Entanglement and Expansion

Nikolaos Tetradis

University of Athens

Introduction

- Consider a quantum mechanical system with many degrees of freedom, such as a spin chain or a quantum field.
- Assume it is in the ground state $|\Psi\rangle$, which is a pure state (zero temperature).
- The density matrix of the total system is $\rho_{\text {tot }}=|\Psi\rangle\langle\Psi|$.
- Its von Neumann entropy $\mathrm{S}_{\text {tot }}=-\operatorname{tr} \rho_{\text {tot }} \log \rho_{\text {tot }}$ vanishes.
- Now divide the total system into subsystems A and B and assume that B is inaccessible to A.
- Trace out the part B of the Hilbert space in order to obtain the reduced density matrix of $\mathrm{A}: \rho_{\mathrm{A}}=\operatorname{tr}_{\mathrm{B}} \rho_{\mathrm{tot}}$.
- The entropy $\mathrm{S}_{\mathrm{A}}=-\operatorname{tr}_{\mathrm{A}} \rho_{\mathrm{A}} \log \rho_{\mathrm{A}}$ is a measure of the entanglement between A and B .
- It is nonvanishing and $\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}$.
- In a static background, the leading contribution to the entanglement entropy is proportional to the area of the entangling surface separating subsystems A and B:

$$
\mathrm{S}_{\mathrm{A}} \sim \frac{\partial \mathrm{~A}}{\epsilon^{\mathrm{d}-1}}+\text { subleading terms }
$$

- Massless scalar field in 3+1 dimensions and a spherical entangling surface:

$$
\mathrm{S}_{\mathrm{A}}=\mathrm{s}(\mathrm{R} / \epsilon)^{2}+\mathrm{c} \log (\mathrm{R} / \epsilon)+\mathrm{d}
$$

$$
\mathrm{s} \simeq 0.3(\text { scheme-dependent }) \quad(\text { Srednicki 1993 })
$$

$\mathrm{c}=-1 / 90$ (universal) (Lohmayer, Neuberger, Schwimmer, Theisen 2009).

- Conformal field theory in $1+1$ dimensions, with central charge c: For a finite system of physical length L with boundaries, divided into two pieces of lengths ℓ and $\mathrm{L}-\ell$:

$$
\mathrm{S}_{\mathrm{A}}=\frac{\mathrm{c}}{6} \ln \left(\frac{2 \mathrm{~L}}{\pi \epsilon} \sin \frac{\pi \ell}{\mathrm{~L}}\right)+\overline{\mathrm{c}}_{1}^{\prime},
$$

with \bar{c}_{1}^{\prime} scheme-dependent. (Cardy, Calabrese 2004)

- How does the entanglement entropy evolve in a time-dependent background?
- Volume term?
- de Sitter space (Maldacena, Pimentel 2013).
- Relevance for the expanding Universe.
- Explicit calculations are hard even in a static background. Analytical calculations mostly use the replica trick. They exist for low-dimensional or highly symmetric quantum field theories (CFTs).
- The Ryu-Takayanagi proposal provides a simpler framework in the context of the AdS/CFT correspondence. However, it applies only to theories that have a gravitational dual.
- We generalize Srednicki's approach to expanding backgrounds.

References

- K. Boutivas, G. Pastras and N. Tetradis, "Entanglement and expansion," [arXiv:2302.14666 [hep-th]]
- D. Katsinis, G. Pastras and N. Tetradis, in preparation
- K. Boutivas, G. Pastras and N. Tetradis, in preparation
- The quantum field as a collection of quantum oscillators.
- Cosmology primer.
- The oscillator wave function in an expanding background.
- Entanglement entropy of two quantum oscillators.
- Entanglement entropy of a quantum field in $1+1$ dimensions.
- Entanglement entropy of a quantum field in $3+1$ dimensions.
- Conclusions.

Expanding the field in momentum modes

- Consider a free scalar field $\phi(\tau, \mathrm{x})$ in a FRW background

$$
\mathrm{ds}^{2}=\mathrm{a}^{2}(\tau)\left(\mathrm{d} \tau^{2}-\mathrm{dr}^{2}-\mathrm{r}^{2} \mathrm{~d} \Omega^{2}\right)
$$

- With the definition $\phi(\tau, \mathrm{x})=\mathrm{f}(\tau, \mathrm{x}) / \mathrm{a}(\tau)$, the action becomes

$$
\mathrm{S}=\frac{1}{2} \int \mathrm{~d} \tau \mathrm{~d}^{3} \mathrm{x}\left(\mathrm{f}^{\prime 2}-(\nabla \mathrm{f})^{2}+\left(\frac{\mathrm{a}^{\prime \prime}}{\mathrm{a}}-\mathrm{a}^{2} \mathrm{~m}^{2}\right) \mathrm{f}^{2}\right)
$$

The field $\mathrm{f}(\tau, \mathrm{x})$ has a canonically normalized kinetic term.

