Classical and quantum aspects of a constrained FT

Konstantinos Sfetsos
National and Kapodistrian University of Athens \& CERN

HEP2023-Ioannina, 6 April 2023

Based mainly on (recent) work:

- with G. Georgiou, Nucl.Phys. B987 (2023) 116096, arXiv:2208.01072 [hep-th]
- with G. Georgiou, A. Loukopoulos and K. Siampos, in progress

General motivation I: Constrained systems

- In a classical FT we may have to impose constraints in the phase space.
- Dealing with constraints at the quantum level may be problematic when quantizing.
- Even if the original theory is a "good one", e.g. CFT, unitary, renormalizable etc, not clear these properties will be retained after constraints are imposed.

General motivation II: σ-models and integrable systems

- σ-models originated in particle physics [Gell-Mann \& Levy 1960] and have a variety of applications: From string theory to condensed matter and statistical physics.
- A natural extension of CFT's but perhaps more interesting as QFT's since they have: non-vanishing beta-functions, operators aquiring anomalous dimensions. etc.. Also, their degrees of freedom reduce in the RG flow from the UV to the IR.
- A subclass of σ-models are integrable, i.e. in a sense, they have infinitely many independent conserved charges.
- Notable properties:
- Factorizable S-matrix (all from two-particle scattering).
- No-particle production, i.e. $a \nrightarrow a+b$, neither particle transmutation, i.e. $a+b \nrightarrow c+d$.

General framework: Integrability under constraints

- Integrable models seem the best arena for studying the fate of a QFT after a constraint is imposed.
- Issues to be addressed:
- Is the system still integrable, classically and quantum mechanically?
- Is it renormalizable? If yes, do the beta-functions resemble in any way the original ones? Do we see a reduction of d.o.f.?
- General remarks on the S-matrix:
- Traditionally constructed for solitonic states; not derived from a Lagrangian, e.g. [Hasenfratz-Maggiore-Niedermayer 90].
- Expanding the action of a generic integrable theory around the trivial vacuum the spectrum contains massless excitations.
- Very effective for calculating β-functions and anomalous dimensions of operators [Georgiou-KS 19],
- Connection to integrability is lost: The S-matrix obtained allows for particle production already at tree-level [Nappi 79] and is not factorizable [Hoare-Levine-Tseytlin 18].

The idea and outline

- Choose an integrable σ-model.
- Try to find a non-trivial vacuum so that elementary excitations become massive.
- Impose a classical constraint and compute the resulting action.
- Compute the scattering matrix at tree level and demonstrate no-particle production/transmutation.
- Compute the beta-function and see if one may infer a reduction of the d.o.f. from it.
- Concluding remarks.

The model, the pp-wave and post pp-wave correction
The general σ-model action is

$$
S=\frac{1}{2 \pi} \int d^{2} \sigma\left(G_{\mu v}+B_{\mu v}\right) \partial_{+} x^{\mu} \partial_{-} x^{v}, \quad \sigma^{ \pm}=\tau \pm \sigma .
$$

The specific model and its properties
The background fields are [KS 13]

- The metric

$$
d s^{2}=2 k\left(\frac{1+\lambda}{1-\lambda} d \alpha^{2}+\frac{1-\lambda^{2}}{\Delta(\alpha)} \sin ^{2} \alpha\left(d \beta^{2}+\sin ^{2} \beta d \gamma^{2}\right)\right) .
$$

- The antisymmetric tensor

$$
B=2 k\left(-\alpha+\frac{(1-\lambda)^{2}}{\Delta(\alpha)} \sin \alpha \cos \alpha\right) \sin \beta d \beta \wedge d \gamma
$$

where

$$
\Delta(\alpha)=(1-\lambda)^{2} \cos ^{2} \alpha+(1+\lambda)^{2} \sin ^{2} \alpha .
$$

- The physical range of the parameter λ is $0 \leqslant \lambda<1$.
- Geometrically, it describes a deformation of S^{3} (for $\lambda=0$).
- For $\lambda=0$ it describes a CFT WZW model.
- Integrable [KS 13]: The eqs of motion can put in the Lax form. They exist infinitely many independent conserved charges.
- The trivial vacuum of the theory is at $\alpha=0$. Expanding around it results in massless excitations.
- For our purposes need to do extras...

