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Introduction

• Quantum effects in the presence of dynamical gravity have been investi-

gated for over 5 decades.

• For most of this period the interest was academic.

• However, since about twenty years, cosmology has become quantitative

and the issue of the influence of quantum effects resurfaced.

• In many cases in cosmology, quantum effects are not expected to play an

important role.

• There are however, two contexts were they are of crucial importance:

♠ Primordial inflation, where the source of perturbations is a quantum

effect, and where quantum corrections are expected to increase with time.
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♠ The cosmological constant problem, a puzzle between QFT quantum

effects and the measured cosmological constant today.

• In most of cosmology, gravity is treated as semiclassical while matter as

quantum. The reason is that the scales at which gravitational quantum

effects are expected to be non-negligible are large.

• In string theory, the same coupling constant controls both effects. But

large or small volumes and other moduli can create a hierarchy between the

two.

• In standard models of holography, indeed gravity and matter have similar

strengths.

de Sitter, Elias Kiritsis
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de Sitter space

• de Sitter space is a constant positive curvature manifold, which is the

idealization of an accelerating universe.

• It is believed that the space-time during primordial inflation, as well as

today, is close to (part of) de Sitter space.

• QFT on de Sitter space was considered since a long time ago.
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• Perturbative quantization of QFT on non-trivial metrics is text-book

material.
Birrel+Davis

• However, de Sitter space stands apart from other maximally symmetric

spaces when it comes to QFT.

• It was argued by many, that quantum effects destabilize de Sitter space.

• It is a well-known fact that in classical GR, both Minkowski space and de

Sitter space are non-linearly stable.
Christodoulou+Kleinerman, Anderson
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• However, in the presence of quantum effects, instabilities can appear.
Horowitz+Wald,Suen,Jordan, Radjbar-Daemi, Matsui,....

• In the case of de Sitter space, the situation is more serious.

• The two-point function of a massless scalar field in de Sitter space must

break de Sitter invariance due to the presence of a zero mode.
Mazur+Mottola, Allen

• Most probably, the resolution of this, may be similar with what happens

in two flat dimensions,
Hollands
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• In a scalar QFT in de Sitter space, scalar correlators diverge at long

times.
Antoniadis+Iliopoulos+Tomaras, Antoniadis+Mottola, Tsamis+Woodard

• A stochastic formalism was developed to resum large time logs and restore

the validity of perturbation theory, at least for some observables.
Starobinsky, Tsamis+Woodard, Gorbenko+Senatore

• However, a systematic approach to compute quantum effects for massless

fields is lacking.
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• In the context of inflation it was argued that the accumulation of long-

wavelength fluctuations can have important backreaction effects on the

background.
Mukhanov+Abramo+Brandenberger, Abramo+Woodard

• Several authors argued that quantum effects would destabilize the de

Sitter background in the presence of gravitational dynamics, especially due

to the quantum effects of massless particles like the graviton or massless

scalars.
Mottola, Tsamis+Woodard,Miao+Tsamis+Woodard,Polyakov,Dvali
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• It should be however remembered that quantum-triggered instabilities

may be useful as they provide an exit from inflation.

• This was the case of the initial Starobinsky model, in which inflation was

triggered by the conformal anomaly. However, the scalar mode was unstable

but its instability time was too long to make the model observationally

significant.

• Starobinsky replaced the previous model with an R2 driven inflation in

which the scalar mode has the correct instability time to trigger an exit.
Starobinsky, Vilenkin

de Sitter, Elias Kiritsis
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The goals

• So far the problems mentioned, were studied using free or perturbative

QFTs.

• We are interested to know what happens when QFTs are strongly cou-

pled.

• The (solvable) strongly coupled QFTs we know are holographic QFTs.

• Holographic QFTs on de Sitter have been studied but not in connection

to the problems above.

• Our strategy is to use holography and study the back-reaction of four-

dimensional quantum holographic matter on the four-dimensional de Sitter

geometry.
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• There are two aspects of this study:

♠ The back-reaction on the exact de Sitter geometry.