- For de Sitter: $\mathrm{a}(\tau)=-1 /(\mathrm{H} \tau)$ with $-\infty<\tau<0$, and

$$
\mathrm{S}=\frac{1}{2} \int \mathrm{~d} \tau \mathrm{~d}^{3} \mathrm{x}\left(\mathrm{f}^{\prime 2}-(\nabla \mathrm{f})^{2}+\frac{2 \kappa}{\tau^{2}} \mathrm{f}^{2}\right)
$$

where $\kappa=1-\mathrm{m}^{2} / 2 \mathrm{H}^{2}$.

- The eom (Mukhanov-Sasaki equation) in Fourier space is

$$
\mathrm{f}_{\mathrm{k}}^{\prime \prime}+\mathrm{k}^{2} \mathrm{f}_{\mathrm{k}}-\frac{2 \kappa}{\tau^{2}} \mathrm{f}_{\mathrm{k}}=0
$$

- Its general solution is

$$
\mathrm{f}_{\mathrm{k}}(\tau)=\mathrm{A}_{1} \sqrt{-\tau} \mathrm{J}_{\nu}(-\mathrm{k} \tau)+\mathrm{A}_{2} \sqrt{-\tau} \mathrm{Y}_{\nu}(-\mathrm{k} \tau) \quad \nu=\frac{1}{2} \sqrt{1+8 \kappa}
$$

- Bunch-Davies vacuum: $\mathrm{A}_{1}=-\frac{\sqrt{\pi}}{2}, \mathrm{~A}_{2}=-\frac{\sqrt{\pi}}{2} \mathrm{i}$. For $\tau \rightarrow-\infty$ we get a positive-frequency mode function similarly to flat space:

$$
\mathrm{f}_{\mathrm{k}}(\tau) \simeq \frac{1}{\sqrt{2 \mathrm{k}}} \mathrm{e}^{-\mathrm{i} \mathrm{k} \tau}
$$

- For $\kappa=1$ (massless scalar), the full solution reads

$$
\mathrm{f}_{\mathrm{k}}(\tau)=\frac{1}{\sqrt{2 \mathrm{k}}} \mathrm{e}^{-\mathrm{i} \mathrm{k} \tau}\left(1-\frac{\mathrm{i}}{\mathrm{k} \tau}\right) .
$$

For $\mathrm{k} \tau \rightarrow 0^{-}$the mode becomes superhorizon and the oscillations stop. The mode freezes.

- The quantum field can be expressed as

$$
\hat{\mathrm{f}}(\tau, \mathrm{x})=\int \frac{\mathrm{d}^{3} \mathrm{k}}{(2 \pi)^{3 / 2}}\left[\mathrm{f}_{\mathrm{k}}(\tau) \hat{\mathrm{a}}_{\mathrm{k}}+\mathrm{f}_{\mathrm{k}}^{*}(\tau) \hat{\mathrm{a}}_{\mathrm{k}}^{\dagger}\right] \mathrm{e}^{\mathrm{ik} \cdot \mathrm{x}}
$$

where $\hat{a}_{\mathrm{k}}^{\dagger}$, $\hat{\mathrm{a}}_{\mathrm{k}}$ are standard creation and annihilation operators.

- The variance of the field is
$\left\langle\hat{\mathrm{f}}^{2}\right\rangle=\int \mathrm{d} \ln \mathrm{k} \frac{\mathrm{k}^{3}}{2 \pi^{2}}\left|\mathrm{f}_{\mathrm{k}}(\tau)\right|^{2}, \quad\left|\mathrm{f}_{\mathrm{k}}(\tau)\right|^{2}=-\frac{\pi}{4} \tau\left[\mathrm{~J}_{\nu}^{2}(-\mathrm{k} \tau)+\mathrm{Y}_{\nu}^{2}(-\mathrm{k} \tau)\right]$.
For a massless field ($\nu=3 / 2$), it results in the known scale-invariant inflationary power spectrum.
- For superhorizon modes with $\mathrm{k} \tau \rightarrow 0^{-}$the second term in the mode function of a massless scalar dominates. If only this term is retained one obtains

$$
\mathrm{f}_{\mathrm{k}}(\tau)=-\frac{\mathrm{i}}{\sqrt{2} \mathrm{k}^{3 / 2}} \frac{1}{\tau}=-\tau \mathrm{f}_{\mathrm{k}}^{\prime}(\tau)
$$

and

$$
\hat{\pi}(\tau, \mathrm{x})=-\frac{1}{\tau} \hat{\mathrm{f}}(\tau, \mathrm{x})
$$

