V}_{1}, closing indices $\beta_{N_{1}}^{(1)}, \beta_{N_{2}}^{(2)}, \beta_{N_{3}}^{(3)}$
3. combine with vertex \mathcal{V}_{0}, closing indices $\beta_{0}^{(1)}, \beta_{0}^{(2)}, \beta_{0}^{(3)}$

$$
\left[\mathcal{N}^{(1)}\left(q_{1}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}}\left[\mathcal{N}^{(2)}\left(q_{2}\right)\right]_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}}\left[\mathcal{N}^{(3)}\left(q_{3}\right)\right]_{\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(3)}}\left[\mathcal{V}_{1}\left(q 1, q_{2}\right)\right]_{\beta_{N_{1}}^{(1)} \beta_{N_{2}}^{(2)} \beta_{N_{3}}^{(3)}}\left[\mathcal{V}_{0}\left(q 1, q_{2}\right)\right]_{0}^{\beta_{0}^{(1)} \beta_{0}^{(2)} \beta_{0}^{(3)}}
$$

Two Loop Algorithm: Naive Approach

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm.
2. combine with vertex \mathcal{V}_{1}, closing indices $\beta_{N_{1}}^{(1)}, \beta_{N_{2}}^{(2)}, \beta_{N_{3}}^{(3)}$
3. combine with vertex \mathcal{V}_{0}, closing indices $\beta_{0}^{(1)}, \beta_{0}^{(2)}, \beta_{0}^{(3)}$
4. multiply Born-color interference, sum over helicities, map momenta

$$
\left.\sum_{h} \mathcal{U}_{0}(h)\left[\mathcal{N}^{(1)}\left(q_{1}, h\right)\right]\left[\mathcal{N}^{(2)}\left(q_{2}, h\right)\right]\left[\mathcal{N}^{(3)}\left(q_{3}, h\right)\right]\left[\mathcal{V}_{1}\left(q 1, q^{2}, h\right)\right]\left[\mathcal{V}_{0}\left(q 1, q^{2}, h\right)\right]\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}
$$

Two Loop Algorithm: Observations and Challenges

$$
\left.\sum_{h} u_{0}(h)\left[\mathcal{N}^{(1)}\left(q_{1}, h\right)\right]\left[\mathcal{N}^{(2)}\left(q_{2}, h\right)\right]\left[\mathcal{N}^{(3)}\left(q_{3}, h\right)\right]\left[\nu_{1}(q 1, q 2, h)\right]\left[\nu_{0}(q 1, q 2, h)\right]\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}
$$

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm
2. combine with vertex ν_{1}, closing indices $\beta_{N_{1}}^{(1)}, \beta_{N_{2}}^{(2)}, \beta_{N_{3}}^{(3)}$
3. combine with vertex \mathcal{V}_{0}, closing indices $\beta_{0}^{(1)}, \beta_{0}^{(2)}, \beta_{0}^{(3)}$
4. sum over helicities, map momenta, multiply Born-color interference

Observations:

- complexitiy of each step depends on ranks in q_{1}, q_{2} and helicities
- step 2, 3 are performed for 6, 3 open spinor/Lorentz indices
- step 2, 3 are performed at maximal ranks
- all steps are performed for all helicities

Very inefficient: most expensive steps performed for maximal number of components and helicities.

Helicity Bookkeeping

For a set of particles $\mathcal{E}=\{1,2, \ldots, N\}$ the helicity configurations are identified as:

$$
\lambda_{p}=\left\{\begin{array}{ll}
1,3 & \text { for fermions with helicity } s=-1 / 2,1 / 2 \\
1,2,3 & \text { for gauge bosons with } s=-1,0,1 \\
0 & \text { for scalars with } s=0 \text { or unpolarized particles }
\end{array} \quad \forall p \in \mathcal{E}\right.
$$

Each particle is assigned a base 4 helicity label

$$
\bar{h}_{p}=\lambda_{p} 4^{p-1}
$$

which can be used to define a similar numbering scheme for a set of particles:
$\mathcal{E}_{a}=\left\{p_{a_{1}}, \ldots, p_{a_{n}}\right\}$ has the helicity label,

$$
h_{a}=\sum_{p \in \mathcal{E}_{a}} \bar{h}_{p} .
$$

Merging

Example:

- After one dressing step subsequent dressing steps are identical.
- Topology (scalar propagators) is identical for both diagrams.
- Diagrams can be merged.