♠ The back-reaction on small modifications of de Sitter.

• In both cases four-dimensional gravity is both classical and dynamical.

de Sitter, Elias Kiritsis
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The theoretical setup

• We consider a holographic QFT4 coupled to 4d classical gravity.

• The classical gravitational theory will contain all couplings necessary for

renormalization.

• The holographic sector describing the strongly coupled (holographic)

QFT4, has a dual that lives in a higher-dimensional space-time (the bulk)

with metric Gab.

• The 4d gravity sector’s dynamical variable is a metric gµν. This metric

couples to the QFT4 and therefore plays the role of a boundary condition

for Gab.
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• From the QFT point of view, gµν is the background metric and therefore

it is the source of the QFT4 stress tensor.

S = Sgrav[gωσ] + Sbulk[Gab, . . .] , ⟨Tµν⟩ =
1
√
g

δSbulk
δgµν

The general form of Sgrav is

Sgrav = −M̄2
P

∫
d4x

√
g

[
−2Λ̄ +R−

ᾱ

384πM2
P

R2−

−
β̄

64πM2
P

(
RµνR

µν −
1

3
R2
)]

+O(R3)

• These are bare coefficients.
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• Sbulk has UV-divergent terms ∼ Λ4,Λ2, log Λ2

µ2
that can be absorbed in the

bare coefficients to give rise to renormalized coefficients that are finite after
removing the cutoff.

M̄P →MP , Λ̄ → Λ , ᾱ→ α , β̄ → β

• The presence of log divergences introduces a new mass parameter in the
theory, µ, related to the conformal anomaly, that is scheme dependent.

• It can be shown, that it appears always in the combination

βeff = β −
N2

π
log

(
4µ2GN2

)
, M2

P =
1

16πG

• The higher curvature terms can be neglected if the cutoff of the gravita-
tional theory is the “species” cutoff

Λspecies =
MP

N

de Sitter, Elias Kiritsis
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Higher Curvature Gravity

• Quadratic-R gravity has been considered since the 70’s as a candidate

for a quantum theory of gravity.
Stelle

Sgrav = −
∫
d4x

√
g

[
M2
P (−2Λ+R)−

α

384π
R2−

−
β

64π

(
RµνR

µν −
1

3
R2
)]

+O(R3)

• It is a renormalizable theory, and has greatly improved UV behavior

compared to standard gauge theories, as part of the graviton propagator

comes from the R2 terms..

• The theory has two extra elementary particles in its spectrum:

♠ A scalar originating in the R2 term with propagator

F−1
scalar(k) =

16πG

3

1

k2 − 4
αG
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• It is a tachyon when α < 0.

♠ A massive graviton with propagator

F−1
flat = 32πG

 1

k2
−

1

k2 + 4
βG

 .

• It is always a ghost, and for β < 0 a tachyon.

• If however, the mass is above the cutoff, (the Planck scale), ie. β ≫ 1

the effective theory is acceptable.

♠ Tachyons and ghosts are generic in higher-curvature gravity.

♠ The quantum effects of QFTs coupled to gravity, generate such higher-

curvature terms, and therefore generate instabilities.

de Sitter, Elias Kiritsis

7-



de Sitter solutions

• In the absence of QFT corrections, the gravitational action has a constant

curvature solution determined by the (renormalized) cosmological constant:

R̄ = 4Λ

• The quantum corrections, however, will alter the curvature of de Sitter

space.

• In this case as we seek constant curvature solution, we can replace all

Ricci and Riemann tensors with their scalar R analogues.

• We consider a (holographic) QFT4 with relevant scale m.

