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SO(10)

Usually broken via one or more intermediate steps to the SM

G = S0O(10)/Spin(10)
H=5SU(@3)exU(1)em.
IIo(G/H) = 111 (H) = Monopoles

II,(G/H) = 1Iy(H) = Zs = Cosmic Strings (provided
G — H breaking uses only tensor representations)

Zy C Z4 (center of SO(10))

[T. Kibble, G. Lazarides, Q.S., PLB, 1982]

Intermediate scale monopoles and cosmic strings may survive
inflation.

Recent work suggests that this Zs symmetry can yield

plausible cold dark matter candidates.

[Mario Kadastik, Kristjan Kannike, and Martti Raidal Phys. Rev. D 81 (2010), 015002; Yann Mambrini,
Natsumi Nagata, Keith A. Olive, Jeremi Quevillon, and Jiaming Zheng Phys.Rev. D91 (2015) no.9,
095010 ; Sofiane M. Boucenna, Martin B. Krauss, Enrico Nardi Phys.Lett. B755 (2016) 168-17]



SO(10) Breaking Chains
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R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys. Rev. D 68, 103514 (2003)



SO(10) Breaking Chains
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D. I. Dunsky, A. Ghoshal, H. Murayama, Y. Sakakihara, and G. White, Phys. Rev. D 106, 075030 (2022)



Topological defects in GUT

Topological defects
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J. Chakrabortty, RM, S. F. King, PRD 99 (2019) 095008




Composite Topological Structures in SO(10)

SO(10) breaking via:
o SU(B) x U(1)y,
o SU(4). x SU(2)L, x SU(2)rg,
e and SU(5) x U(1)x (flipped SU(5)).

We find composite topological structures that include:

e a network of Z strings which develop monopoles and turn into
necklaces with the structure of Z, strings,

e dumbbells connecting two different types of monopoles, or
monopoles and antimonpoles,

e starfish-like configurations,

e polypole configurations, and

e walls bounded by a necklace.



Dumbbell configuration in

SO(10) breaking via SU(5) x U(1),
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Figure 1. SO(10) monopole carrying U(1)y Zs Coulomb flux and U(1), Zs magnetic flux tube.
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Figure 2. Dumbbell consisting of an SO(10) monopole (red)-antimonopole (green) pair connected

by a U(1), Zs flux tube.
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Figure 3. SO(10) monopole and dumbbell configurations after the EW breaking.



Starfish configuration in

SO(10) breaking via SU(5) x U(1),

Full Uy
Coulomb flux

;-, of Full U()y
Coulomb flux

Figure: Starfish-like configuration with a central multimonopole connected to
five SO(10) antimonopoles by U(1)x Zs tubes.



Necklace configuration in

SO(10) breaking via SU(5) x U(1),
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Figure: Necklace of monopoles (red) and antimonopoles (green) connected by
U(1)y Zyo tubes, which carry half the flux of the Zs tubes and correspond to a
rotation by 27 /10 along U(1). These tubes can be thought of as hybrid
structures consisting of a Z» tube (magenta) and two Zs anti-tubes (blue)



‘Schwinger’ Monopole
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Necklace configuration in
SO(10) breaking via 4 —2 — 2

Figure: The antimonopole of the blue monopole is the brown monopole, and
the antimonopole of the red monopole is the green monopole. This necklace is
a realization of the Zs string.



Polypole configuration in

SO(10) breaking via 4 —2 — 2
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Figure: A polypole configuration with the three tubes from the red
trimonopole after the breaking of U(1)pr x U(1)r terminating on one green
(anti-red) and two blue monopoles.



Necklace configuration in

SO(10) breaking via Flipped SU(5)
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Figure: Necklace corresponding to Zs strings in the flipped SU(5) model.



Walls Bounded by Strings

@ Consider the breaking chain

SO(10) & SU4). x SU(2), x SU(2)r

R
SU(B)C X SU(Q)L X U(l)y

@ The first step leaves unbroken the discrete symmetry ‘C’ (also
known as ‘D’) that interchanges left and right, and conjugates the
representations.

@ The 126 vev breaks ‘C” which produces domain walls

@ Thus we end up with walls bounded by strings.
Similar structures also arise in axion models.



Walls bounded by a Necklace in

SO(10) breaking via SU(5) x U(1),
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Figure: Emergence of a Z> domain wall (orange) from each segment of the
necklace due to the breaking of the Z; subgroup of U(1)y by the VEV of a
v°-type Higgs field and its conjugate, with the necklace ultimately becoming

the boundary of the Z2 wall.



V\/a||S BOU nded Makinen, V itriev, et al. (Nature, 20

HQVs in the PdB phase

KIBBLE-LAZARIDES-SHAFI (KLS) WALL or WALL BOUNDED BY STRINGS

Composite defect suggested in the context of phase transitions in the early Universe:

Pha: =  Phase 2 =  Phase 3 g:fg;;'ﬂ; (1982)
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Cosmic Strings from SO(10)

Cosmic Strings arise during symmetry breaking of G — H if
71(G/H) is non-trivial. Consider

SO(10) MEUT SU(4) x SU(2)1, x SU(2)r 2 SM x Zs Mass
per unit length of string is u ~ M?, with M; < Mp. The strength

of string gravity is determined by the dimensionless parameter
Gp < 1.

