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General motivation I: Constrained systems

I In a classical FT we may have to impose constraints in the
phase space.

I Dealing with constraints at the quantum level may be
problematic when quantizing.

I Even if the original theory is a "good one", e.g. CFT, unitary,
renormalizable etc, not clear these properties will be retained
after constraints are imposed.



General motivation II: σ-models and integrable systems

I σ-models originated in particle physics [Gell-Mann & Levy 1960]
and have a variety of applications: From string theory to
condensed matter and statistical physics.

I A natural extension of CFT’s but perhaps more interesting as
QFT’s since they have: non-vanishing beta-functions,
operators aquiring anomalous dimensions. etc.. Also, their
degrees of freedom reduce in the RG flow from the UV to the
IR.

I A subclass of σ-models are integrable, i.e. in a sense, they
have infinitely many independent conserved charges.

I Notable properties:
I Factorizable S-matrix (all from two-particle scattering).
I No-particle production, i.e. a 6→ a+ b, neither particle

transmutation, i.e. a+ b 6→ c + d .



General framework: Integrability under constraints

I Integrable models seem the best arena for studying the fate of
a QFT after a constraint is imposed.

I Issues to be addressed:
I Is the system still integrable, classically and quantum

mechanically?
I Is it renormalizable? If yes, do the beta-functions resemble in

any way the original ones? Do we see a reduction of d.o.f.?

I General remarks on the S-matrix:
I Traditionally constructed for solitonic states; not derived from

a Lagrangian, e.g. [Hasenfratz-Maggiore-Niedermayer 90].
I Expanding the action of a generic integrable theory around the

trivial vacuum the spectrum contains massless excitations.
I Very effective for calculating β-functions and anomalous

dimensions of operators [Georgiou-KS 19],
I Connection to integrability is lost: The S-matrix obtained

allows for particle production already at tree-level [Nappi 79]
and is not factorizable [Hoare-Levine-Tseytlin 18].



The idea and outline

I Choose an integrable σ-model.

I Try to find a non-trivial vacuum so that elementary excitations
become massive.

I Impose a classical constraint and compute the resulting action.

I Compute the scattering matrix at tree level and demonstrate
no-particle production/transmutation.

I Compute the beta-function and see if one may infer a
reduction of the d.o.f. from it.

I Concluding remarks.



The model, the pp-wave and post pp-wave correction
The general σ-model action is

S =
1
2π

∫
d2σ(Gµν + Bµν)∂+x

µ∂−x
ν , σ± = τ ± σ .

The specific model and its properties
The background fields are [KS 13]
I The metric

ds2 = 2k
(
1+ λ

1− λ
dα2 +

1− λ2

∆(α)
sin2 α

(
dβ2 + sin2 βdγ2

))
.

I The antisymmetric tensor

B = 2k
(
−α +

(1− λ)2

∆(α)
sin α cos α

)
sin β dβ ∧ dγ ,

where
∆(α) = (1− λ)2 cos2 α + (1+ λ)2 sin2 α .



I The physical range of the parameter λ is 0 6 λ < 1.

I Geometrically, it describes a deformation of S3 (for λ = 0).

I For λ = 0 it describes a CFT WZW model.

I Integrable [KS 13]: The eqs of motion can put in the Lax form.
They exist infinitely many independent conserved charges.

I The trivial vacuum of the theory is at α = 0.
Expanding around it results in massless excitations.

I For our purposes need to do extras...



The pp-wave and post pp-wave corrections [Georgiou-KS 22]

We add time t and follow Penrose’s procedure for a plane wave.

I A null geodesic is

α = β =
π

2
, t = γ .

I Consider the change of variables (t, α, β,γ)→ (x+, x−, x1, x2)

t =
1
2

√
1+ λ

1− λ

(
x+ − x−

k

)
, γ =

1
2

√
1+ λ

1− λ

(
x+ +

x−

k

)
,

α =
π

2
+

√
1− λ

2k(1+ λ)
x1 , β =

π

2
+

√
1+ λ

2k(1− λ)
x2 .

I In the limit k � 1, the Lagrangian has the expansion

L = L(0) +
1
k
L(1) +O(1/k2) ,



I L(0) has a metric and an antisymmetric tensor (omitted below)

ds(0)2 = 2dx+dx− + dx2
1 + dx2

2 −
1
4

((1− λ

1+ λ

)3
x2
1 +

1+ λ

1− λ
x2
2

)
(dx+)2 .

I Represents a plane wave in its Brinkmann form.
I A deformation of the [Nappi-Witten 92] CFT (for λ = 0)

I Interactions are encoded in the O(1/k) terms with

ds(1)2 = −1
2

((1− λ

1+ λ

)3
x2
1 +

1+ λ

1− λ
x2
2

)
dx+dx− − 1

2

(1− λ

1+ λ

)3
x2
1 dx2

2

+
1
24

[
(1− λ)4(1− 10λ + λ2)

(1+ λ)6
x4
1 +

(1+ λ

1− λ

)2
x4
2 + 3

(1− λ

1+ λ

)2
x2
1 x

2
2

]
(dx+)2

and an antisymmetric tensor (omitted).
Interactions quartic in the fields.

They are still massless excitations.... associated with x±.



Imposing the constraint [Georgiou-KS 22]

I We impose the constraints (Virasoro) following from varying
the σ-model w.r.t world-sheet metric

I Since the background is curved the world-sheet metric has to
be chosen to be consistent with choosing the light cone gauge

x+ = τ .

as the eq. of motion with respect to x−.