- The fact that the dominant term of the field and the dominant term of its conjugate momentum commute indicates that for most of its properties it can be viewed as a classical stochastic field instead of a quantum one.
- However, the full quantum field and its conjugate always obey the canonical commutation relation. This is guaranteed by the presence of the subleading first term in the mode function.
- The entanglement entropy is of purely quantum origin, for which a classical description is inadequate. It does not vanish for superhorizon modes.
- One may consider the momentum-space entanglement between high and low-momentum modes, such as between modes with physical momenta below and above the Hubble scale H.
- For a free field described by a quadratic action, where the momentum modes do not interact, the entanglement entropy would vanish, as long as the initial state can be written as a tensor product of one state for each momentum mode, as in the Minkowski vacuum.
- The reduced density matrix, when some modes are traced over, would be one of a pure state, namely the state of the modes which have not been traced out.
- We are interested in the entanglement between degrees of freedom localized within two spatial regions separated by an entangling surface. For a dS background one may consider the entanglement between the interior of a horizon-size region of radius $1 / \mathrm{H}$ and the exterior.

Expanding the field in coordinate space

- For spherical entangling surfaces, define the spherical moments
$\mathrm{f}_{\operatorname{lm}}(\mathrm{r})=\mathrm{r} \int \mathrm{d} \Omega \mathrm{Y}_{\operatorname{lm}}(\theta, \varphi) \mathrm{f}(\mathrm{x}), \quad \pi_{\operatorname{lm}}(\mathrm{r})=\mathrm{r} \int \mathrm{d} \Omega \mathrm{Y}_{\operatorname{lm}}(\theta, \varphi) \pi(\mathrm{x})$,
where Y_{lm} are real spherical harmonics.
- Discretize the radial coordinate as $\mathrm{r}_{\mathrm{j}}=\mathrm{j} \epsilon$, where $1 \leq \mathrm{j} \leq \mathrm{N}$.
- UV cutoff: $1 / \epsilon$. IR cutoff: $1 / \mathrm{L}$ with $\mathrm{L}=\mathrm{N} \epsilon$. We set $\epsilon=1$.
- Define the canonically commuting degrees of freedom

$$
\mathrm{f}_{\mathrm{lm}}(\mathrm{j} \epsilon) \rightarrow \mathrm{f}_{\mathrm{lm}, \mathrm{j}}, \quad \pi_{\operatorname{lm}}(\mathrm{j} \epsilon) \rightarrow \frac{\pi_{\operatorname{lm}, \mathrm{j}}}{\epsilon} .
$$

- Hamiltonian:

$$
\begin{aligned}
H=\frac{1}{2 \epsilon} \sum_{l, m} \sum_{j=1}^{N}\left[\pi_{l m, j}^{2}\right. & +\left(j+\frac{1}{2}\right)^{2}\left(\frac{f_{l m, j+1}}{j+1}-\frac{f_{l m, j}}{j}\right)^{2} \\
& \left.+\left(\frac{l(l+1)}{j^{2}}-\frac{2 \kappa}{(\tau / \epsilon)^{2}}\right) f_{l m, j}^{2}\right]
\end{aligned}
$$

- We would like to trace out the oscillators with $\mathrm{j} \epsilon<\mathrm{R}$.
- The 'ground state' of the system is the product of the 'ground states' of the modes that diagonalize the Hamiltonian.
- In the Bunch-Davies vacuum as a 'ground state' of a mode we must define the solution of the time-dependent Schrödinger equation which reduces to the usual simple harmonic oscillator ground state as $\tau \rightarrow-\infty$.
- One must determine first the eigenmodes of this system of coupled oscillators. The wave function of each mode depends on a linear combination of the various $\mathrm{f}_{\mathrm{lm}, \mathrm{j}}$. Various (l, m) do not mix.
- In summary, the discretized Hamiltonian for the free field in an inflationary background has the form

$$
\begin{equation*}
\mathrm{H}=\frac{1}{2 \epsilon} \sum_{\mathrm{l}, \mathrm{~m}} \sum_{\mathrm{j}=1}^{\mathrm{N}}\left[\tilde{\pi}_{\mathrm{lm}, \mathrm{j}}^{2}+\left(\omega_{\mathrm{lm}, \mathrm{j}}^{2}-\frac{2 \kappa}{(\tau / \epsilon)^{2}}\right) \tilde{\mathrm{f}}_{\mathrm{lm}, \mathrm{j}}^{2}\right] \tag{1}
\end{equation*}
$$

with $\tilde{f}_{\mathrm{lm}, \mathrm{j}}$ the canonical coordinates.