• The effective action in this case becomes an f(R) gravity

S =
∫
d4x

√
g f(R) , f(R) = fgrav(R) + fQFT (R)
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with

fgrav(R) =M2
P (2Λ−R) + αeffR

2

fQFT = ãUV

[
R2

96
log

R

m2
+m4

(
Z

(
R

m2

)
− Z(0)

)
−m2RZ′(0)

]
where

ãUV = (MbulkℓUV )
3

• m is the relevant scale of the QFT4 and Z(x) is computed from the data
of the holographic flow and contains non-analytic contributions.

• fQFT is the trace of ⟨Tµν⟩ of the QFT4.

• Constant curvature solutions must satisfy

2R−R
∂f

∂R
= 0

• For the special case m = 0 this equation becomes
Starobinsky

M2
P (R− 4Λ)−

a

96
R2 = 0

and is valid for any CFT4.
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• There are two solutions

R±
M2
P

=
48

a

1±

√√√√1−
6

Λ

M2
P


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There are two branches of solutions R̃+ (shown in red) and R̃− (shown in blue). The solution R̃ = 4λ̃ in

absence of the CFT is also shown for comparison (black, dashed). No solutions with a backreacted CFT

exist in the shaded grey region. We highlighted the point where the two branches meet as well as the two

solutions for λ̃ = 0 by markers, to help with later comparison with the results from non-CFTs.
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• For QFT4 the curve interpolates (smoothly) between CFTUV and CFTIR.

• If we keep the cutoff ΛCFT of the CFT large but finite we obtain instead

M̄2(R− 4Λ̄) + 12aΛCFT
4

√√√√1+
R

12Λ2
CFT

= 0 .

• An important corollary is that the effective correction to the bare cosmo-

logical constant, coming from a holographic theory is always negative (and

large).

• In perturbative theories it is either positive or negative.
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R̃ vs. Λ̃ for a backreacted CFT for various values of λ̃ . Note that for λ̃ < 0 there is a lower bound on L̃ for

a solution to exist.
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Fluctuations

• To study the stability of our de Sitter solutions, we perturb around them

gµν = ḡµν + δgµν , δgµν = ψḡµν + hµν

• We also assume that

QFT4 → CFT4
• ψ is the (6th) scalar mode that couples to ⟨Tµµ⟩CFT4 = 0

• Therefore its effective equations come only from the R2 terms in the

gravity action.

• The part of the action, quadratic in δg is

S
(2)
eff =

∫
d4x

1

2
δgµν Oµν,ρσgrav δgρσ−

1

2

∫
d4x

∫
d4y δg(x)µν ⟨Tµν(x)T ρσ(y)⟩CFT δg(y)ρσ

9



• Ograv is the local kinetic operator of the quadratic term in the 4d gravity
action Sgrav

• ⟨TµνT ρσ⟩CFT is the two-point function of the stress tensor. Its form is
universal for a CFT.

• The stress tensor two-point function contains both local and non-local
contributions.

• The local contributions simply renormalize the coefficients of the local
terms which are already present in Ograv .

• The non-local contributions are genuine new effects of the CFT which
cannot be found in a local gravity theory.

• This non-analyticity in p2 (or □) exists because we are integrating out
massless degrees of freedom.

• The full propagator, ( F−1), is

Fµνρσ ≡ Oµν,ρσgrav − ⟨TµνT ρσ⟩CFT
9-



and the spectrum of the gravitational propagating modes are the solutions

of the integro-differential equation

Fµνρσ · δgρσ = 0.

• This equation can be recast into two separate scalar spectral equations

for the scalar and tensor modes.

• This is done by decomposing the modes in eigenfunctions of the d’Alembert

operator ∇2 of the background boundary metric ḡµν:

(
∇2 − s

R̄

12

)
δΦ(x) =



−H2
(
ν2 − 9

4

)
δΦ(x) dS

−k2δΦ(x) Minkowski

χ2
(
ν2 − 9

4

)
δΦ(x) AdS

• The values of ν2 (or k2 in the flat case) are determined by the spectral

equation

F(ν) = 0
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• The existence of tachyonic modes is important for the cosmological dy-

namics.