Cosmic
Horizon

Closed
Loop



Stochastic Gravitational Waves from Strings

@ Unresolved GWs bursts from string loops at different cosmic era
produces the stochastic background.

@ Loops that are formed and decay during radiation produce a plateau in
the spectrum in the high frequency regime.

@ Loops that are produced during radiation dominance but decay during
matter dominance generate a sharply peaked spectrum at lower
frequencies.

@ Loops that are produced and decay during matter domination also
generate a sharply peaked spectrum which, however, is overshadowed by
the previous case.
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Sousa, Avelino, Guedes, PRD 101 (2020) 10, 103508



GWs without Inflation and Observational Prospects
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e Stringent constraint from PPTA: G < 10711

@ Provisional GWs signal in NANOGrav: G ~ 10710,



Evolution of Strings in Inflationary Cosmology

@ The mean inter-string distance at cosmic time ¢ (temp = T'):

2
dsgw = p E(OI> eXp<NSU‘) (tf) 3 %
A~ » A A
- 1 =
Inter-string sepera-  Expansion Expansion dur-  Expansion
tion at production  during Infla- ing Inflaton after reheat-
¢=min (17-1mg!)  tion oscillations ing

@ The string network re-enters the post-inflationary horizon at cosmic time

tpif
F ‘ dstr(tF> — dhor(tF) ‘

. 2t (radiation dominance)
with dpor (t F) =
3ty (matter domination).

Chakrabortty, Lazarides, Maji, Shafi JHEP 02 (2021) 114



String Loops and Gravitational Waves

@ After horizon re-entry the strings inter-commute and form loops at any
subsequent time ¢;.

@ Loops of initial length [; = «at; decay via emission of gravity waves.
@ The redshifted frequency of a normal mode k, emitted at time £, as

observed today, is given by

PO 2k ith k=123, .
a(to) at; — TGu(t —t;)
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o Partially inflated strings re-enter horizon at time ¢ in post-inflationary

universe and deca

@ Modified GWs spectra from ‘diluted’ strings can satisfy the PPTA bound.

——— Without Inflation (£=10-%sec)
Minimum ¢z from PPTA

107® 1077 107¢
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y via emission of GWs.

Lazarides, Maji, Shafi, PRD 104 (2021) 9, 095004



String Loops and Gravitational Waves

@ After horizon re-entry the strings inter-commute and form loops at any
subsequent time ¢;.

@ Loops of initial length [; = «at; decay via emission of gravity waves.
@ The redshifted frequency of a normal mode k, emitted at time £, as

observed today, is given by

PO 2k ith k=123, .
a(to) at; — TGu(t —t;)




Metastable Strings

@ The metastable string network decays via the Schwinger
production of monopole-antimonopole pairs with a rate per
string unit length of

2
Iy = &exp(—m%s)’ Kes = m
2m Mes
where m ~ Mg is the monopole mass and ks quantifies the
metastability of cosmic strings network with /kcs ~ 10 being
the stability limit as the lifetime of cosmic strings becomes

larger than the age of the Universe.

R
L



Quasistable Strings

@ The strings are not topologically stable and connect
monopoles and anti-monopoles.

@ However, their lifetime of decay via quantum mechanical
tunneling is larger than the age of the Universe, and
the monopoles are partially inflated.

@ Therefore, the strings make random walks with steps of the
order of the horizon and form a network of stable strings
before the horizon reentry of the monopoles.

@ We call these quasi-stable strings as they form a stable
network until the horizon reentry of monopoles.



Quasi-stable Cosmic Strings

o Example:
SO(10) MUy SU(4). x SU(2)1, x SU(2)r
M SU(3)e x U(L)p_r, x SU(2)1 x U(1)g
Mt 517(3), x SU2)L x U(1)y.

e Strings formed at M;; connect monopole-antimonopole (M M) pairs
formed at M7.

e Strings are topologically unstable: I'y = 4~ exp (—Wm?u / ,u) with
oo~ WMIZI and mpyr ~ IOM[.

o Strings are practically stable if (m3,/u)'/? > 8.7.
Lazarides, Maji, Shafi JCAP 08 (2022) 042



Gravitational Waves from Quasi-stable Strings

o Intermediate scale magnetic monopoles, created prior to the cosmic
strings, experience partial inflation.

@ The strings reenter the horizon (¢ ) earlier than the M M pairs (¢57),
form random walks with step of the order of the horizon, and
inter-commute generating loops which decay into gravitational waves.

@ As monopoles reenter the horizon we obtain monopole-antimonopole
pairs connected by string segments which also decay into gravitational
waves.

Lazarides, Maji, Shafi JCAP 08 (2022) 042



Gravitational Waves from Quasi-stable Strings

o Long string loops and segments are absent.

o Gravitational wave spectrum in the low frequency region is reduced.
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Lazarides, Maji, Shafi JCAP 08 (2022) 042
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