
On Thermal Stability of

Hairy Black Holes�
40th Conference on Recent Developments in High Energy Physics and Cosmology,

Ioannina, Greece

Panagiotis Dorlis

April 2023

�Collaboration with N. Chatzifotis, N.E. Mavromatos and E. Papantonopoulos

1 / 42



Plan

1. Black Holes in a Thermal Bath

2. Black Holes as Thermodynamical Topological Defects

3. Stabilizing Black Holes through Secondary Hair: Black Hole Relics?

2 / 42



Black Holes in a Thermal Bath

◦ Thermodynamic statement: All the parts of the system are in
thermal equilibrium with temperature T
◦ Black Hole Physics: TBH =

κg
2π

κg = 2πT (1)

◦ A geometric quantity (surface gravity) is connected to the thermal
bath's temperature
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Black Holes in a Thermal Bath

◦ The surface gravity is a function of the event horizon radius, rh

κg = κg(rh) (2)

⇓
Black hole size ←→ Heat bath's temperature

◦ The dependence of κg on rh can lead to di�erent con�gurations of
black holes that can be in thermal equilibrium with the heat bath
having the same temperature, T.

rh and T are not necessary in a ”1− 1” correspondence
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Black Holes in a Thermal Bath

De�ning the inverse temperature τ = T−1, for the known black holes:

◦ τ/4π = rh: Schwarzschild

◦ τ/4π =
r3

h
r2

h−Q2 : RN

◦ τ/4π =
r3

h+α2rh

r2
h−α2 : Kerr
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Thermodynamical Stability Arguments

◦ Stability → Potentials ⇓
Canonical Ensemble → Free energy, F

◦ F = E− TS
◦ E: energy of the system (ADM mass)

◦ S: entropy (black hole's)

◦ T: heat bath's temperature

By construction, δF < 0 for any transition of the system1.

⇓

◦ Equilibrium points → ∂F
∂rh

= 0

◦ Stable → ∂2F
∂r2

h
> 0 (minimum) / Unstable → ∂2F

∂r2
h
< 0 (maximum)

1Fermi, E., Thermodynamics, Dover books in physics and mathematical physics,
Dover Publications, 1956
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Black Holes as Thermodynamical Topological Defects

In a recent paper2, a topological approach was introduced, in order to
investigate the di�erent branches of black holes in thermal equilibrium
with the heat bath and classify solutions into topologically equivalent

classes. ⇓
black hole solutions as zero points of some vector �eld, Φa(x⃗)

◦ De�ne the 3-D parameter space: xµ = (τ, rh, Θ)

◦ (τ, rh)→ Thermodynamic Parameters

◦ 0 ≤ Θ ≤ π → Auxilary Parameter

2S. W. Wei, Y. X. Liu and R. B. Mann, �Black Hole Solutions as Topological
Thermodynamic Defects,� Phys. Rev. Lett. 129, no.19, 191101 (2022)
doi:10.1103/PhysRevLett.129.191101
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Black Holes as Thermodynamical Topological Defects

◦ 3-D parameter space: xµ = (τ, rh, Θ), 0 ≤ Θ ≤ π, rh, τ ≥ 0,
◦ De�ne on (rh, Θ) the vector �eld: Φ⃗ =

(
∂F
∂rh

,− cot Θ csc Θ
)

◦ Φ⃗ = 0→
(

∂F
∂rh

= 0 , Θ = π/2
)
.
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Black Holes as Thermodynamical Topological Defects

◦ Φ⃗ = 0 → Equilibrium states of black hole in the thermal bath

◦ Considering τ as "time"in the parameter space → The equilibrium
states (Φ⃗ = 0) are moving on the parameter space "like point
particles"

⇓

Duan's Φ− mapping 3

De�ne the topological current on the 3− D parameter space:

jµ =
1

2π
ϵµνρϵab∂νna∂ρnb , µνρ = 0, 1, 2 , a, b = 1, 2 (3)

where na = Φa

||Φ|| and ϵ the Levi-Civita symbol (�at).

3Y. S. Duan, The structure of the topological current, SLAC-PUB-3301, (1984)
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Black Holes as Thermodynamical Topological Defects

◦ jµ = δ
(

Φ⃗
)

Jµ
(Φ

x

)
→ point-like delta structure
where Jµ

(Φ
x

)
= 1

2 ϵabϵµνρ∂νΦa∂ρΦb

(Jacobian tensor)

◦ Identically conserved: ∂µ jµ = 0
◦ Conserved

charge: q =
∫

Σ j0d2x, where Σ
some surface on the Θ− rh plane.