- We need to solve for the harmonic oscillator with a time-dependent eigenfrequency of the form $\omega_{0}-2 \kappa / \tau^{2}$.

de Sitter era

- Oscillator with time-dependent frequency

$$
\omega^{2}(\tau)=\omega_{0}^{2}-\frac{2 \kappa}{\tau^{2}}
$$

- Find the general solution of the Ermakov equation

$$
\mathrm{b}^{\prime \prime}(\tau)+\omega^{2}(\tau) \mathrm{b}(\tau)=\frac{\omega_{0}^{2}}{\mathrm{~b}^{3}(\tau)}
$$

in terms of two linearly independent solutions of

$$
\mathrm{y}^{\prime \prime}(\tau)+\omega^{2}(\tau) \mathrm{y}(\tau)=0
$$

as

$$
\mathrm{b}^{2}(\tau)=\mathrm{c}_{1} \mathrm{y}_{1}^{2}(\tau)+\mathrm{c}_{2} \mathrm{y}_{2}^{2}(\tau)+2 \mathrm{c}_{3} \mathrm{y}_{1}(\tau) \mathrm{y}_{2}(\tau)
$$

$\mathrm{c}_{1}, \mathrm{c}_{2}$ and c_{3} must obey $\mathrm{c}_{1} \mathrm{c}_{2}-\mathrm{c}_{3}^{2}=\mathrm{A}$, with A a constant that depends on the form of $\omega(\tau)$.

- For the problem at hand $\mathrm{y}_{1}=\sqrt{-\tau} \mathrm{J}_{\nu}\left(-\omega_{0} \tau\right)$ and $\mathrm{y}_{2}=\sqrt{-\tau} \mathrm{Y}_{\nu}\left(-\omega_{0} \tau\right)$, where $\mathrm{A}=\pi^{2} \omega_{0}^{2} / 4$.
- $\mathrm{c}_{1}, \mathrm{c}_{2}$ are fixed through appropriate initial conditions.
- $\mathrm{b}(\tau)$ must tend to 1 for $\tau \rightarrow-\infty$.

$$
\mathrm{b}^{2}(\tau)=-\frac{\pi}{2} \omega_{0} \tau\left(\mathrm{~J}_{\nu}^{2}\left(-\omega_{0} \tau\right)+\mathrm{Y}_{\nu}^{2}\left(-\omega_{0} \tau\right)\right)
$$

- The solution of the Schrödinger equation can now be expressed as

$$
\mathrm{F}(\tau, \mathrm{f})=\frac{1}{\sqrt{\mathrm{~b}(\tau)}} \exp \left(\frac{\mathrm{i}}{2} \frac{\mathrm{~b}^{\prime}(\tau)}{\mathrm{b}(\tau)} \mathrm{f}^{2}\right) \mathrm{F}^{0}\left(\int \frac{\mathrm{~d} \tau}{\mathrm{~b}^{2}(\tau)}, \frac{\mathrm{f}}{\mathrm{~b}(\tau)}\right)
$$

where $\mathrm{F}^{0}(\tau, \mathrm{f})$ is a solution with constant frequency ω_{0}.

- Variance of the conjugate operators $\hat{\mathrm{f}}$ and $\hat{\pi}=-\mathrm{i} \partial / \partial \mathrm{f}$:

$$
\left\langle\hat{\mathrm{f}}^{2}\right\rangle=\frac{\mathrm{b}^{2}(\tau)}{2 \omega_{0}}=-\frac{\pi}{4} \tau\left(\mathrm{~J}_{\nu}^{2}\left(-\omega_{0} \tau\right)+\mathrm{Y}_{\nu}^{2}\left(-\omega_{0} \tau\right)\right), \quad\left\langle\hat{\pi}^{2}\right\rangle=\frac{\omega_{0}}{2 \mathrm{~b}^{2}(\tau)}+\frac{\mathrm{b}^{\prime 2}(\tau)}{2 \omega_{0}}
$$

- For $\kappa>0$ and $\tau \rightarrow-\infty$, we have $\Delta \mathrm{f} \Delta \pi \rightarrow 1 / 2$.
- When $\mathrm{b}(\tau)$ diverges for $\tau \rightarrow 0^{-}$, we have $\Delta \mathrm{f}=\rightarrow \infty, \Delta \pi \rightarrow \infty$.
- For $\kappa>0$ and $\tau \rightarrow 0^{-}$, we have $\Delta \mathrm{f} / \Delta \pi \rightarrow 0$. The uncertainty is much larger in the determination of the momentum.
- Squeezed state.

