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Introduction

Consider a quantum mechanical system with many degrees of
freedom, such as a spin chain or a quantum field.
Assume it is in the ground state |Ψ⟩, which is a pure state (zero
temperature).
The density matrix of the total system is ρtot = |Ψ⟩⟨Ψ|.
Its von Neumann entropy Stot = −trρtot log ρtot vanishes.
Now divide the total system into subsystems A and B and
assume that B is inaccessible to A.
Trace out the part B of the Hilbert space in order to obtain the
reduced density matrix of A: ρA = trBρtot.
The entropy SA = −trAρA log ρA is a measure of the
entanglement between A and B.
It is nonvanishing and SA = SB.
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In a static background, the leading contribution to the
entanglement entropy is proportional to the area of the
entangling surface separating subsystems A and B:

SA ∼ ∂A
ϵd−1 + subleading terms.

Massless scalar field in 3+1 dimensions and a spherical
entangling surface:

SA = s (R/ϵ)2 + c log(R/ϵ) + d
s ≃ 0.3 (scheme-dependent) (Srednicki 1993)

c = −1/90 (universal) (Lohmayer, Neuberger, Schwimmer,
Theisen 2009).
Conformal field theory in 1+1 dimensions, with central charge c:
For a finite system of physical length L with boundaries, divided
into two pieces of lengths ℓ and L − ℓ:

SA =
c
6 ln

(
2L
πϵ

sin
πℓ

L

)
+ c̄′1,

with c̄′1 scheme-dependent. (Cardy, Calabrese 2004)
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How does the entanglement entropy evolve in a time-dependent
background?
Volume term?
de Sitter space (Maldacena, Pimentel 2013).
Relevance for the expanding Universe.
Explicit calculations are hard even in a static background.
Analytical calculations mostly use the replica trick. They exist
for low-dimensional or highly symmetric quantum field theories
(CFTs).
The Ryu-Takayanagi proposal provides a simpler framework in
the context of the AdS/CFT correspondence. However, it applies
only to theories that have a gravitational dual.
We generalize Srednicki’s approach to expanding backgrounds.
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Plan

The quantum field as a collection of quantum oscillators.
Cosmology primer.
The oscillator wave function in an expanding background.
Entanglement entropy of two quantum oscillators.
Entanglement entropy of a quantum field in 1 + 1 dimensions.
Entanglement entropy of a quantum field in 3 + 1 dimensions.
Conclusions.
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Expanding the field in momentum modes

Consider a free scalar field ϕ(τ, x) in a FRW background

ds2 = a2(τ)
(
dτ2 − dr2 − r2dΩ2) .

With the definition ϕ(τ, x) = f(τ, x)/a(τ), the action becomes

S =
1
2

∫
dτ d3x

(
f′2 − (∇f)2 +

(
a′′
a − a2m2

)
f2
)
.

The field f(τ, x) has a canonically normalized kinetic term.
For de Sitter: a(τ) = −1/(Hτ) with −∞ < τ < 0, and

S =
1
2

∫
dτ d3x

(
f′2 − (∇f)2 +

2κ
τ2 f2

)
,

where κ = 1 − m2/2H2.
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The eom (Mukhanov-Sasaki equation) in Fourier space is

f′′k + k2fk − 2κ
τ2 fk = 0.

Its general solution is

fk(τ) = A1
√
−τ Jν (−kτ)+A2

√
−τ Yν (−kτ) ν =

1
2
√

1 + 8κ.

Bunch-Davies vacuum: A1 = −
√
π

2 , A2 = −
√
π

2 i. For τ → −∞ we
get a positive-frequency mode function similarly to flat space:

fk(τ) ≃
1√
2k

e−ikτ .

For κ = 1 (massless scalar), the full solution reads

fk(τ) =
1√
2k

e−ikτ
(

1 − i
kτ

)
.

