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The present framework of modern cosmology consists of classical

General Relativity (GR) as a theory of gravitation and Quantum Field

Theory (QFT) as the theory of matter. A common working assumption is

that the quantum aspects of gravitation can be ignored for energies

below the Planck energy of 1019GeV and, therefore, gravity can be

treated classically. In contrast, the full quantum character of particle

interactions is considered within QFT. The quantum interactions of the

matter fields coupled to the classical gravitational field introduce

modifications to the standard GR action with cosmological implications.

Such are non-minimal couplings of the inflaton field or higher power

terms of the Ricci curvature in models of cosmological inflation. The

Metric-Affine formulation of gravity, where the metric and the

connection are independent variables, although equivalent to the

standard (metric) GR in the case of the Einstein-Hilbert action, leads to

different predictions when the above corrections are included.



Metric Versus Metric-Affine (Palatini) Formulation of Gravity

The General Relativity Principle states that all laws of physics should be

invariant under general coordinate transformations. To implement such

a principle we need to introduce a metric gµν , which has to transform

as

g
′
αβ(x

′) =

(
∂xµ

∂x ′α

)(
∂xν

∂x ′β

)
gµν(x) , (1)

as well as a Connection Γρµν in order to define covariant derivatives of

tensors. In the standard metric formulation of gravity the connection is

not an independent quantity but it is given by the Levi-Civita relation as

Γ ρ
µν

∣∣
LC

=
1

2
g
ρσ (∂µgρν + ∂νgµσ − ∂σgµν) . (2)

In contrast, in the so-called Metric-Affine theories of gravity the

connection is an independent variable not related to the metric

through (2). Note that Dµgνρ|LC
= 0 (metricity), while Dµgµν 6= 0 in

general for a metric-affine theory.



The Distortion Tensor
The difference between the independent connection of a metric-affine

theory and the corresponding Levi-Civita one is a tensor called the
Distrortion tensor

C
ρ
µ ν = Γ ρ

µ ν − Γ ρ
µ ν

∣∣
LC
. (3)

The distortion tensor vanishes for metric theories. The Torsion is given by

T
ρ
µ ν = C

ρ
µ ν − C

ρ
ν µ = 2C

ρ
[µ ν] = Γ ρ

µ ν − Γ ρ
ν µ.

The curvature tensor of a metric-affine theory is defined as

R ρ
µν σ = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ . (4)

The following two scalars, linear in the Riemann tensor, can be defined

as

R = R ρ
µν σg

µ
ρgνσ = R µν

µν

R̃ = (−g)−1/2εµν σ
ρ R ρ

µν σ = (−g)−1/2εµνρσRµνρσ
(5)

The first corresponds to the usual Ricci scalar, while R̃ is the so-called

Holst invariant , which vanishes identically in a metric theory due to the

symmetry in the lower indices of the Levi-Civita connection.



The following expressions of the curvature scalars can be written in

terms of the Distortion

R = R + DµC
µν
ν − DνC

µν
µ + C

µ
µ λC λν

ν − C
µ
ν λC λν

µ

R̃ = 2(−g)−1/2εµνρσ
(
DµCνρσ + CµρλC λ

ν σ

) (6)

where R = R[g] is the standard metric Ricci scalar and the covariant

derivatives are taken with respect to Γ λ
µ ν

∣∣
LC

.

The metric-affine version of the Einstein-Hilbert action is

SEH =
1

2

∫
d

4
x
√
−gR =

1

2

∫
d

4
x
√
−g

{
R + DµC

µν
ν − DνC

µν
µ + C

µ
µ λC

λν
ν − C

µ
ν λC

λν
µ

}
Variation with respect to the distortion gives

δS
δC

= 0 =⇒ δαβC
ν

νγ + δαγC
ν

ν β − C
α

βγ − C
α
γ β = 0 ,

which has the general solution Cµνρ = Uµ gνρ in terms of the arbitrary

vector Uµ. Substituting this solution into Eq.(2.8) the C−dependent

terms vanish. Therefore, SEH is entirely equivalent to the standard
metric GR. Nevertheless, this is not the case for quadratic actions.



Non-Minimal Coupling to Scalars
One can derive the metric-equivalent of any metric-affine theory

based on an action, where gravity couples to a scalar field,

S =

∫
d

4
x
√
−g

{
1

2
Ω2(φ)R + L(φ, gµν , ∂µφ)

}
. (7)

Note that any F(R) theory can also be set in this form. Indeed the action

S = 1

2

∫
d4x
√
−g F(R), corresponding to the metric-affine formulation of f(R) theories

studied in the standard metric formulation. The action can be set in the form

S =

∫
d

4
x
√
−g

{
1

2
F
′(χ)R − V(χ)

}
where V(χ) =

1

2

(
χF
′(χ)− F(χ)

)
, (8)

in terms of the auxiliary scalar χ.

