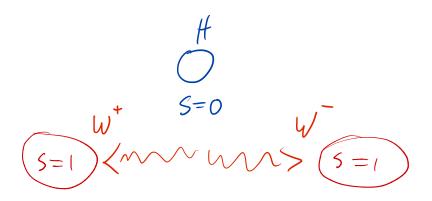
Bell Inequalities in Higgs boson decays (to vector bosons)

Alan Barr

A quantumTANGO talk

 $22^{\rm nd}$ November 2022

AJB, Phys.Lett.<u>B 825</u> (2022) 136866 — <u>2106.01377</u> [hep-ph] AJB, P. Caban, J.Rembieliński — <u>2204.11063</u> [quant-ph] R.Ashby-Pickering, AJB, A.Wierzchucka — <u>2209.13990</u> [quant-ph] C.Altomonte, AJB, <u>ORA-2022</u>



<□▶ <圕▶ <필▶ <필▶ <필▷ 원일 ♡ Q (~ 2/17 Spin in the $H \rightarrow W^+W^-$ decay

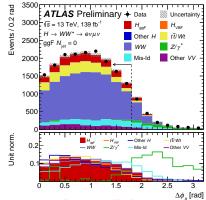
- $H \rightarrow W^+W^-$ decays produce pairs of W bosons in a singlet spin state
- In the narrow-width and non-relativistic approximations:

$$\ket{\psi_s} = rac{1}{\sqrt{3}} \left(\ket{+} \ket{-} - \ket{0} \ket{0} + \ket{-} \ket{+}
ight)$$

This is a Bell state of qutrits

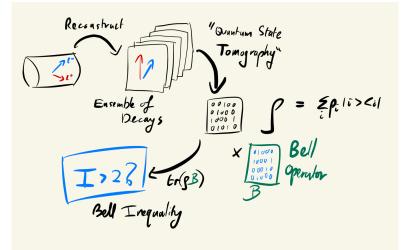
 $|\psi\rangle\in\mathcal{H}_3\otimes\mathcal{H}_3$

$\ell^+\ell^-$ azimuthal correlations in $H \to W^+W^-$



- Higgs signal concentrated at small $\Delta \phi_{\ell\ell}$
- Used e.g. in discovery searches

Bell tests in self-measuring quantum systems



Parameterising the density matrix

Need some parameters for ρ . We chose to use the **Gell-Mann** parameterisation:

The WW spin density matrix (9x9 matrix, 80 free parameters):

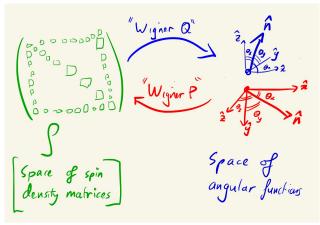
$$\rho = \frac{1}{9}I_3 \otimes I_3 + \sum_{i=1}^8 f_i \lambda_i \otimes I_3 + \sum_{j=1}^8 g_j I_3 \otimes \lambda_j + \sum_{i,j=1}^8 h_{ij} \lambda_i \otimes \lambda_j,$$

- A natural extension of the Bloch sphere representation to qutrits
- Perfect for tomography due to trace orthogonality

$$\mathsf{tr}(\lambda_i\lambda_j)=2\delta_{ij}$$

• Commonly used in quantum information applications due to symmetry

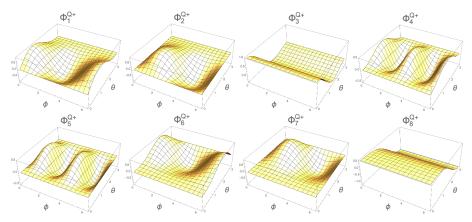
Measuring the parameters



$$p(\hat{\mathbf{n}}; \rho) = rac{3}{4\pi} \left(rac{1}{3} + \sum_{j=1}^{8} \Phi_j^Q a_j
ight)$$

2209.13990

 $a_j = \frac{1}{2} \left\langle \Phi_j^P(\hat{\mathbf{n}}) \right\rangle$



Wigner Q symbols for the eight Gell-Mann matrices

$$p(\hat{\mathbf{n}};\rho) = \frac{3}{4\pi} \left(\frac{1}{3} + \sum_{j=1}^{8} \Phi_j^Q a_j \right)$$