For kτ → 0− the mode becomes superhorizon and the oscillations
stop. The mode freezes.
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The quantum field can be expressed as

f̂(τ, x) =
∫ d3k

(2π)3/2

[
fk(τ)âk + f∗k(τ)â

†
k

]
eik·x

where â†k, âk are standard creation and annihilation operators.
The variance of the field is

⟨̂f2⟩ =
∫

d ln k k3

2π2 |fk(τ)|
2, |fk(τ)|2 = −π4 τ

[
J2
ν (−kτ) + Y2

ν (−kτ)
]
.

For a massless field (ν = 3/2), it results in the known
scale-invariant inflationary power spectrum.
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For superhorizon modes with kτ → 0− the second term in the
mode function of a massless scalar dominates. If only this term is
retained one obtains

fk(τ) = − i√
2k3/2

1
τ
= −τ f′k(τ)

and
π̂(τ, x) = −1

τ
f̂(τ, x).

The fact that the dominant term of the field and the dominant
term of its conjugate momentum commute indicates that for
most of its properties it can be viewed as a classical stochastic
field instead of a quantum one.
However, the full quantum field and its conjugate always obey
the canonical commutation relation. This is guaranteed by the
presence of the subleading first term in the mode function.
The entanglement entropy is of purely quantum origin, for which
a classical description is inadequate. It does not vanish for
superhorizon modes.
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One may consider the momentum-space entanglement between
high and low-momentum modes, such as between modes with
physical momenta below and above the Hubble scale H.
For a free field described by a quadratic action, where the
momentum modes do not interact, the entanglement entropy
would vanish, as long as the initial state can be written as a
tensor product of one state for each momentum mode, as in the
Minkowski vacuum.
The reduced density matrix, when some modes are traced over,
would be one of a pure state, namely the state of the modes
which have not been traced out.
We are interested in the entanglement between degrees of
freedom localized within two spatial regions separated by an
entangling surface. For a dS background one may consider the
entanglement between the interior of a horizon-size region of
radius 1/H and the exterior.
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Expanding the field in coordinate space
For spherical entangling surfaces, define the spherical moments

flm (r) = r
∫

dΩYlm (θ, φ) f (x), πlm (r) = r
∫

dΩYlm (θ, φ)π (x),

where Ylm are real spherical harmonics.
Discretize the radial coordinate as rj = jϵ, where 1 ≤ j ≤ N.
UV cutoff: 1/ϵ. IR cutoff: 1/L with L = Nϵ. We set ϵ = 1.
Define the canonically commuting degrees of freedom

flm (jϵ) → flm,j, πlm (jϵ) → πlm,j
ϵ

.

Hamiltonian:

H =
1
2ϵ

∑
l,m

N∑
j=1

[
π2

lm,j +

(
j + 1

2

)2( flm,j+1
j + 1 − flm,j

j

)2

+

(
l (l + 1)

j2 − 2κ
(τ/ϵ)2

)
f2lm,j

]
.
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We would like to trace out the oscillators with jϵ < R.
The ‘ground state’ of the system is the product of the ‘ground
states’ of the modes that diagonalize the Hamiltonian.
In the Bunch-Davies vacuum as a ‘ground state’ of a mode we
must define the solution of the time-dependent Schrödinger
equation which reduces to the usual simple harmonic oscillator
ground state as τ → −∞.
One must determine first the eigenmodes of this system of
coupled oscillators. The wave function of each mode depends on a
linear combination of the various flm,j. Various (l,m) do not mix.
In summary, the discretized Hamiltonian for the free field in an
inflationary background has the form

H =
1
2ϵ

∑
l,m

N∑
j=1

[
π̃2

lm,j +

(
ω2

lm,j −
2κ

(τ/ϵ)2

)
f̃2lm,j

]
, (1)

with f̃lm,j the canonical coordinates.
We need to solve for the harmonic oscillator with a
time-dependent eigenfrequency of the form ω0 − 2κ/τ2.
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de Sitter era
Oscillator with time-dependent frequency

ω2(τ) = ω2
0 − 2κ

τ2 .