◦ Local

topological charge qi =
∫

Σi

j0d2x

◦ Global topological charge

Q = ∑
i

qi
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Black Holes as Thermodynamical Topological Defects

◦ local topological charge qi =
∫

Σi

j0d2x

After some algebra4 ⇓

qi = sgn

(
∂2F
∂r2

h

)
(4)

→ The local topological charge of each black hole branch concerns its
thermodynamical stability:

Unstable branch→ qi = −1
Stable branch→ qi = +1

(5)

4N. Chatzifotis, P. Dorlis, N. E. Mavromatos and E. Papantonopoulos, �On
Thermal Stability of Hairy Black Holes,� [arXiv:2302.03980 [gr-qc]].
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Black Holes as Thermodynamical Topological Defects

◦ Global topological charge Q = ∑
i

qi

◦ Characterizes the rh = rh(τ) graph of the solution.
◦ Some examples:
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Black Holes as Thermodynamical Topological Defects

Global topological charge Q = ∑
i

qi

◦ Q depends on how many critical points appear in the graph.
◦ If the number of critical points is odd → Q = 0
◦ If the number of critical points is even → Q = ±1

◦ Continuity of the function rh = rh(τ) =⇒ the number of critical
points depends on the asymptotic behavior (i.e. the slope) ⇓
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Black Holes as Thermodynamical Topological Defects

◦ Thus, for a well behaved asymptotic behavior the black hole
solution can have Q = 0,±1.
◦ In this sense, black hole solutions with the same topological charge

construct are topologically equivalent 5

Examples:

Q = 0 RN, Schw-AdS, Kerr

Q = −1 Schw

Q = +1 RN-AdS, Kerr-AdS

5S. W. Wei, Y. X. Liu and R. B. Mann, �Black Hole Solutions as Topological
Thermodynamic Defects,� Phys. Rev. Lett. 129, no.19, 191101 (2022)
doi:10.1103/PhysRevLett.129.191101
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Black Holes as Thermodynamical Topological Defects

◦ Beyond these classes?

A toy model can be constructed
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?

◦ Primordial black holes can be formed at the early stages of the
universe6

◦ Assuming Schwarzschild black holes → Total evaporation
tevap < tuniverse (basic constraint for the mass window)

◦ Overcoming this constraint → The temperature - mass relation is
modi�ed at the late stages of evaporation, due to higher order
interactions, leading to Black hole relics7

◦ In the perspective of the rh = rh(τ) graph→ Black hole relics if a
minimum horizon radius is induced

6B. J. Carr and S. W. Hawking, Mon. Not. Roy. Astron. Soc. 168, 399-415
(1974) doi:10.1093/mnras/168.2.399

7J. D. Barrow, E. J. Copeland and A. R. Liddle, Phys. Rev. D 46, 645-657 (1992)
doi:10.1103/PhysRevD.46.645
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?

◦ We shall consider in a quite general form interactions (or
self-interactions) of the gravitational �eld with matter �elds of the
form:

L = LEH + Lmatter + ALint (6)

◦ LEH: Einstein-Hilbert

◦ Lmatter: Matter Lagrangian

◦ Lint: possible interactions

◦ A: dimensionfull coupling constant

◦ A introduces a length scale that characterizes the interactions
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?

◦ A which denotes the strength of the interaction

◦ rh: characteristic length scale of the black hole

◦ The impact of an interaction to a black hole becomes stronger,
when these length scales become comparable.

◦ LEH → Planck length is introduced, κ2 = 8πG.

⇓

Claim: the impact of an interaction to a black hole is determined by the
dimensionless parameter, γ:

γ =
Aκ

r2
h

(7)
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Examples of backreactions...

◦ Linear scalar-Gauss-Bonnet:

S =
∫

d4x
√
−g
[

R
2κ2 −

1
2
(∂ϕ)2 + AϕRGB

]
(8)

where RGB ≡ Rµνρσ Rµνρσ − 4 Rµν Rµν + R2 denotes the GB
topological term. The solution for the gtt component, up to second
order in A8 takes the following form:

gtt =− 1 +
rh

r
+ γ2

[
20
3

( rh

r

)7
− 16

5

( rh

r

)6
− 22

5

( rh

r

)5

−52
3

( rh

r

)4
− 4

3

( rh

r

)3
+

49
5

rh

r

]
+O(γ4)

(9)

8T. P. Sotiriou and S. Y. Zhou, Phys. Rev. Lett. 112, 251102 (2014)
doi:10.1103/PhysRevLett.112.251102 [arXiv:1312.3622 [gr-qc]].
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Examples of backreactions...