2209.13990

Weak gauge bosons measure their own spin

SU(2) weak force is chiral: $\gamma^{\mu}(1-\gamma^5)$

W boson

$$W^+ o \ell_R^+ + \nu_L$$

 $W^- o \ell_L^- + \bar{\nu}_R$

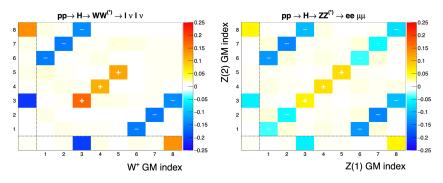
Decay of a W^{\pm} boson is equivalent to a projective (von Neumann) quantum measurement of its spin along the axis of the emitted lepton

Z boson

Z bosons also have spin-sensitive decays

Left, right couplings determined by electroweak mixing Equivalent to a non-projective quantum measurement

Density matrices from simulated Higgs boson decays



- High stats Madgraph simulation, parton level truth
- Tomographic reconstruction of parameters from Wigner-Weyl methods
- Almost perfect qutrit Bell states
- Can perform Bell Tests, entanglement tests,

2209.13990

The CGLMP inequality from data

CGLMP operator

$$\mathcal{B}_{\text{CGLMP}}^{xy} = -\frac{2}{\sqrt{3}} \left(S_x \otimes S_x + S_y \otimes S_y \right) + \lambda_4 \otimes \lambda_4 + \lambda_5 \otimes \lambda_5$$

where

$$S_x = \frac{1}{\sqrt{2}}(\lambda_1 + \lambda_6)$$
 and $S_y = \frac{1}{\sqrt{2}}(\lambda_2 + \lambda_7).$

For WW systems:

$$\begin{aligned} \mathcal{I}_{3} &= \mathrm{tr}(\rho \mathcal{B}_{\mathrm{CGLMP}}^{xy}) = \frac{8}{\sqrt{3}} \left\langle \xi_{x}^{+} \xi_{x}^{-} + \xi_{y}^{+} \xi_{y}^{-} \right\rangle_{\mathrm{av}} \\ &+ 25 \left\langle \left((\xi_{x}^{+})^{2} - (\xi_{y}^{+})^{2} \right) \left((\xi_{x}^{-})^{2} - (\xi_{y}^{-})^{2} \right) \right\rangle_{\mathrm{av}} \\ &+ 100 \left\langle \xi_{x}^{+} \xi_{y}^{+} \xi_{x}^{-} \xi_{y}^{-} \right\rangle_{\mathrm{av}} \end{aligned}$$

where $\xi_i^{\pm} \equiv \hat{\mathbf{p}}_{\ell^{\pm}} \cdot \hat{\mathbf{x}}_i$ is the Cartesian direction cosine of the emitted lepton in the parent W boson rest frame Near maximal violation of CGLMP in idealised sample

$m_W^<$ [GeV]	20	30	40	50
$\mathcal{I}_3^{\rm xyz}$	2.76	2.81	2.82	2.77

2106.01377

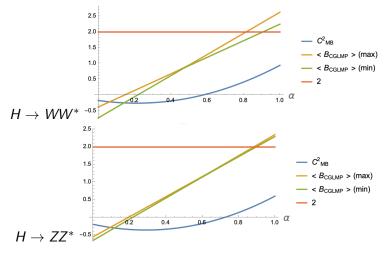
$\mathcal{I}_3 > 2 \implies \text{violation}$

CAVEAT: In the absence of backgrounds, smearings, ...

Confirmed for relativistic QFT in AJB, P. Caban, J. Rembieliński, 2204.11063

Signal purity needed?

If we perform full quantum tomographic reconstruction



 $\rho = \alpha \rho_{H \to VV^*} + (1 - \alpha) \rho_{pp \to VV^*}$

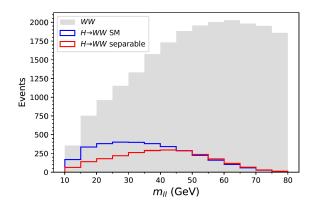
2209.13990

Laboratory-frame tests of quantum entanglement in $H \rightarrow WW$

Aguilar-Saavedra 2209.14033

- Parameterise ρ in terms of tensor operators
- Assume WW system is in scalar state
- Use CMS-like selection
- Look at lab-frame observables such as rapidity and azimuth differences
- Distinguish SM vs longitudinal polarisation

"For the specific case of the dilepton invariant mass, which is a quite robust variable already measured by the ATLAS and CMS Collaborations, the expected statistical difference between the two hypotheses is of 7.1σ with a luminosity of 138 fb⁻¹. Therefore, the entanglement in $H \rightarrow WW$ could be established with the already collected Run 2 data."