For diagrams A, B with identical segments after n dressing steps (exploit factorization):

$$
\begin{aligned}
\mathcal{U}_{A, B} & =\mathcal{U}_{0} \operatorname{Tr}\left(\mathcal{N}_{A, B}\right)=\text { numerator } \cdot \text { Born } \cdot \text { color } \\
\mathcal{U}_{A}+\mathcal{U}_{B} & =\left(\mathcal{U}_{n, A} \cdot s_{n+1} \cdots s_{N}\right)+\left(\mathcal{U}_{n, B} \cdot s_{n+1} \cdots s_{N}\right) \\
& =\left(\mathcal{U}_{n, A}+\mathcal{U}_{n, B}\right) \cdot s_{n+1} \cdots s_{N}
\end{aligned}
$$

Only perform dressing steps $\mathrm{n}+1$ to N once.

Highly efficient way of dressing a large number of diagrams for complicated processes.

Explicit dressing steps

Triple vertex loop segment:
$\left[S_{a}^{(i)}\left(q_{i}, h_{a}^{(i)}\right)\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}}={ }_{\beta_{a-1}^{(i)} \longrightarrow k_{i a}^{w_{a}^{(i)}}}^{\beta_{a}^{(i)}}=\left\{\left[Y_{i a}^{\sigma}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}}+\left[Z_{i a, \nu}^{\sigma}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}} q_{i}^{\nu}\right\} w_{a \sigma}^{(i)}\left(k_{i a}, h_{a}^{(i)}\right)$
Quartic vertex segments:
$\left[S_{a}^{(i)}\left(q_{i}, h_{a}^{(i)}\right)\right]_{\beta_{a-1}}^{\beta_{a}^{(i)}}=\underbrace{w_{a_{1}}^{(i)}}_{\substack{k_{i a_{1}} \\ \beta_{a-1}^{(i)}}} \underbrace{w_{a_{2}}^{(i)}}_{k_{k_{a_{2}}}^{(i)}}=\left[Y_{i a}^{\sigma_{1} \sigma_{2}}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}} w_{a_{1} \sigma_{1}}^{(i)}\left(k_{i a_{1}}, h_{a_{1}}^{(i)}\right) w_{a_{2} \sigma_{2}}^{(i)}\left(k_{i a_{2}}, h_{a_{2}}^{(i)}\right)$
with $h_{a}^{(i)}=h_{a_{1}}^{(i)}+h_{a_{2}}^{(i)}$ and $k_{i a}=k_{i a_{1}}+k_{i a_{2}}$.
Dressing step for a segment with a triple vertex:

$$
\begin{aligned}
{\left[\mathcal{N}_{n ; \mu_{1} \ldots \mu_{r}}^{(1)}\left(\hat{h}_{n}^{(1)}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{n}^{(1)}}=} & \left\{\left[\mathcal{N}_{n-1 ; \mu_{1} \ldots \mu_{r}}^{(1)}\left(\hat{h}_{n-1}^{(1)}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{n-1}^{(1)}}\left[Y_{1 n}^{\sigma}\right]_{\beta_{n-1}^{(1)}}^{\beta_{n}^{(1)}}\right. \\
& \left.+\left[\mathcal{N}_{n-1 ; \mu_{2} \ldots \mu_{r}}^{(1)}\left(\hat{h}_{n-1}^{(1)}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{n-1}^{(1)}}\left[Z_{1 n, \mu_{1}}^{\sigma}\right]_{\beta_{n-1}^{(1)}}^{\beta_{n}^{(1)}}\right\} w_{n \sigma}^{(1)}\left(k_{n}, h_{n}^{(1)}\right) .
\end{aligned}
$$