♠ . A scalar tachyonic mode may be a bonus, if it triggers the exit from a

de Sitter phase.

But can also be a problem if its instability time is too short or too long.

♠ A spin-2 tachyonic mode is always disastrous for cosmology: once it is

triggered it starts deforming the homogeneous metric by creating sheer and

in the end completely destroys homogeneity.

♠ From what we know from cosmology, this is not good.

de Sitter, Elias Kiritsis
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Tensor modes in de Sitter

• For tensor modes, the non-local contribution from the CFT stress-tensor

correlator gives rise to non-polynomial expressions for the inverse propaga-

tors:

Ftensor,dS(ν) =
GN2H2

64π2

(
ν2 −

9

4

){
1−

2π

GN2H2
+

2πα

N2
+

−
1

2

(
ν2 −

1

4

) [
log

(
GN2H2

)
−

1

2
+ 2H

(
ν −

1

2

)
+
πβeff

N2

]}
.

where H is the harmonic number function defined as

H(z) =
Γ′(z+1)

Γ(z+1)
+ γE.

• This expression with α = 0 was already obtained by Chesler and Loeb

recently.

• The logarithmic term is due to the conformal anomaly.
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♠ Absence of tachyons ⇒ Re(ν) ≤ 3
2.

♠ Absence of ghosts ⇒ ResF−1(ν) < 0.

• In de Sitter, the presence of tachyonic tensor modes depends on the

curvature H and N in the combination GH2N2, and on the parameters α

and βeff .

• Roughly, tachyon-stability corresponds either to large values of βeff/N
2

and/or to values of H larger than the species scale (GN2)−1/2 (but still

sub-planckian).

• If we set α = βeff = 0, there is a critical value for GN2H2, below which

de Sitter space is tachyon-unstable.

dS Instability : GN2H2 =
H2

Λ2
species

≤ 0.32

10-
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Holographic stability of dS4 for several values of α

α= −1
α= −2/3
α=0
α=1
α=10

Doted lines with large dots, are the boundaries between the stable and unstable regions and have been

computed numerically. Above each curve, we are in a stable regime ( Reν ≥ −3/2)while below, there is a

tachyonic instability ( Reν ≤ −3/2).
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Green:tensor faster. White: scalar faster. Blue: no tachyons.
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• There are always tensor ghosts (tachyonic or not).

• There are regimes however where all ghosts are heavy (at least in units

of the “species” cut-off (GN2)−1/2.

• This typically occurs for small or negative βeff/N
2

• When α = βeff = 0, the mass of the ghost is always larger, but compa-

rable to the species scale for any curvature.

de Sitter, Elias Kiritsis
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Conclusions

• We have investigated classical 4d gravity coupled to a (quantum) holo-

graphic CFT4.

• Our quadratic fluctuation results are valid for ANY CFT4.

• Quantum effects affect the existence of maximal symmetry solutions

(like dS4), and in some cases, (sufficiently large and positive cosmological

constant), such solutions do not exist.

• Quantum effects affect also importantly the stability properties of such

maximal symmetry solutions (like dS4).

• The quantum effects of both free (massive) theories as well as CFT4,

are well-studied (in the past) on the scalar sector, that is mostly unstable

but never contains a ghost.
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• The quantum effects of a CFT4 on the spectrum of spin-2 fluctuations

are also revealing: they make most dS4 spaces unstable for curvatures below

the effective cutoff.

• Sometimes this instability is dominant compared to the scalar instability.

• Similar results with variations exist for Minkowski space and AdS space.

• In particular, Minkowski space is always unstable.

de Sitter, Elias Kiritsis
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Outlook

• Quantum-driven instability results of this type are not new.

• However, our analysis of all possible cases, indicates that their scope is

(almost) all-encompassing.

• Certainly, they must have several implications for cosmology, but these

implications need a more careful analysis.

• It is not known what is the end-point of ghost instabilities in gravity

theories.