Aguilar-Saavedra 2209.14033

Testing entanglement and Bell inequalities in $H \rightarrow ZZ$

Aguilar-Saavedra, Bernal, Casas, Moreno 2209.13441

- Again parameterise in terms of Cartesian Tensor operators
- Assume scalar state of ZZ
- Optimize over unitary transformations of the operators
- Parton level simulation with no background

"The numerical analysis shows that with a luminosity of $L = 300 \text{fb}^{-1}$ entanglement can be probed at $> 3\sigma$ level.

For $L = 3ab^{-1}$ (HL-LHC) entanglement can be probed beyond the 5σ level, while the sensitivity to a violation of the Bell inequalities is at the 4.5σ level."

The LHC: a laboratory for probing quantum foundations

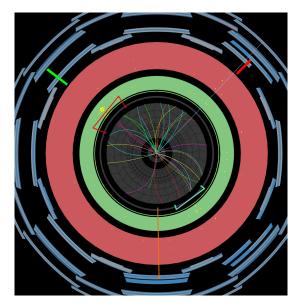
Weak bosons are wonderful quantum probes

- Quantum spin self measurement via chiral weak decays
- Expect entanglement and even Bell inequality violation
- Spin density matrix can be reconstructed from angular distributions ('tomography')

A wide-ranging quantum programme is possible @ LHC

- Local realism tests at $\sim 10^{12}$ higher energy
- Probes of quantum measurement
- Exchange symmetry and distinguishablity
- All in an unexplored region

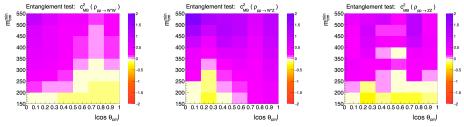
EXTRAS



Recent related works by other authors

- Gong, Parida, Tu and Venugopalan, "Measurement of Bell-type inequalities and quantum entanglement from Λ-hyperon spin correlations at high energy colliders", 2107.13007
- Severi, Boschi, Degli Esposti, Maltoni and Sioli, "Quantum tops at the LHC: from entanglement to Bell inequalities", 2110.10112
- Afik, de Nova and Ramón Muñoz, *"Quantum information with top quarks in QCD"*, 2203.05582
- Fabbrichesi, Floreanini and Gabrielli, *"Constraining new physics in entangled two-qubit systems: top-quark, tau-lepton and photon pairs"*, 2208.11723
- Afik, de Nova and Ramón Muñoz, "Quantum discord and steering in top quarks at the LHC" 2209.03969
- Aguilar-Saavedra, Bernal, Casas and Moreno, "Testing entanglement and Bell inequalities in H → ZZ", 2209.13441
- Aguilar-Saavedra "Laboratory-frame tests of quantum entanglement in *H* → *WW*", 2209.14033

Entanglement in diboson continuum?

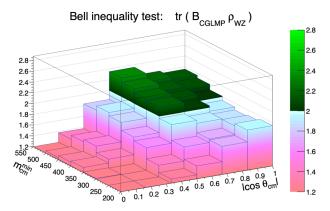


WW, WZ, ZZ, as a function of m_{VV} and $\cos \theta$

Pink/Purple means entangled

2209.13990

Bell violation in WZ continuum?



Green means Bell-inequality violating

2209.13990

(□) (圖) (불) (불) (월) (이) (0) (4/12)

QFT calculations

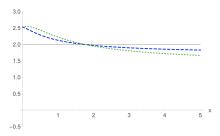


FIG. 3: Comparison of the violation of the CGLMP inequality in the state $|\xi(k,k^{\pi})\rangle$ (blue, dashed line) and in the state $|\psi(k,k^{\pi})\rangle$ (green, dotted line). The configuration of particles momenta and measurements directions is the following: $\mathbf{n} = (0,0,1)$, $\mathbf{w} = (\cos\phi_w \sin\theta_w, \sin\phi_w \sin\theta_w, \cos\theta_w)$, $\mathbf{w} \in \{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$ and $\theta_a = 2.667$, $\phi_a = 4.109$, $\theta_b = 0.924$, $\phi_b = 0.974$, $\theta_c = 2.699$, $\phi_c = 1.005$, $\theta_d = 0$, $\phi_d = 0$.