The pp-wave and post pp-wave corrections [Georgiou-KS 22]
We add time t and follow Penrose's procedure for a plane wave.

- A null geodesic is

$$
\alpha=\beta=\frac{\pi}{2}, \quad t=\gamma
$$

- Consider the change of variables $(t, \alpha, \beta, \gamma) \rightarrow\left(x^{+}, x^{-}, x_{1}, x_{2}\right)$

$$
\begin{aligned}
& t=\frac{1}{2} \sqrt{\frac{1+\lambda}{1-\lambda}}\left(x^{+}-\frac{x^{-}}{k}\right), \quad \gamma=\frac{1}{2} \sqrt{\frac{1+\lambda}{1-\lambda}}\left(x^{+}+\frac{x^{-}}{k}\right), \\
& \alpha=\frac{\pi}{2}+\sqrt{\frac{1-\lambda}{2 k(1+\lambda)}} x_{1}, \quad \beta=\frac{\pi}{2}+\sqrt{\frac{1+\lambda}{2 k(1-\lambda)}} x_{2} .
\end{aligned}
$$

- In the limit $k \gg 1$, the Lagrangian has the expansion

$$
\mathcal{L}=\mathcal{L}^{(0)}+\frac{1}{k} \mathcal{L}^{(1)}+\mathcal{O}\left(1 / k^{2}\right)
$$

- $\mathcal{L}^{(0)}$ has a metric and an antisymmetric tensor (omitted below)

$$
d s^{(0) 2}=2 d x^{+} d x^{-}+d x_{1}^{2}+d x_{2}^{2}-\frac{1}{4}\left(\left(\frac{1-\lambda}{1+\lambda}\right)^{3} x_{1}^{2}+\frac{1+\lambda}{1-\lambda} x_{2}^{2}\right)\left(d x^{+}\right)^{2}
$$

- Represents a plane wave in its Brinkmann form.
- A deformation of the [Nappi-Witten 92] CFT (for $\lambda=0$)
- Interactions are encoded in the $\mathcal{O}(1 / k)$ terms with

$$
\begin{aligned}
& d s^{(1) 2}=-\frac{1}{2}\left(\left(\frac{1-\lambda}{1+\lambda}\right)^{3} x_{1}^{2}+\frac{1+\lambda}{1-\lambda} x_{2}^{2}\right) d x^{+} d x^{-}-\frac{1}{2}\left(\frac{1-\lambda}{1+\lambda}\right)^{3} x_{1}^{2} d x_{2}^{2} \\
& +\frac{1}{24}\left[\frac{(1-\lambda)^{4}\left(1-10 \lambda+\lambda^{2}\right)}{(1+\lambda)^{6}} x_{1}^{4}+\left(\frac{1+\lambda}{1-\lambda}\right)^{2} x_{2}^{4}+3\left(\frac{1-\lambda}{1+\lambda}\right)^{2} x_{1}^{2} x_{2}^{2}\right]\left(d x^{+}\right)^{2}
\end{aligned}
$$

and an antisymmetric tensor (omitted).
Interactions quartic in the fields.
They are still massless excitations.... associated with $x^{ \pm}$.

Imposing the constraint [Georgiou-KS 22]

- We impose the constraints (Virasoro) following from varying the σ-model w.r.t world-sheet metric
- Since the background is curved the world-sheet metric has to be chosen to be consistent with choosing the light cone gauge

$$
x^{+}=\tau
$$

as the eq. of motion with respect to x^{-}.