Substituting the expression ofR in terms of the distortion, we obtain

S =

∫
d

4
x
√
−g

{
1

2
Ω2(φ)R(g) +

1

2
Ω2(φ)

(
DµC

µν
ν − DνC

µν
µ

+ C
µ
µ λC

λν
ν − C

µ
ν λC

λν
µ

)
+ L(φ, gµν , ∂µφ)

}
, (9)



Variation with respect to the distortion gives us the equation

Ω2
(
δαβC

ν
νγ + δαγC

ν
ν β − C

α
βγ − C

α
γ β

)
= δαγ ∂βΩ2 − δαβ∂γΩ2

(10)

with a solution (up to a term Uµ gνρ of an arbitrary vector Uµ)

C
ρ
µ ν =

1

2

(
g
ρ
µ∂ν ln Ω2 + g

ρ
ν∂µ ln Ω2 − gµν∂

ρ
ln Ω2

)
(11)

Substituting C back into the action we obtain

S =

∫
d

4
x
√
−g

{
1

2
Ω2(φ)R(g) +

3

4

(∇Ω2)2

Ω2
+ L(φ, gµν , ∂µφ)

}
.

(12)

This is a metric theory and the appearing connection is the Levi-Civita

one. Note that the extra term has the form of the extra kinetic term that

appears when we Weyl-rescale the metric theory to the Einstein frame,

albeit with an opposite sign. The inequivalence of the two formulations

rests on this term. Only in the case of the Einstein-Hilbert action this term

vanishes and the two formulations are equivalent.



Quadratic Metric-Affine Theories

Consider the following metric-affine generalization of the Starobinsky

model

S =

∫
d

4
x
√
−g

{
1

2
αR+

1

2
βR̃+

1

4
γR2 +

1

4
δR̃2

}
, (13)

whereR is the Ricci scalar curvature and R̃ is the Holst invariant. This is

a general quadratic action of these scalars. In what follows we shall use

Planck-mass units taking α = 1. An equivalent way to express the

action is in terms of the auxiliary scalars χ and ζ as

S =

∫
d

4
x
√
−g

{
1

2
(1 + γχ)R+

1

2
(β + δζ)R̃ − 1

4

(
γχ2 + δζ2

)}
.

(14)



Next, we may use the expressions ofR and R̃ in terms of the Distortion

C, given in (6), and obtain

S =
∫

d4x
√
−g
{

1

2
(1 + γχ)R

+ 1

2
(1 + γχ)

(
DµC

µν
ν − DνC

µν
µ + C

µ
µ λC λν

ν − C
µ
ν λC λν

µ

)
+(β + δζ)(−g)−1/2εµνρσ

(
DµCνρσ + CµρλC λ

ν σ

)
− 1

4

(
γχ2 + ζ2

)}
(15)

where R = R(g) and the covariant derivatives are with respect to

Γλµν
∣∣
LC

. Variation with respect to C
βγ
α gives

1

2
Ω2

(
δαβC

ν
νγ + δαγ C

ν
ν β − C

α
βγ − C

α
γ β

)
−

Ω
2

√
−g

(
εµασβCµγσ + εµασγCµσβ

)
= J

α
β γ

(16)

where

J α
β γ = 1

2
δαγ ∂βΩ2 − 1

2
δαβ∂γΩ2 +

εµαβγ√
−g
∂µΩ

2

Ω2 ≡ 1 + γχ, Ω
2

= β + δζ

(17)



A Solution for the Distortion and the Corresponding Metric
Action

Note that in the previous equation the RHS is antisymmetric in the lower

indices, i.e. J α
β γ = −J α

γ β . Then, we obtain the following solution

Cµνρ =
gµν

2∆

(
Ω2∂ρΩ2 + 4Ω

2
∂ρΩ

2
)
− gµρ

2∆

(
Ω2∂νΩ2 + 4Ω

2
∂νΩ

2
)

+
εµνρσ

∆
√
−g

(
Ω2∂σΩ

2 − Ω
2
∂σΩ2

)
, (18)

where ∆ ≡ Ω4 + 4Ω
4
. Note that

Cµνρ = −Cµρν . (19)

Substituting C back into the action, we obtain the corresponding metric

action

S =

∫
d

4
x
√
−g

{
1

2
Ω2

R(g) +
3

4

(∇Ω2)2

Ω2
− 3

Ω2∆

(
Ω2∇Ω

2 − Ω
2∇Ω2

)2

− 1

4γ
(Ω2 − 1)2 − 1

4δ
(Ω

2 − β)2

}
(20)