AJB, P. Caban, J. Rembieliński — 2204.11063 [quant-ph]

Experimental dependence @ LHC?

- Simulate LHC: 140/fb pp @ 13 TeV with Madgraph Monte Carlo simulation
- No backgrounds, some basic selection cuts, Gaussian smearing of each of the ${\it W}$ boson momentum components

Expt. Assumptions	Truth	'A'	'B'	'C'
Min $p_T(\ell)$ [GeV]	0	5	20	20
$Max\; \eta(\ell) $	—	2.5	2.5	2.5
$\sigma_{ m smear}$ [GeV]	0	5	5	10
$\mathcal{I}_3^{\mathrm{xyz}}$	2.62	2.40	2.75	2.16
Signif. $(\mathcal{I}_3^{xyz}-2)$	11.7σ	5.2σ	5.3σ	1.0σ

CAVEAT: Indicative only - more realistic version being investigated

In case you're curious

The CGLMP operator is¹

¹after a minor tweak – see 2106.01377

CGLMP limits?

In a local realist theory

 $\mathcal{I}_3 \leq 2$

In QM

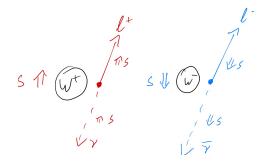
$$\mathcal{I}_3^{\rm QM} \leq 1 + \sqrt{11/3} \approx 2.9149$$

In QM for a maximally entangled state

$$\mathcal{I}_3^{\mathrm{QM,singlet}} \leq 4/(6\sqrt{3}-9) pprox 2.8729$$

This is the tightest Bell inequality for pairs of three-outcome experiments

Getting the directions right



- ℓ^+ is emitted preferentially along spin direction (of W^+) ℓ^- is emitted preferentially against spin direction (of W^-)
- The W^{\pm} spins are in different directions
- So the two leptons prefer to go in the same direction as each other

The density matrix ρ

- A fully-characterised quantum system is described by a ket $|\psi
 angle$
- $\bullet\,$ Expectation values of measurement operator ${\cal A}$ are given by

 $egin{array}{c|c} \psi & A & \psi \end{array}$

• A more general, not-fully-characterised, quantum system is described by a density matrix ρ

$$ho = \sum_i
ho_i \ket{\psi}_i ra{\psi}_i$$

 p_i is classical probability

 ρ is a non-negative hermitian operator with unit trace

• Expectation values for operator \mathcal{A} for ρ are given by:

$$\langle \mathcal{A}
angle = \mathsf{tr}(
ho \mathcal{A})$$

CHSH for spin-1

We can build a generalised CHSH Bell operator for pairs of spin-1 QM systems:

$$\mathcal{B}_{\mathrm{CHSH}} = \hat{\mathbf{n}}_1 \cdot \mathbf{S} \otimes (\hat{\mathbf{n}}_2 - \hat{\mathbf{n}}_4) \cdot \mathbf{S} + \hat{\mathbf{n}}_3 \cdot \mathbf{S} \otimes (\hat{\mathbf{n}}_2 + \hat{\mathbf{n}}_4) \cdot \mathbf{S}$$

where now

$$S_{x,y,z} = \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right), \ \frac{i}{\sqrt{2}} \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right), \ \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

Local realist expectations

Measurement outcomes: $\in \{+1, 0, -1\}$

The additional 0-outcome can only dilute CHSH expectation value

 \implies CHSH Bell inequality $|\mathcal{I}_2| \leq 2$ still must be satisfied in LR theory

Simulate $pp \to H \to WW^* \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell$

Monte Carlo

Generate $gg \rightarrow H \rightarrow \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell$ in Madgraph Monte Carlo simulation (10⁶ pp events with $\sqrt{s} = 13 \text{ TeV}$)

- Idealise: no detector, assume we can reconstruct W^{\pm} rest frames
- Cut out the e^+e^- and $\mu^+\mu^-$ events to remove $H \to ZZ^*$
- Place a lower bound $m_W^<$ on the m_W masses
- Optimise over the CHSH measurement directions
- The CHSH Bell inequality is violated iff

 $\mathcal{I}_2>2$