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General motivation |: Constrained systems

» In a classical FT we may have to impose constraints in the
phase space.

» Dealing with constraints at the quantum level may be
problematic when quantizing.

» Even if the original theory is a "good one", e.g. CFT, unitary,
renormalizable etc, not clear these properties will be retained
after constraints are imposed.



General motivation Il: o-models and integrable systems

» o-models originated in particle physics [Gell-Mann & Levy 1960]
and have a variety of applications: From string theory to
condensed matter and statistical physics.

» A natural extension of CFT's but perhaps more interesting as
QFT's since they have: non-vanishing beta-functions,
operators aquiring anomalous dimensions. etc.. Also, their
degrees of freedom reduce in the RG flow from the UV to the
IR.

» A subclass of o-models are integrable, i.e. in a sense, they
have infinitely many independent conserved charges.

» Notable properties:

> Factorizable S-matrix (all from two-particle scattering).
» No-particle production, i.e. a /4 a+ b, neither particle
transmutation, i.e. a+ b /4 c+d.



General framework: Integrability under constraints

» Integrable models seem the best arena for studying the fate of
a QFT after a constraint is imposed.

» |ssues to be addressed:
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Is the system still integrable, classically and quantum
mechanically?

Is it renormalizable? If yes, do the beta-functions resemble in
any way the original ones? Do we see a reduction of d.o.f.?

» General remarks on the S-matrix:
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Traditionally constructed for solitonic states; not derived from
a Lagrangian, e.g. [Hasenfratz-Maggiore-Niedermayer 90].
Expanding the action of a generic integrable theory around the
trivial vacuum the spectrum contains massless excitations.
Very effective for calculating B-functions and anomalous
dimensions of operators [Georgiou-KS 19],

Connection to integrability is lost: The S-matrix obtained
allows for particle production already at tree-level [Nappi 79]
and is not factorizable [Hoare-Levine-Tseytlin 18].



The idea and outline

» Choose an integrable o-model.

» Try to find a non-trivial vacuum so that elementary excitations
become massive.

» Impose a classical constraint and compute the resulting action.

» Compute the scattering matrix at tree level and demonstrate
no-particle production/transmutation.

» Compute the beta-function and see if one may infer a
reduction of the d.o.f. from it.

» Concluding remarks.



The model, the pp-wave and post pp-wave correction

The general o-model action is
1
S= T / d2(7(Gw, + Buy)dyx"o_x", ct=140.
The specific model and its properties

The background fields are [KS 13]
» The metric

1+A 1-A% 5 2, o202
ds® = 2k (Ad O uc(dﬁ +sin ﬁd’y) .

» The antisymmetric tensor

B =2k <—1x + (lA_(oj\))z sinrxcosoc) sinBdpAdy,

where
Aa) = (1—A)?cos?a+ (1+A)%sin®a.
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The physical range of the parameter A is 0 < A < 1.
Geometrically, it describes a deformation of S (for A = 0).
For A = 0 it describes a CFT WZW model.

Integrable [KS 13]: The egs of motion can put in the Lax form.
They exist infinitely many independent conserved charges.

The trivial vacuum of the theory is at & = 0.
Expanding around it results in massless excitations.

For our purposes need to do extras...



The pp-wave and post pp-wave corrections [Georgiou-KS 22]

We add time t and follow Penrose’s procedure for a plane wave
» A null geodesic is

7T
a:,BZE, t

» Consider the change of variables (t,a,B,7) — (x*,x™, x1, x2)

1 J1+A L X 1 I+ A L xT
~2 17A(X T)’ T3 17/\<X + k)'
T 1-A 7r 1+A

=t maEnt PEa T maon

» In the limit kK > 1, the Lagrangian has the expansion

L=L04 %d” +0O(1/k?),



» L£(%) has a metric and an antisymmetric tensor (omitted below)

. 1//1-A\3 , 144
ds(©)2 = 2dx*t dx~ + dx? + dxd — Z((HA) S+ _Ax§) (dx)? .

» Represents a plane wave in its Brinkmann form.
> A deformation of the [Nappi-Witten 92] CFT (for A = 0)

» Interactions are encoded in the O(1/k) terms with

1 1—A\3 1+A _ 1/1—AN3
ds(1)2:f§<(1+/\) X3+ 1_}\xzz)dx+dx —E(—) X3 dx3

1 (1=A)*1—10A+A2) 4 14+A\2 , 1-A\2 5 5| 4o
24{ (1+A)5 X1+<1—A) X2+3<1+A) (™)

and an antisymmetric tensor (omitted).
Interactions quartic in the fields.

They are still massless excitations.... associated with x.