Einstein Frame
The Weyl rescaling gµν = Ω−2ḡµν takes us to the Einstein frame. Note

that R(g) = Ω2R̄ − 6Ω3�Ω−1. The action is

S =

∫
d

4
x
√
−ḡ

{
1

2
R̄(ḡ)− 3

Ω4∆

(
Ω2∇̄Ω

2 − Ω
2∇̄Ω2

)2

− 1

Ω4

(
1

γ
(Ω2 − 1)2 +

1

δ
(Ω

2 − β)2

)}
(21)

Introducing the field

σ ≡ Ω
2

2Ω2
, (22)

thescalar part of the Lagrangian becomes

L = − 12(∇̄σ)2

(1 + 16σ2)
− 1

4

(
1

γ
(Ω−2 − 1)2 +

1

δ
(2σ − βΩ−2)2

)
. (23)

Variation with respect to the non-dynamical Ω2 gives

δL
δΩ2

= 0 =⇒ Ω−2 =
δ + 2βγσ

δ + β2γ
=⇒ L = − 12(∇̄σ)2

(1 + 16σ2)
−1

4

(2σ − β)2

(δ + β2γ)
.

(24)



The theory can be expressed in terms of a canonical scalar s defined by

σ =
1

4
sinh(

√
2/3 s) (25)

as

L = −1

2
(∇s)2 − 1

16

(
sinh(

√
2/3 s)− 2β

)2

(δ + β2γ)
. (26)

At least one of γ and δ has to be included in order to generate the
additional pseudoscalar degree of freedom represented by σ. The
inflationary behaviour of this model has been studied by G.Pardisi and
A.Salvio (2022). Note that the parameters γ and δ, associated withR2

and R̃2 , can only have a secondary role in a possible inflationary
behaviour, which would be controlled by β.



R GR

R+ R̃ GR

R+R2 GR

R+ R̃2 σ, No Inflation

R+ R̃+R2 σ, Inflation possible

R+ R̃+ R̃2 σ, Inflation possible

R+ R̃2 +R2 σ, No Inflation

R+ R̃+R2 + R̃2 σ, Inflation possible

I.Antoniadis, A.Karam, A.Lykkas, KT (2018)

G.Pradisi, A.Salvio (2022)



Coupling to a Fundamental Scalar
We consider a scalar φ coupled to quadratic metric-affine gravity

non-minimally. The action is

S =

∫
d

4
x
√
−g

{
1

2
f(φ)R+

1

2
h(φ)R̃ +

γ

4
R2 +

δ

4
R̃2 + Lφ

}
,

(27)

with

Lφ = −1

2
g
µν∂µφ∂νφ − V(φ) . (28)

Introducing the auxiliaries χ and ζ , we arrive at

S =

∫
d

4
x
√
−g

{
1

2
(γχ+ f(φ))R+

1

2
(δζ + h(φ))R̃ −

1

4

(
γχ2 + δζ2

)
+ Lφ

}
(29)

or, introducing

Ω2 = γχ+ f(φ), Ω
2

= δζ + h(φ) , (30)

S =

∫
d

4
x
√
−g

{
1

2
Ω2R+

1

2
Ω

2R̃ −
1

4

(
1

γ
(Ω2 − f(φ))2 +

1

δ
(Ω

2 − h(φ))2

)
+ Lφ

}
(31)



The Corresponding Metric Theory

Rewriting the action in terms of the Distortion and solving for it we arrive

at the action of the corresponding metric theory in the Jordan frame

S =

∫
d

4
x
√
−g

{
1

2
Ω2

R(g) +
3

4

(∇Ω2)2

Ω2
− 3

Ω2∆

(
Ω2∇Ω

2 − Ω
2∇Ω2

)2

−1

4

(
1

γ
(Ω2 − f(φ))2 +

1

δ
(Ω

2 − h(φ))2

)
+ Lφ

}
(32)

The Weyl rescaling gµν → Ω−2gµν takes the action into the Einstein

frame

S =

∫
d

4
x
√
−g

{
1

2
R(g)− 3

Ω4∆

(
Ω2∇Ω

2 − Ω
2∇Ω2

)2

− 1

4Ω4

(
1

γ
(Ω2 − f(φ))2 +

1

δ
(Ω

2 − h(φ))2

)
− 1

2

(∇φ)2

Ω2
− V(φ)

Ω4

}
(33)