Find the general solution of the Ermakov equation

b′′(τ) + ω2(τ)b(τ) = ω2
0

b3(τ)

in terms of two linearly independent solutions of

y′′(τ) + ω2(τ)y(τ) = 0,

as
b2(τ) = c1 y2

1(τ) + c2 y2
2(τ) + 2c3 y1(τ)y2(τ).

c1, c2 and c3 must obey c1c2 − c2
3 = A, with A a constant that

depends on the form of ω(τ).
For the problem at hand y1 =

√
−τ Jν (−ω0τ) and

y2 =
√
−τ Yν (−ω0τ), where A = π2ω2

0/4.
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c1, c2 are fixed through appropriate initial conditions.
b(τ) must tend to 1 for τ → −∞.

b2(τ) = −π2ω0τ
(
J2
ν (−ω0τ) + Y2

ν (−ω0τ)
)
.

The solution of the Schrödinger equation can now be expressed as

F(τ, f) = 1√
b(τ)

exp

(
i
2

b′(τ)

b(τ) f2
)

F0
(∫ dτ

b2(τ)
,

f
b(τ)

)
,

where F0(τ, f) is a solution with constant frequency ω0.
Variance of the conjugate operators f̂ and π̂ = −i∂/∂f:

⟨̂f2⟩ = b2(τ)

2ω0
= −π4 τ

(
J2
ν (−ω0τ) + Y2

ν (−ω0τ)
)
, ⟨π̂2⟩ = ω0

2b2(τ)
+

b′2(τ)

2ω0
.

For κ > 0 and τ → −∞, we have ∆f∆π → 1/2.
When b(τ) diverges for τ → 0−, we have ∆f =→ ∞, ∆π → ∞.
For κ > 0 and τ → 0−, we have ∆f/∆π → 0. The uncertainty is
much larger in the determination of the momentum.
Squeezed state.
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Figure: The form of the function b(τ) for ω0 = 1 and κ =1, 0.5, 0, −0.1, −2
(from top to bottom).
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Figure: The amplitude of the ‘ground-state’ wave function for ω0 = 5.
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Figure: The real part of the ‘ground-state’ wave function for ω0 = 5.
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Radiation and matter domination

Figure: Left plot: The form of the function b(τ) for ω0 = 1 and H = 2, and
τ0 = 0.5. The black line corresponds to the dS era, the blue line to a RD
era, the red lines to the MD era.
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Figure: Left plot: The amplitude of the ‘ground-state’ wave function for the
transition from a dS to a RD background at τ = 0.5, for ω0 = 1, H = 2.
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Figure: Left plot: The amplitude of the ‘ground-state’ wave function for the
transition from a dS to a MD background at τ = 0.5, for ω0 = 1, H = 2.
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Figure: Left plot: The product of uncertainties ∆f∆π during the evolution
of the wave function.
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Entanglement entropy of two quantum oscillators
Hamiltonian

H =
1
2
[
p2

1 + p2
2 + k0(x2

1 + x2
2) + k1(x1 − x2)

2 − λ(τ)(x2
1 + x2

2)
]
.

For oscillators arising from a massive field in dS, λ(τ) = 2κ/τ2.
For a massless field in a general background, λ(τ) = a′′/a.
The Hamiltonian can be rewritten as

H =
1
2
[
p2
+ + p2

− + w2
+(τ)x2

+ + w2
−(τ)x2

−
]
,

x± = x1±x2√
2 , ω2

0+ = k0, ω
2
0− = k0 + 2k1, w2

±(τ) = ω2
0± − λ(τ).