Imposing the constraint [Georgiou-KS 22]

» We impose the constraints (Virasoro) following from varying
the o-model w.r.t world-sheet metric

» Since the background is curved the world-sheet metric has to
be chosen to be consistent with choosing the light cone gauge

xt=1.
as the eq. of motion with respect to x™.

» Using the above the light-cone action is

Lo =+ L) +0a/R) .



» The free part is

0 1/, ) 1
£ = S (3 +58 = X2 —xf) + 5 (mixd + md) + gxaxp

2
where
m2—1(1*/\)3 o 11+ o 1442
L7 g\140) 27311 & (1—A)(1+A)3

» We have obtained the desired non-diagonal mass matrix.

» The interacting part £1(1C) contains quartic in the x's terms
with 0 to 3 derivatives w.r.t. T and 0.

» The light cone action is not manifestly Lorentz invariant since
x* = T singles out the time coordinate.



Computing the S-matrix

The spectrum

» We pass to momentum space and diagonalize the mass matrix.
» The dispersion relations are (p* = (E, p))

2 2
ms + m
Vi E—\/p2+122\/(m§mf)2/4+g2p2,

2 2
ms + m
Yo: E= \/P2+122+\/(m§—m%)2/4+g2p2 ,

» Dispersion curves for particle 1 (lower) and particle 2 (upper)
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No particle transmutation or production - tree level

The interaction in momentum space is

l.c.

(27)?

where the five couplings 7,(A, p;), are certain functions of A and
of the spatial momenta p;, i = 1,2, 3,4 of the particles.

» Particle transmutation (as well as with reverse arrows)

141 =142, 1+1—=242, 24+2-—=2+1,

» Particle creation (or destruction by reversing the arrows)
1—-14+14+1, 22524141, 2—1+4+141,

and

114142, 114242, 124242,
2—=24+2+1, 2—=2+2+2.

d?py - - - d?
s :/M6<2)(P1+~~~+P4)(j1 X1(P1)X1(P2)X1(P3)X1(P4)+~~> v



All of the above processes have vanishing amplitudes even
when allowed by kinematics.

This is due to the specific expressions for the couplings
Ji(A, pi) following from integrability.
The slightest modification leads to non-vanishing amplitudes.

In addition, due to the absence of terms of O(1/k'/?) and
0(1/k3/2) the 3- and 5-point contact amplitudes that would
have been originated from such terms are zero.

These are strong hints that the integrability of the parent
theory in preserved even after imposing the constraints.

The non-vanishing amplitudes correspond to
1+1—->141, 14223142, 2423242,

The S-matrix is unitary, i.e. S=1+ i( ) F



Renormalization and the beta-function

[Georgiou-Loukopoulos-KS-Siampos, to appear]

From classical to quantum the simplest not trivial issue to address.
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Can we compute the beta-function for the coupling A7

The (Virasoro) constraint is imposed classically not on a CFT.
The theory has broken manifest Lorentz invariance. Hence not
obvious that this will be possible.

The beta-function of the original theory is [Itsios-Siampos-KS 14]

dA 2 A2
dinu k (1+A)

5 +0(1/k%)

where 1 is the RG energy scale.

For the case at hand, does it resemble this, if renormalizable ?



The computation is done using the heat kernel method.

» One finds the fluctuations under x; — x, + dx,, a = 1,2 of
the classical egs. of motion and casts them in the form

Dab5xb =0 ,
where D, is a certain differential 2 x 2 matrix operator.

» Going in momentum space and integrating out the fluctuations
gives the effective Lagrangian

w42
d ” s In(det D)"1/2,

l.c.

e =0 + 2L +/
where 11 is the UV cut-off.

» Expand at high momenta and pick up In y?-terms.



> After a specific coordinate transformation of (T,¢) and wave
function renormalization for the fields we find

1 1 In 12
Legs = §<X12 +53 — X —X§2) +t5m (1 + .k /V1>X:%
In 2

In 2 Inp< /
p N, )xlxz—i—... ,

+; 2<1+TN2))<2)+ g(1+

for certain functions Ny 4 (A).
> Recall also that m; »(A) and g(A) are functions of A.
» Physics is scale independent, i.e. 9, L = 0. Hence

/\2

Pr=- k(1T+A)

s+ O(1/K) .

» Non-trivial that this suffices for all three terms in Lg!

» This is half of that of the original model. Indicates a reduction
of the d.o.f due to imposing the constraint. (there is no
C-theorem [A. Zamolodchikov 86]).



Concluding remarks

and a couple of future directions...

» We have studied classical and quantum mechanical properties
of a constrained o-model.

» Classical integrability persists after imposing the constrained.
Is this picture retained when loops are included?

» The beta-function indicates a reduction of d.o.f.
Is there an analogue of Zamolodchikov's C-theorem?

» What about other models?
Can we draw more general conclusions for constrained
systems?
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