Introducing the field σ = Ω
2

2Ω2 , we get the action in the form

S =

∫
d

4
x
√
−g

{
1

2
R − 12(∇σ)2

(1 + 16σ2)
− 1

2

(∇φ)2

Ω2
− σ2

δ

− 1

4γΩ4

(
f(φ)− Ω2

)2 − h(φ)

4δΩ4

(
h(φ)− 4σΩ2

)
− V(φ)

Ω4

}
(34)

Note that no kinetic term for Ω2 appears. Solving for it we obtain

δS
δΩ2

= 0 =⇒ Ω2 =
f(φ)2 + 4γV(φ) + γh2(φ)/δ

f(φ) + 2γσh(φ)/δ − γ(∇φ)2
(35)



Substituting Ω2 into the action we get it in the form

S =

∫
d

4
x
√
−g

{
1

2
R −

1

2
Kφ(φ, σ)(∇φ)2 +

1

4
Lφ(φ)(∇φ)4 −

1

2
Kσ(σ)(∇σ)2 − U(φ, σ)

}
(36)

where

Kφ(φ, σ) = f(φ)+2γσh(φ)/δ
γh2(φ)/δ+f 2(φ)+4γV(φ)

Lφ = γ
γh2(φ)/δ+f 2(φ)+4γV(φ)

Kσ(σ) = 24

1+16σ2

U(φ, σ) = V(φ)
f 2(φ)+4γV(φ) + 1

δ

(
f 2(φ)+4γV(φ)

γh2(φ)/δ+f 2(φ)+4γV(φ)

)
(σ − σ0(φ))2

(37)

where

σ0(φ) =
h(φ)f(φ)/2

f 2(φ) + 4γV(φ)
. (38)

Note that the potential is positive-definite with a minimum line along

σ = σ0(φ).



3D plot of U(φ, σ) for f(φ) = 1 + ξφ2, h(φ) = ξ̄φ+ ξ̄′φ3 and V(φ) = λ
4
φ4



The one-field Lagrangian.

Along the minimum line (red) the potential is just
V(φ)

f 2(φ)+4γV(φ) . However

the kinetic term of φ is modified by − 1

2
Kσ(σ0(φ))(∇σ0(φ))2. The

effective Lagrangian is

Leff = −1

2
K (φ)(∇φ)2 +

1

4
L(φ)(∇φ)4 − U0(φ) (39)

where 

K (φ) =

(
12

1+ 4h(φ)2 f2(φ)

[f2(φ)+4γV(φ)]2

)(
h′(φ)f(φ)+h(φ)f ′(φ)

f 2(φ)+4γV(φ)

− h(φ)f(φ)
[f 2(φ)+4γV(φ)]2 (2f ′(φ)f(φ) + 4γV ′(φ))

)2

L(φ) = γ
γh2(φ)/δ+f 2(φ)+4γV(φ)

U0(φ) = V(φ)
f 2(φ)+4γV(φ)

(40)



Inflation
In what follows we shall addopt the following leading terms of f(φ) and

h(φ), namely

f(φ) = 1 + ξφ2, h(φ) = ξ̄φ+ ξ̄′φ3 . (41)

Note that h(φ) is chosen this way to counteract the parity-odd

coupling h(φ)R̃. We also replace σ with the canonical field

σc = 2
√

6

∫
dσ√

1 + 16σ2
=⇒ σ =

1

4
sinh

(√
2

3
σc

)
. (42)

In an FRW background the equations of motion read

(Kφ + 3Lφφ̇
2)φ̈+ 3H(Kφ + Lφφ̇

2)φ̇+ φ̇σ̇c

∂Kφ

∂σc
+
(

1

2

∂Kφ

∂φ
+ 3

4

∂Lφ

∂φ
φ̇2

)
φ̇2 + ∂U

∂φ
= 0

σ̈c + 3Hσ̇c − 1

2

∂Kφ

∂σc
φ̇2 + ∂U

∂σc
= 0

H2 = 1

3
ρ , ρ = 1

2
Kφφ̇

2 + 3

4
Lφφ̇

4 + 1

2
σ̇2

c + U

Ḣ = − 1

2
(ρ + p) , p = 1

2
Kφφ̇

2 + 1

4
Lφφ̇

4 + 1

2
σ̇2

c − U

(43)



Solving numerically the equations of motion (with V = λφ4/4) we

obtain the plots

102 103 104 105 106 107 108
0

20

40

60

80

100

102 103 104 105 106 107 108

0

2

4

6

8

10

showing that very soon the system falls along the minimum line σ0(φ).
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Single-Field Inflation
Starting with large initial values for the fields, the system, in a relatively

short time, drops into the valey defined by the minimum line σ = σ0(φ)
and its further evolution is described by the single field effective