Processes considered in performance tests

corrections	process type	massless fermions	massive fermions	process
QED	$2 \rightarrow 2$	e	-	$e^{+} e^{-} \rightarrow e^{+} e^{-}$
	$2 \rightarrow 3$	e	-	$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$
QCD	$2 \rightarrow 2$	$\begin{gathered} u \\ u, d \\ u \\ u \\ u \\ u \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ t \\ t \\ t \end{gathered}$	$\begin{gathered} g g \rightarrow u \bar{u} \\ d \bar{d} \rightarrow u \bar{u} \\ g g \rightarrow g g \\ u \bar{u} \rightarrow t \bar{t} g \\ g g \rightarrow t \bar{t} \\ g g \rightarrow t \bar{t} g \end{gathered}$
	$2 \rightarrow 3$	$\begin{gathered} u, d \\ u \\ u, d \\ u, d \\ u \\ u \end{gathered}$		$\begin{gathered} d \bar{d} \rightarrow u \bar{u} g \\ g g \rightarrow g g g \\ u \bar{d} \rightarrow W^{+} g g \\ u \bar{u} \rightarrow W^{+} W^{-} g \\ u \bar{u} \rightarrow t \bar{t} H \\ g g \rightarrow t \bar{t} H \end{gathered}$

Memory usage of the two-loop algorithm

	virtual-virtual memory [MB]		real-virtual [MB]	
hard process	segment-by-segment	diagram-by-diagram	coefficients	full
$e^{+} e^{-} \rightarrow e^{+} e^{-}$	18	8	6	23
$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$	154	25	22	54
$g g \rightarrow u \bar{u}$	75	31	10	26
$g g \rightarrow t \bar{t}$	94	35	15	34
$g g \rightarrow t \bar{t} g$	2000	441	152	213
$u \bar{d} \rightarrow W^{+} g g$	563	143	54	90
$u \bar{u} \rightarrow W^{+} W^{-} g$	264	67	36	67
$u \bar{u} \rightarrow t \bar{t} H$	82	28	14	40
$g g \rightarrow t \bar{t} H$	604	145	50	90
$u \bar{u} \rightarrow t \bar{t} g$	323	83	41	74
$g g \rightarrow g g$	271	94	41	55
$d \bar{d} \rightarrow u \bar{u}$	18	10	9	20
$d \bar{d} \rightarrow u \bar{u} g$	288	85	39	68
$g g \rightarrow g g g$	6299	1597	623	683

Implementation of Renormalization, Rational Terms

Example (from arXiv:2001.11388v3) :

where $\mathrm{k}=1,2$ is the loop order.

For NNLO need to implement:

- universal Feynman rules for new tensor structures
- new rational counterterms

Tensor Integrals

At NNLO require:

- One-loop tensor integrals
- One-loop diagrams with counterterm insertions: up to $\mathcal{O}(\epsilon)$, new topolgies due to squared propagator,
e.g. ${ }^{-}=\int \mathrm{d} \bar{q}_{1} \frac{q_{1}^{\mu_{1} \cdots q_{1}^{\mu_{r}}} \bar{D}_{0} \bar{D}_{0} \bar{D}_{1} \bar{D}_{2}}{\mu^{2}}=I^{\mu_{1} \cdots \mu_{r}}$.
- Solution for $\delta \tilde{Z}_{1} \propto \tilde{q}^{2}$ integrals, stemming from resotration of ($D-4$)-dimensional numerator parts.
- Integrals for reducible double-virtual, virtual, real-virtual and loop-squared diagrams available in public OpenLoops.
- Two-loop tensor integrals
- irreducible double-virtual diagrams:

$$
\int \mathrm{d} \bar{q}_{1} \int \mathrm{~d} \bar{q}_{2} \frac{\left.q_{1}^{\mu_{1} \cdots q_{1}^{\mu_{r}}} \frac{q_{2}^{\nu_{1}} \cdots q_{2}^{\nu_{s}}}{\mathcal{D}^{(1)}\left(\bar{q}_{1}\right) \mathcal{D}^{(2)}\left(\bar{q}_{2}\right) \mathcal{D}^{(3)}\left(\bar{q}_{3}\right)}\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}=I^{\mu_{1} \cdots \mu_{r} \nu_{1} \cdots \nu_{s}}, ~}{\text { sin }}
$$