- Using the above the light-cone action is

$$
\mathcal{L}_{\text {l.c. }}=\mathcal{L}_{\text {l.c. }}^{(0)}+\frac{1}{k} \mathcal{L}_{\text {l.c. }}^{(1)}+\mathcal{O}\left(1 / k^{2}\right) .
$$

- The free part is

$$
\mathcal{L}_{\text {l.c. }}^{(0)}=\frac{1}{2}\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}-x_{1}^{\prime 2}-x_{2}^{\prime 2}\right)+\frac{1}{2}\left(m_{1}^{2} x_{1}^{2}+m_{2}^{2} x_{2}^{2}\right)+g x_{1} x_{2}^{\prime}
$$

where

$$
m_{1}^{2}=\frac{1}{4}\left(\frac{1-\lambda}{1+\lambda}\right)^{3}, \quad m_{2}^{2}=\frac{1}{4} \frac{1+\lambda}{1-\lambda}, \quad g=-\frac{1+\lambda^{2}}{\sqrt{(1-\lambda)(1+\lambda)^{3}}} .
$$

- We have obtained the desired non-diagonal mass matrix.
- The interacting part $\mathcal{L}_{\text {l.c. }}^{(1)}$ contains quartic in the x 's terms with 0 to 3 derivatives w.r.t. τ and σ.
- The light cone action is not manifestly Lorentz invariant since $x^{+}=\tau$ singles out the time coordinate.

Computing the S-matrix

The spectrum

- We pass to momentum space and diagonalize the mass matrix.
- The dispersion relations are $\left(p^{\alpha}=(E, p)\right)$

$$
\begin{aligned}
& Y_{1}: \quad E=\sqrt{p^{2}+\frac{m_{1}^{2}+m_{2}^{2}}{2}-\sqrt{\left(m_{2}^{2}-m_{1}^{2}\right)^{2} / 4+g^{2} p^{2}}}, \\
& Y_{2}:
\end{aligned}, \quad E=\sqrt{p^{2}+\frac{m_{1}^{2}+m_{2}^{2}}{2}+\sqrt{\left(m_{2}^{2}-m_{1}^{2}\right)^{2} / 4+g^{2} p^{2}}}, ~ l
$$

- Dispersion curves for particle 1 (lower) and particle 2 (upper)

No particle transmutation or production - tree level
The interaction in momentum space is
$S_{\text {I.c. }}^{(1)}=\int \frac{d^{2} p_{1} \cdots d^{2} p_{4}}{(2 \pi)^{2}} \delta^{(2)}\left(p_{1}+\cdots+p_{4}\right)\left(\mathcal{J}_{1} X_{1}\left(p_{1}\right) X_{1}\left(p_{2}\right) X_{1}\left(p_{3}\right) X_{1}\left(p_{4}\right)+\ldots\right)$,
where the five couplings $\mathcal{J}_{a}\left(\lambda, p_{i}\right)$, are certain functions of λ and of the spatial momenta $p_{i}, i=1,2,3,4$ of the particles.

- Particle transmutation (as well as with reverse arrows)

$$
1+1 \rightarrow 1+2, \quad 1+1 \rightarrow 2+2, \quad 2+2 \rightarrow 2+1
$$

- Particle creation (or destruction by reversing the arrows)

$$
1 \rightarrow 1+1+1, \quad 2 \rightarrow 2+1+1, \quad 2 \rightarrow 1+1+1
$$

and

$$
\begin{array}{ll}
1 \rightarrow 1+1+2, & 1 \rightarrow 1+2+2, \quad 1 \rightarrow 2+2+2 \\
2 \rightarrow 2+2+1, & 2 \rightarrow 2+2+2 .
\end{array}
$$