• There are two (naive) possibilities:
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♠ Either such instabilities are generic, independent of theory (this rimes

with cosmology and “πάντα ρεί”).

♠ Or semiclassical gravity and QFT have a correlated origin that fine-tunes

these instabilities away.

• This second case could be realizable in string theory:

• However, beyond susy ground-states, even in the string theory case, the

fate of flat space is unknown.

• This could be correlated with de Sitter swampland conjectures.

de Sitter, Elias Kiritsis
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The scalar mode in dS

• The inverse propagator is a polynomial in ν2 (or k2) because the only

propagating scalar mode has a purely local boundary dynamics.

• The inverse propagator in dS4

Fscalar(ν) = −
H2

64πG

[
12αGH2 − 12+

6GN2H2

π

]{
4

αGH2
−

2N2

α
+
(
ν2 −

9

4

)}
.

♠ Absence of tachyons ⇒ Re(ν) ≤ 3
2.

♠ Absence of ghosts ⇒ ResF−1(ν) < 0.

• The scalar is a tachyon if

α

(
GN2H2

2π
− 1

)
< 0.

• The scalar is a ghost if(
πα

N2
+

1

2

)
GN2H2

π
> 1.

14



• The (recurrent) expression

GN2H2 ≃
H2

Λ2
species

is the dimensionless curvature in units of the species cutoff.

de Sitter, Elias Kiritsis
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The scalar mode in Minkowski

• The ”physical” scalar inverse propagator is
Starobinsky, Vilelnkin

Fscalar(k) = −
3

16πG

(
k2 −

4

αG

)

♠ Absence of tachyons ⇒ k2 < 0.

♠ Absence of ghosts ⇒ ResF−1(k2∗) < 0.

• The scalar mode is tachyonic if α > 0.
Starobinsky, Vilenkin

• It is never a ghost.

de Sitter, Elias Kiritsis
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The scalar mode in AdS

• The inverse propagator in AdS4

Fscalar(ν) =
χ2

64πG

[
12αGχ2 +12+

6GN2χ2

π

]{
4

αGχ2
+

2N2

πα
+
(
ν2 −

9

4

)}
.

♠ Absence of tachyons ⇒ Re(ν) ̸= 0.

♠ Absence of ghosts ⇒ ResF−1(ν) > 0.

• scalar tachyon-stability requires:

9

4
−

4

αGχ2

(
1+

GN2χ2

2π

)
≥ 0.

• The scalar is a ghost if(
πα

N2
+

1

2

)
GN2χ2

12π
< −1.

de Sitter, Elias Kiritsis
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Tensor modes in Minkowski space

In Minkowski space the tensor inverse propagator is :

Ftensor,Mink(k) =
N2

64π2
k2
{
−

2π

GN2
+ k2

[
1

4
− γE −

1

2
log

(
GN2k2

)
−

1

2

πβeff

N2

]}

• It is independent of α because the background curvature vanishes.

• The logarithmic contribution k2 is due to the conformal anomaly.

• This is the only non-trivial , beyond 4d-gravity contribution, in Minkowski.

♠ Absence of tachyons ⇒ k2 < 0.

♠ Absence of ghosts ⇒ ResF−1(k2∗) < 0.
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• The non-trivial roots of F are the solutions of a transcendental equation

of the type X logX = a,

• Minkowski space always contains two tachyon-unstable spin-2 modes for

any value of α̃ and β̃eff

17-
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G
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k)
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πβ
N2 = −4.18546

tachyonic instability in units of GN2 given as a function of β̃eff for flat slicing. The red line is the value of

β̃eff where two tachyons merge and move off the real axis when β̃eff is increased.
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• The theory becomes eventually tachyon-stable only in the extreme limit

βeff

N2
→ +∞.

• In this limit however one always finds also a light ghost (both with re-

spect to the Planck scale G−1/2 and with respect to the “species” scale

(GN2)−1/2).