◦ Linear scalar-Chern-Simons (CS)

S =
∫

d4x
√
−g
[

R
2κ2 −

1
2
(∂ϕ)2 − AϕRCS

]
(10)

where RCS = Rµνρσ R̃µνρσ (C-S topological term)9. The
backreaction (up to O(α))

gtϕ(r, θ) = −
[

rh

r
+ ∑

n=4

dn

2n−2

( rh

r

)n−2
]

α sin2 θ (11)

▶ α: rotation parameter coe�cients
▶ dn ∼ γ2n: fully determined by a reccurence relation10

9explained previously in Chatzifotis talk
10N. Chatzifotis, P. Dorlis, N. E. Mavromatos and E. Papantonopoulos, Phys. Rev.

D 105, no.8, 084051 (2022)
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Examples of backreactions...

◦ Extended GB gravity11:

S =
∫

d4x
√−g
2κ2

[
R− βe2ϕ(R + 6(∇ϕ)2)− 2λe4ϕ

−ã
(

ϕRGB − 4Gµν∇µϕ∇νϕ− 4□ϕ(∇ϕ)2 − 2(∇ϕ)4
)]
(12)

▶ Rede�ne ã→ Aκ; then, A is the coupling constant of the theory

with dimensions of length, as previously.

Expanding the analytic solution, we get:

−gtt(r) =1− rh

r
+

[
rh

r
− 2

( rh

r

)2
+
( rh

r

)4
]

γ

− 2
rh

r

[( rh

r

)3
− 2

( rh

r

)4
+
( rh

r

)6
]

γ2 +O(γ3)

(13)

11P. G. S. Fernandes, Phys. Rev. D 103, no.10, 104065 (2021)
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?

Our goal is to compress the following properties to a general metric.

1. The only dimensionfull parameters of the solution to be lP, A and
mass, M.

2. The corresponding local solutions have a smooth limit for a
vanishing coupling constant, which we assume to be the
Schwarzschild black hole.

3. The dependence of the backreacting terms vanish asymptotically,
which means that they depend only to inverse powers of r

4. The coupling constant of the interaction appears only into the
dimensionless factor γ

5. The r−dependence of the back-reaction terms appear only into
x = rh/r.
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?

⇓

gtt(r) = −(1− x)

(
1 + ∑

n
γn fn(x)

)
(14)

where x = rh/r and fn(x) some polynomial functions.

◦ Black hole's exterior: r > rh → 0 < x < 1
◦ Black hole's interior: r < rh → x > 1
◦ Event horizon: r = rh → x = 1
◦ Asymptotic �atness implies that fn(0) = 0
◦ 1 + ∑n γn fn(x) > 0, for 0 < x < 1 .
◦ If an inner horizon exists: 1 + ∑n γn fn(x0) = 0, for some x0 > 1 .
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?

◦ The surface gravity reads:

κg(rh) =
|g′tt|

2
√−gtt grr

∣∣∣
r→rh

. (15)

◦ In order to acquire a zero temperarute for a �nite rh, |g′tt| → 0
Calculating for the above metric:

g′tt(rh) = −
1
rh

(
1 + ∑

n
γn fn(1)

)
. (16)

=⇒ There have to be a critical value, γc, for which

1 + ∑
n

γn fn(1)→ 0, as γ→ γc (17)
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?

◦ The γc de�nes the minimum horizon radius:

rh,min =
Aκ

γc
(18)

◦ The condition (17) implies that the gtt metric component tends to
acquire a double root at x = 1, which is a characteristic of extremal
black holes.

⇓
If the interactions, Lint, produce an inner horizon inside the black
hole, the runaway evaporation stops and a near extremal black hole
relic is left over.
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Stabilizing Black Holes through Secondary Hair: Black Hole

Relics?

◦ rh,min = Aκ
γc

=⇒ rh,min ∼ |Ã| lP , where A = Ã2lP

Thus, whether the stable black hole minimal size exceeds or not the
Planck length depends on the order of magnitude of the coupling of
the pertinent interaction.

◦ Electric charge and rotation, also induce an inner horizon. However,
electric charge and rotation probably do not survive at the �nal
stages of evaporation12, so they cannot stabilize the black hole.

◦ The di�erence here is that there is no extra charge beyond the
mass, M → The inner horizon can survive until the �nal stages and
stabilize (thermodynamically) the black hole.

12Calmet, X., Carr, B., Winstanley, E. (2014). Hawking Radiation and Black Hole
Evaporation. In: Quantum Black Holes. SpringerBriefs in Physics. Springer, Berlin,
Heidelberg.
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THANK YOU!
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