Lagrangian − 1

2
K (φ)(∇φ)2 + 1

4
L(φ)(∇φ)4 − U0(φ), where K , L and U0

are given in (40). The equations of motion in a FRW background are

(K + 3Lφ̇2)φ̈+ 3H(K + Lφ̇2)φ̇+ 1

2
K
′
φ̇2 + 3

4
L′φ̇4 + U′0 = 0

H2 = 1

3
ρ, ρ = 1

2
K φ̇2 + 3

4
Lφ̇4 + U0

Ḣ = − 1

2
(ρ + p) , p = 1

2
K φ̇2 + 1

4
Lφ̇4 − U0

(44)

Next, we aim at calculating the inflationary observables, namely, the

amplitude of the scalar power spectrum As , the spectral index ns and

the tensor-to-scalar ratio r . Note that, due to the presence of the

quartic kinetic term, the speed of sound is not a constant but given by

c
2
s = (1 + φ̇2

L/K )/(1 + 3φ̇2
L/K ) . (45)

Nevertheless, the deviations from unity will turn out to be insignificant for

the inflationary observables( I.Gialamas, A.Lahanas (2020)).



In order to calculate the observables we consider the Hubble flow

equations1

ε1 = − Ḣ

H2
, ε2 =

ε̇1

ε1H
, s1 =

ċs

csH
. (46)

Keeping only the first order terms in these equations we can arrive at

the following expressions for the tensor and scalar amplitudes at a pivot

scale k? = a?H?/c?s

A?s = H2
?

8π2ε?
1

c?s
(1− 2(D + 1)ε?1 − Dε?2 − (2 + D)s?1 )

A?t = 2H2
?

π2 (1− 2(D + 1− ln c?s )ε?1)

(D = 7/19−ln 3)

(47)

From the Planck 2018 data we have A?s = (2.10± 0.03)× 10−9 at

k? = 0.05Mpc−1. The tensor-to-scalar ratio and the spectral index are

r = A?t /A?s = 16ε?1c?s (1 + 2ε?1 ln c?s + Dε?2 + (2 + D)s?1 )

ns = 1− 2ε?1 − ε?2 − s?1

(48)

1
J.Martin, C.Ringeval, V.Vennim (2013)



The recent release of BICEP/Keck data imposes the bound

r(0.05Mpc−1) < 0.036 at 95%. The combination of WMAP, Planck and

BICEP/Keck data constrains the spectral index as 0.958 < ns < 0.975

at 95% for r = 0.004.

After the end of inflation, the Universe enters a radiation dominated era

through a reheating phase. We shall assume that reheating is

instantaneous (i.e. aend = areh). The number of e-folds during inflation

can be computed from

N? = ln(aend/a?) where k? = a?H?/c
?
s (49)

or

N? = 66.89− ln c
?
s − ln (k?/a0H0) +

1

2

(
3H2

?

ρ
1/3

end

)
− 1

12
ln g

(s)
reh , (50)

where a0, H0 refer to the present epoch and g
(s)
reh is the entropy density

degrees of freedom (106.75 for the Standard Model) at 1 TeV or higher.

This formula can be further reduced to

N0.05 ≈ 55.8 +
1

4
ln(r/0.036)− 1

4
ln(U

end
0 /U

0.05
0 ) . (51)
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Predictions of the model using pivot scales 0.05 Mpc−1 for ns and

0.002 Mpc−1 for r . Shaded regions are the allowed parameter regions
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by the arrow. The small numbers at the edges of the curves indicate the

number of e−folds N0.05.
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(red dashed line) and ξ = 10 (black dotted line). The parameter ξ̄′

varies from 10−3 to 103 in each curve in a counterclockwise direction

indicated by the arrow. The small numbers at the edges of the curves

indicate the number of e−folds N0.05.



ξ ξ̄ ns0.05 r0.05 N0.05 r0.002 N0.002

0.1 3 0.9644 6.72× 10−3 56.15 6.04× 10−3 59.37

1 30 0.9645 1.50× 10−3 55.39 1.35× 10−3 58.61

10 300 0.9645 9.66× 10−4 55.20 8.66× 10−4 58.42

Summary

Summarizing, we have considered a general quadratic Metric-Affine

theory, featuring an extra dynamical degree of freedom, and coupled

it non-minimally to a scalar field. We studied inflation in the resulting

two-field model and found that it effectively reduces to a single-field

model, with a potential of the Palatini-R2 form with its characteristic

inflationary plateau and a modified kinetic term. We find that the

inflationary predictions of this model fall within the latest observational

bounds for a wide range of parameters. Furthermore, it allows for an

increase in the tensor-to-scalar ratio.
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