The ‘ground state’ is the tensor product of the ‘ground states’ of
the two decoupled normal modes:

ψ0(x+, x−) =

(
Ω+Ω−

π2

) 1
4

exp

[
−1

2
(
Ω+x2

+ +Ω−x2
−
)
+

i
2
(
G+x2

+ + G−x2
−
)]
,

Ω±(τ) ≡
ω0±

b2(τ ;ω0±)
, G±(τ) ≡

b′(τ ;ω0±)

b(τ ;ω0±)
.
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Express the wave function in terms of x1, x2.
The reduced density matrix is given by

ρ(x2, x′
2) =

∫ +∞

−∞
dx1ψ0(x1, x2)ψ

∗
0(x1, x′

2).

The Gaussian integration gives

ρ(x2, x′
2) =

√
γ − β

π
exp

(
−γ2 (x

2
2 + x′2

2 ) + βx2x′
2

)
exp

(
iδ2 (x

2
2 − x′2

2 )

)
,

where γ, β, δ are functions of Ω±, G±.
The eigenfunctions of the reduced density matrix satisfy∫ +∞

−∞
dx′

2ρ(x2, x′
2)fn(x′

2) = pnfn(x2).

One finds

fn(x) = Hn(
√
αx) exp

(
−α2 x2

)
exp

(
iδ2x2

)
,

where α =
√
γ2 − β2 and Hn is a Hermite polynomial.
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The eigenvalues pn are

pn =

√
2(γ − β)

γ + α

(
β

γ + α

)n
= (1 − ξ)ξn,

where
ξ =

β

γ + α
.

They satisfy
∞∑

n=0
pn = (1 − ξ)

∞∑
n=0

ξn = 1.

The entanglement entropy can be calculated as

S = −
∞∑

n=0
(1 − ξ)ξn ln [(1 − ξ)ξn] = − ln (1 − ξ)− ξ

1 − ξ
ln ξ.
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Figure: Left plot: The entanglement entropy in a dS background as a
function of conformal time τ for ω+ = 1, ω− = 2 and κ =1, 0.5, 0.2, 0, −0.1,
−0.5 (from top to bottom).
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Figure: Left plot: The entanglement entropy in a dS background as a
function of conformal time τ for ω+ = 1, ω− = 0.2 and κ =1, 0.5, 0.2, 0,
−0.1, −0.5 (from top to bottom).
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Figure: Left plot: The entanglement entropy as a function of conformal
time τ for ω+ = 1, ω− = 1.5, H = 2 and τ0 = 0.5. The black line
corresponds to a dS background, with a transition at τ0 to either a RD era
(blue line) or to a MD era (red line).

N. Tetradis University of Athens
Entanglement and Expansion



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction Fields and oscillators The wave function Two oscillators The quantum field Conclusions

Figure: Similarly to the previous plot for ω+ = 0.1, ω− = 0.25, H = 2 and
τ0 = 0.5.
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The generalization to a system of N coupled oscillators proceeds
along the lines of the original work of Srednicki.
The system is assumed to lie in the ground state of each
canonical mode in the asymptotic past (Bunch-Davies vacuum).
Later this becomes a squeezed state, with a wave function that
reflects the horizon crossing and freezing of each mode.
When n oscillators are traced out, the reduced density matrix is

ρ(x2, x′
2) =

(
detRe(γ − β)

πN−n

)1/2

×exp

(
−1

2xT
2 γ x2 −

1
2x′T

2 γ x′
2 + xT

2 β x′
2 +

i
2xT

2 δ x2 −
i
2x′T

2 δ x′
2

)
.