I Using the above the light-cone action is

Ll.c. = L
(0)
l.c. +

1
k
L(1)l.c. +O(1/k2) .



I The free part is

L(0)l.c. =
1
2

(
ẋ2
1 + ẋ2

2 − x ′21 − x ′22

)
+

1
2
(m2

1x
2
1 +m2

2x
2
2 ) + gx1x

′
2 ,

where

m2
1 =

1
4

(1− λ

1+ λ

)3
, m2

2 =
1
4
1+ λ

1− λ
, g = − 1+ λ2√

(1− λ)(1+ λ)3
.

I We have obtained the desired non-diagonal mass matrix.

I The interacting part L(1)
l.c. contains quartic in the x ’s terms

with 0 to 3 derivatives w.r.t. τ and σ.

I The light cone action is not manifestly Lorentz invariant since
x+ = τ singles out the time coordinate.



Computing the S-matrix

The spectrum
I We pass to momentum space and diagonalize the mass matrix.
I The dispersion relations are (pα = (E , p))

Y1 : E =

√
p2 +

m2
1 +m2

2
2

−
√
(m2

2 −m2
1)

2/4+ g2p2 ,

Y2 : E =

√
p2 +

m2
1 +m2

2
2

+
√
(m2

2 −m2
1)

2/4+ g2p2 ,

I Dispersion curves for particle 1 (lower) and particle 2 (upper)
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No particle transmutation or production - tree level

The interaction in momentum space is

S
(1)
l.c. =

∫
d2p1 · · · d2p4

(2π)2
δ(2)(p1 + · · ·+ p4)

(
J1 X1(p1)X1(p2)X1(p3)X1(p4) + . . .

)
,

where the five couplings Ja(λ, pi ), are certain functions of λ and
of the spatial momenta pi , i = 1, 2, 3, 4 of the particles.

I Particle transmutation (as well as with reverse arrows)

1+ 1→ 1+ 2 , 1+ 1→ 2+ 2 , 2+ 2→ 2+ 1 ,

I Particle creation (or destruction by reversing the arrows)

1→ 1+ 1+ 1 , 2→ 2+ 1+ 1 , 2→ 1+ 1+ 1 ,

and

1→ 1+ 1+ 2 , 1→ 1+ 2+ 2 , 1→ 2+ 2+ 2 ,
2→ 2+ 2+ 1 , 2→ 2+ 2+ 2 .



I All of the above processes have vanishing amplitudes even
when allowed by kinematics.

I This is due to the specific expressions for the couplings
Ji (λ, pi ) following from integrability.
The slightest modification leads to non-vanishing amplitudes.

I In addition, due to the absence of terms of O(1/k1/2) and
O(1/k3/2) the 3- and 5-point contact amplitudes that would
have been originated from such terms are zero.

I These are strong hints that the integrability of the parent
theory in preserved even after imposing the constraints.

I The non-vanishing amplitudes correspond to

1+ 1→ 1+ 1 , 1+ 2→ 1+ 2 , 2+ 2→ 2+ 2 .

The S-matrix is unitary, i.e. S = 1 + i
k (· · · ) + . . . .



Renormalization and the beta-function
[Georgiou-Loukopoulos-KS-Siampos, to appear]

From classical to quantum the simplest not trivial issue to address.

I Can we compute the beta-function for the coupling λ?

I The (Virasoro) constraint is imposed classically not on a CFT.
The theory has broken manifest Lorentz invariance. Hence not
obvious that this will be possible.

I The beta-function of the original theory is [Itsios-Siampos-KS 14]

βλ =
dλ

d ln µ2 = − 2
k

λ2

(1+ λ)2
+O(1/k2) ,

where µ is the RG energy scale.

I For the case at hand, does it resemble this, if renormalizable ?



The computation is done using the heat kernel method.

I One finds the fluctuations under xa → xa + δxa, a = 1, 2 of
the classical eqs. of motion and casts them in the form

Dabδxb = 0 ,

where Dab is a certain differential 2× 2 matrix operator.

I Going in momentum space and integrating out the fluctuations
gives the effective Lagrangian

−Leff = L
(0)
l.c. +

1
k
L(1)l.c. +

∫ µ

0

d2p

(2π)2
ln(detD)−1/2 ,

where µ is the UV cut-off.

I Expand at high momenta and pick up ln µ2-terms.



I After a specific coordinate transformation of (τ, σ) and wave
function renormalization for the fields we find

Leff =
1
2

(
ẋ2
1 + ẋ2

2 − x ′21 − x ′22

)
+

1
2
m2

1

(
1+

ln µ2

k
N1

)
x2
1

+
1
2
m2

2

(
1+

ln µ2

k
N2

)
x2
2 ) + g

(
1+

ln µ2

k
Ng

)
x1x
′
2 + . . . ,

for certain functions N1,2,g (λ).

I Recall also that m1,2(λ) and g(λ) are functions of λ.

I Physics is scale independent, i.e. ∂µLeff = 0. Hence

βλ = − 1
k

λ2

(1+ λ)2
+O(1/k2) .

I Non-trivial that this suffices for all three terms in Leff!

I This is half of that of the original model. Indicates a reduction
of the d.o.f due to imposing the constraint. (there is no
C -theorem [A. Zamolodchikov 86]).



Concluding remarks
and a couple of future directions...

I We have studied classical and quantum mechanical properties
of a constrained σ-model.

I Classical integrability persists after imposing the constrained.
Is this picture retained when loops are included?

I The beta-function indicates a reduction of d.o.f.
Is there an analogue of Zamolodchikov’s C -theorem?

I What about other models?
Can we draw more general conclusions for constrained
systems?
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