- All of the above processes have vanishing amplitudes even when allowed by kinematics.
- This is due to the specific expressions for the couplings $\mathcal{J}_{i}\left(\lambda, p_{i}\right)$ following from integrability.
The slightest modification leads to non-vanishing amplitudes.
- In addition, due to the absence of terms of $\mathcal{O}\left(1 / k^{1 / 2}\right)$ and $\mathcal{O}\left(1 / k^{3 / 2}\right)$ the 3- and 5-point contact amplitudes that would have been originated from such terms are zero.
- These are strong hints that the integrability of the parent theory in preserved even after imposing the constraints.
- The non-vanishing amplitudes correspond to

$$
1+1 \rightarrow 1+1, \quad 1+2 \rightarrow 1+2, \quad 2+2 \rightarrow 2+2
$$

The S-matrix is unitary, i.e. $S=\mathbb{1}+\frac{i}{k}(\cdots)+\ldots$

Renormalization and the beta-function

[Georgiou-Loukopoulos-KS-Siampos, to appear]
From classical to quantum the simplest not trivial issue to address.

- Can we compute the beta-function for the coupling λ ?
- The (Virasoro) constraint is imposed classically not on a CFT. The theory has broken manifest Lorentz invariance. Hence not obvious that this will be possible.
- The beta-function of the original theory is [Itsios-Siampos-KS 14]

$$
\beta_{\lambda}=\frac{d \lambda}{d \ln \mu^{2}}=-\frac{2}{k} \frac{\lambda^{2}}{(1+\lambda)^{2}}+\mathcal{O}\left(1 / k^{2}\right)
$$

where μ is the RG energy scale.

- For the case at hand, does it resemble this, if renormalizable ?

The computation is done using the heat kernel method.

- One finds the fluctuations under $x_{a} \rightarrow x_{a}+\delta x_{a}, a=1,2$ of the classical eqs. of motion and casts them in the form

$$
D_{a b} \delta x_{b}=0
$$

where $D_{a b}$ is a certain differential 2×2 matrix operator.

- Going in momentum space and integrating out the fluctuations gives the effective Lagrangian

$$
-\mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {l.c. }}^{(0)}+\frac{1}{k} \mathcal{L}_{\text {l.c. }}^{(1)}+\int_{0}^{\mu} \frac{d^{2} p}{(2 \pi)^{2}} \ln (\operatorname{det} D)^{-1 / 2}
$$

where μ is the UV cut-off.

- Expand at high momenta and pick up $\ln \mu^{2}$-terms.
- After a specific coordinate transformation of (τ, σ) and wave function renormalization for the fields we find

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =\frac{1}{2}\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}-x_{1}^{\prime 2}-x_{2}^{\prime 2}\right)+\frac{1}{2} m_{1}^{2}\left(1+\frac{\ln \mu^{2}}{k} N_{1}\right) x_{1}^{2} \\
& \left.+\frac{1}{2} m_{2}^{2}\left(1+\frac{\ln \mu^{2}}{k} N_{2}\right) x_{2}^{2}\right)+g\left(1+\frac{\ln \mu^{2}}{k} N_{g}\right) x_{1} x_{2}^{\prime}+\ldots,
\end{aligned}
$$

for certain functions $N_{1,2, g}(\lambda)$.

- Recall also that $m_{1,2}(\lambda)$ and $g(\lambda)$ are functions of λ.
- Physics is scale independent, i.e. $\partial_{\mu} \mathcal{L}_{\text {eff }}=0$. Hence

$$
\beta_{\lambda}=-\frac{1}{k} \frac{\lambda^{2}}{(1+\lambda)^{2}}+\mathcal{O}\left(1 / k^{2}\right)
$$

- Non-trivial that this suffices for all three terms in $\mathcal{L}_{\text {eff }}$!
- This is half of that of the original model. Indicates a reduction of the d.o.f due to imposing the constraint. (there is no C-theorem [A. Zamolodchikov 86]).

Concluding remarks

and a couple of future directions...

- We have studied classical and quantum mechanical properties of a constrained σ-model.
- Classical integrability persists after imposing the constrained. Is this picture retained when loops are included?
- The beta-function indicates a reduction of d.o.f. Is there an analogue of Zamolodchikov's C-theorem?
- What about other models?

Can we draw more general conclusions for constrained systems?

