

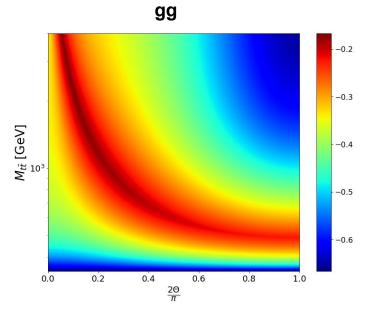
Entanglement & More at the CMS

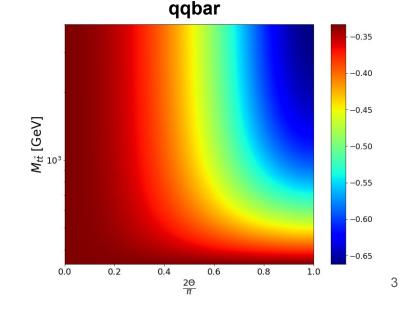
AJ Wildridge

on behalf of the CMS Collaboration

QuantumTANGO 22nd November, 2022

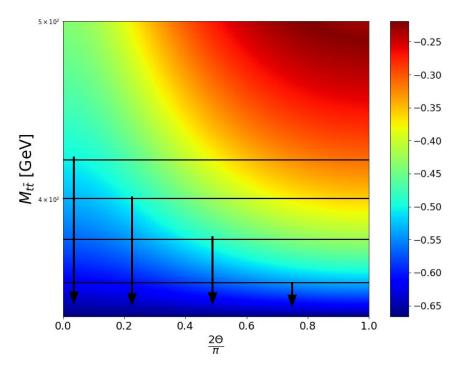
Overview


- Entanglement
- Current Analysis Strategy for Entanglement
 - Reconstruction-level extraction
 - Unfolded parton-level extraction
- Current Status on Entanglement Measurement
- Analysis Strategy for Bell's Inequality & Full Quantum Tomography
 - $\circ \quad \text{Initial state dependence} \to \text{classifier}$
 - $\circ m_{t\bar{t}}$ and θ dependence \rightarrow ML reconstruction


$D < -\frac{1}{3} \rightarrow Entangled!$

Entanglement

$$D = \frac{\operatorname{tr}[\mathbf{C}]}{3} \qquad \frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi)$$


- Degree of entanglement is highly phase-dependent
- Focus on low mttbar region \rightarrow high statistics
- Can perform simple cut on $m_{t\bar{t}}$ to extract degree of entanglement

Analysis Strategy

- Reconstruction Level Extraction
 - Measure D at reconstruction level using forward-backward asymmetry in cos(\$) distribution
 - Potentially measure in 4 different bins
 - Determine effects of acceptance x efficiency on entanglement criteria by computing D_{reco} and comparing to same D_{gen} ^{full phase space}
- Unfolded parton-level extraction
 - Follow same method of <u>spin correlation</u> <u>measurement in CMS</u> [arXiv:1907.03729] using TUnfold

Reconstruction-level Extraction

- At generator level $D < -\frac{1}{3} = D_{ent} \rightarrow entangled$
- However, at reconstruction level this will change due to acc x eff effects and migrations
- Need $D < X \rightarrow$ entangled at reconstruction level
 - \circ Evaluated D at reco level using MC as a function of cut on $m_{tar{t}}$

Threshold for entanglement:
$$D_{ent}^{reco} = rac{D^{reco}}{D^{gen}} D_{ent}^{gen}$$

 \circ N_i = Number of events in bin i

$$A_{FB}^{(i)} = \frac{N_{6-i} - N_i}{N_{6-i} + N_i}$$

$$D = \frac{-\frac{6}{5}A_{FB}^{(1)} - 2A_{FB}^{(2)} - 6A_{FB}^{(3)}}{3}$$

Unfolding Procedure [arXiv:1907.03729]

- Use matrix-based unfolding with Tikhonov regularization on curvature
- Functional form of $cos(\phi)$ differential distribution is known \rightarrow can force distribution to be linear in variable of interest
 - For D this is already fine since it is a linear distribution already
 - Showed in our 2016 data analysis that this was unbiased to injected differences in spin coefficient values from [SM - 0.5, SM + 0.5] in steps of 0.05
- Finer binning to mitigate bias introduced via binning and re-binned to resolution-based binning after unfolding
- Scan on regularization strength is performed via minimum of global correlation coefficient in the rebinned distribution
- Systematics are evaluated as alternative response matrices

Current Status on Entanglement

- Currently in review
- No issues seen thus far in unfolding procedure
- Currently only performing 2D unfolding with $m_{tar{t}}$ vs D
 - Idea is 3D will be saved for full quantum tomography
- Still need to finish performing our battery of unfolding bias checks
 - Linearity tests

Future Analysis Strategy

- We would like to perform a <u>full quantum tomography</u> [arXiv:2003.02280] of the ttbar system
- Attempts at initial state classifier are thus far unsuccessful
- Bell's ineq strategy (was initial focus):
 - Initially perform eigenvalue calculation $m_{t\bar{t}}$ Stat \otimes Syst error propagation is being performed via <u>uncertainties package</u>
 - However, now we have J. A. Aguilar-Saavedra and J. A. Casas <u>result</u> [arXiv:2205.00542] suggesting |C_ii +/- C_jj| is better
- ML-based reconstruction is on-going work

Questions?

awildrid@purdue.edu

Kinematic Reconstruction

- Fix mass of top quarks and W bosons and solve resulting quartic equation
- Smear leptons and b-jets within resolution and swap b-jets to get multiple solutions
- Use mlb distribution to perform weighted average of solutions
- mlb > 180 smears are discarded
- Lowest mttbar solution is always considered as correct solution