γ and δ are (N − n)× (N − n) real symmetric matrices, while β is
a (N − n)× (N − n) Hermitian matrix.
The eigenvalues of the density matrix do not depend on δ.
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A major technical difficulty arises because the matrices γ and β
cannot be diagonalized through real orthogonal transformations
in order to identify the eigenvalues of the reduced density matrix.
These are guaranteed to be real by the nature of the density
matrix, but the determination of their exact values requires an
extensive analysis.
A method has been developed for their computation. A detailed
presentation is given in the publications.
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Entanglement entropy of a quantum field in 1 + 1 dimensions
Consider a toy model of a massless scalar field in 1 + 1
dimensions. The field is canonically normalized.
Assume a background given by the FRW metric, neglecting the
angular part. The curvature scalar R is equal to −2H2.
The de Sitter era can be mimicked by including an effective mass
term arising from a non-minimal coupling to gravity ξRϕ2 with
ξ = −1/2.
The Hamiltonian of the discretized system is

H =
1
2ϵ

N−1∑
j=2

[
π2

j + (fj+1 − fj)2 − 2κ
(τ/ϵ)2 f2j

]
+

1
2ϵ

∑
j=1,N

[
π2

j + f2j −
2κ

(τ/ϵ)2 f2j
]
,

with κ = 1. We have modified the action for the oscillators at the
ends of the chain, so as to impose boundary conditions
corresponding to a vanishing field at the endpoints.
The radiation dominated era with κ = 0 can be mimicked by
assuming a transition to a flat background with R = 0 at some
time τ0.
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Figure: The entanglement entropy resulting from tracing out the part
n < k ≤ N of a one-dimensional chain at various times, for a dS background.
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For τ → −∞, the entanglement entropy can be described very
well by the expression

S =
c
6 ln

(
2L
πϵ

sin
πℓ

L

)
+ c̄′1, (2)

with c = 1, in agreement with Cardy, Calabrese 2004.
For τ → 0− the entanglement entropy can be described very well
by the expression

S = ln

(
2L a(τ)
πϵ

sin
πℓ

L

)
+ d, (3)

where a(τ) = −1/(Hτ).
The entropy grows with the number of efoldings N = ln a(τ).
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20 40 60 80 100
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Figure: The entanglement entropy resulting from tracing out the part
n < k ≤ N of a one-dimensional chain at various times. The transition from
a dS to a RD background (black line) occurs at τ0 = −5. During the RD
era, the maximal entanglement entropy (red line) is first achieved at τ = 85,
and the minimal entanglement entropy (blue line) at τ = 40. For clarity, we
also display the entanglement entropy at these times in the right plot.
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Entanglement entropy of a quantum field in 3 + 1 dimensions
Massless scalar field in 3 + 1 dimensions.
Hamiltonian:

H =
1
2ϵ

∑
l,m

N∑
j=1

[
π2

lm,j +

(
j + 1

2

)2( flm,j+1
j + 1 − flm,j

j

)2

+

(
l (l + 1)

j2 − 2κ
(τ/ϵ)2

)
f2lm,j

]
,

with κ = 1.
Trace out the oscillators with jϵ < R.
Sum over l,m.
Fit the result with a function (ϵ = 1)

S = s(τ)R2 + c(τ)R3 + d(τ).

The logarithmic correction is assumed to be subleading.
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Preliminary results

Figure: Entanglement entropy as a function of entangling radius and time.
The red lines indicate the location of the horizon at various times. The
black line indicates the entropy at the time τ0 = −5 of the transition from
the de Sitter era with H = 10 to the radiation dominated era.
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Figure: The coefficient of the quadratic term in the entanglement entropy.
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Figure: The coefficient of the cubic term in the entanglement entropy.
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Momentum modes that start as pure quantum fluctuations in the
Bunch-Davies vacuum during inflation are expected to freeze
when they exit the horizon and transmute into classical
stochastic fluctuations.
This is only part of the picture. Even though its classical features
are dominant, the field never loses its quantum nature.
The various modes evolve into squeezed states.
The squeezing triggers a strong enhancement of quantum
entanglement. The effect is clearly visible in the entanglement
entropy.
The enhancement is proportional to the number of efoldings
during the inflationary era.
The entanglement entropy survives during the eras of radiation
or matter domination. A volume effect appears during these eras.
Quantum mechanical picture of reheating?
Observable consequences?
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