• All in all, the masses of the unstable tensor modes are above the species

cut-off for O(1) values of βeff (this includes the special case α = βeff = 0),

while Minkowski space is unstable within EFT iff |β̃eff| ≫ 1 and indepen-

dently of α̃.

de Sitter, Elias Kiritsis
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Tensor modes in AdS space

• In this case, in the holographic theory, there are two connected bound-

aries, corresponding to two a priori independent copies of the CFT4.

• The standard interpretation is in terms of two copies of a CFT4 on half

R4, interacting via a common interface.

• This is conformally related to two CFT’s on AdS4, with transparent

boundary conditions at their common boundary.

• There is some freedom in how to couple 4d gravity to the CFT4 on AdS4.
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♠ Only one of the two CFT4s is coupled to dynamical gravity, and the

metric on the second boundary is frozen.

F−
tensor,AdS(ν) =

N2χ2

64π2

(
ν2 −

9

4

){
1+

2π

N2

(
1

Gχ2
+ α

)
+

−
1

2
(ν2 − 1/4)

[
πβeff

N2
+ log

(
GN2χ2

)
−

1

2
+

+H
(
−
1

2
− ν

)
+H

(
−
1

2
+ ν

)]}
.

• Again the harmonic sum function H(ν) controls the complexity of graviton

poles.
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• Symmetric boundary conditions:

• In this case there is effectively a single boundary and there is again a

single dynamical gravity theory coupled to a single 4d CFT on AdS.

• Therefore the interpretation is in terms of a single CFT4 coupled to a

dynamical near-AdS4 metric.

Fsym
tensor,AdS(ν) =

N2χ2

64π2

(
ν2 −

9

4

){
1+

2π

N2

(
1

Gχ2
+ α

)
+

−
1

2
(ν2 − 1/4)

[
πβeff

N2
+ log

(
GN2χ2

)
−

1

2

+H(ν −
1

2
) +H(−ν −

1

2
)−

π

cosπν

]}
.

♠ Absence of tachyons ⇒ Re(ν) ̸= 0.

♠ Absence of ghosts ⇒ ResF−1(ν) > 0.
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Dashed lines are the analytical predictions obtained from the large |ν| approximation. Dots are numerical
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• The tensor modes can be tachyonic or not depending on the parameters.

• We find that the tachyon instability disappears as α/N2 becomes large.

• If GN2χ2 is not too large, it disappears also if βeff/N
2 become large.

• In the α = βeff = 0 case, AdS space-time is tachyon-stable for any

curvature.
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This figure displays the mass of the ghost tensor pole in AdS, in units of the species scale

de Sitter, Elias Kiritsis
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The holographic RG Flow at constant curvature

C
(
R
m2

)
=

4−∆

4 ãuv
⟨O⟩m−∆ = G

(
R
m2

)
− 1

2
R
m2 G′

(
R
m2

)
,

i.e. C(Rm−2) is proportional to the vev in units of the (relevant) coupling

constant m.

⟨T ren,µ
µ ⟩ = −

ãuv

48
R2 − (∆− 4)⟨O⟩m4−∆ .

C
(
R
m2

)
=

4−∆

4 ãuv
⟨O⟩m−∆ = G

(
R
m2

)
− 1

2
R
m2 G′

(
R
m2

)
− G

(
0
)
− 1

2
R
m2G′

(
0
)
,

= C
(
R
m2

)
− C

(
0
)
− R
m2 C

′
(
0
)
.
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• For
∣∣∣∣ Rm2

∣∣∣∣→ 0 and
∣∣∣∣ Rm2

∣∣∣∣→ ∞ we can derive analytic expressions for C
(
R
m2

)
.

lim
R→∞

C

(
R

m2

)
= O

( ( R
m2

)∆UV−2 )
,

lim
R→0

C

(
R

m2

)
=

1

192

(
1−

ãir
ãuv

)
R2

m4
+O

(R3

m6

)
+O

( ( R
m2

)∆IR
− −2 )

.

Back to the talk

de Sitter, Elias Kiritsis
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