Figure: The form of the function $\mathrm{b}(\tau)$ for $\omega_{0}=1$ and $\kappa=1,0.5,0,-0.1,-2$ (from top to bottom).

Figure: The amplitude of the 'ground-state' wave function for $\omega_{0}=5$.

Figure: The real part of the 'ground-state' wave function for $\omega_{0}=5$.

Radiation and matter domination

Figure: Left plot: The form of the function $\mathrm{b}(\tau)$ for $\omega_{0}=1$ and $\mathrm{H}=2$, and $\tau_{0}=0.5$. The black line corresponds to the dS era, the blue line to a RD era, the red lines to the MD era.

Figure: Left plot: The amplitude of the 'ground-state' wave function for the transition from a dS to a RD background at $\tau=0.5$, for $\omega_{0}=1, \mathrm{H}=2$.

Figure: Left plot: The amplitude of the 'ground-state' wave function for the transition from a dS to a MD background at $\tau=0.5$, for $\omega_{0}=1, \mathrm{H}=2$.

Figure: Left plot: The product of uncertainties $\Delta \mathrm{f} \Delta \pi$ during the evolution of the wave function.

Entanglement entropy of two quantum oscillators

- Hamiltonian

$$
\mathrm{H}=\frac{1}{2}\left[\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{k}_{0}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right)+\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}-\lambda(\tau)\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right)\right]
$$

- For oscillators arising from a massive field in $\mathrm{dS}, \lambda(\tau)=2 \kappa / \tau^{2}$. For a massless field in a general background, $\lambda(\tau)=\mathrm{a}^{\prime \prime} / \mathrm{a}$.
- The Hamiltonian can be rewritten as

$$
\begin{gathered}
\mathrm{H}=\frac{1}{2}\left[\mathrm{p}_{+}^{2}+\mathrm{p}_{-}^{2}+\mathrm{w}_{+}^{2}(\tau) \mathrm{x}_{+}^{2}+\mathrm{w}_{-}^{2}(\tau) \mathrm{x}_{-}^{2}\right] \\
\mathrm{x}_{ \pm}=\frac{\mathrm{x}_{1} \pm \mathrm{x}_{2}}{\sqrt{2}}, \omega_{0+}^{2}=\mathrm{k}_{0}, \omega_{0-}^{2}=\mathrm{k}_{0}+2 \mathrm{k}_{1}, \mathrm{w}_{ \pm}^{2}(\tau)=\omega_{0 \pm}^{2}-\lambda(\tau)
\end{gathered}
$$

- The 'ground state' is the tensor product of the 'ground states' of the two decoupled normal modes:

$$
\begin{gathered}
\psi_{0}\left(\mathrm{x}_{+}, \mathrm{x}_{-}\right)=\left(\frac{\Omega_{+} \Omega_{-}}{\pi^{2}}\right)^{\frac{1}{4}} \exp \left[-\frac{1}{2}\left(\Omega_{+} \mathrm{x}_{+}^{2}+\Omega_{-} \mathrm{x}_{-}^{2}\right)+\frac{\mathrm{i}}{2}\left(\mathrm{G}_{+} \mathrm{x}_{+}^{2}+\mathrm{G}_{-} \mathrm{x}_{-}^{2}\right)\right. \\
\Omega_{ \pm}(\tau) \equiv \frac{\omega_{0 \pm}}{\mathrm{b}^{2}\left(\tau ; \omega_{0 \pm}\right)}, \quad \mathrm{G}_{ \pm}(\tau) \equiv \frac{\mathrm{b}^{\prime}\left(\tau ; \omega_{0 \pm}\right)}{\mathrm{b}\left(\tau ; \omega_{0 \pm}\right)}
\end{gathered}
$$

- Express the wave function in terms of $\mathrm{x}_{1}, \mathrm{x}_{2}$.
- The reduced density matrix is given by

$$
\rho\left(\mathrm{x}_{2}, \mathrm{x}_{2}^{\prime}\right)=\int_{-\infty}^{+\infty} \mathrm{dx}_{1} \psi_{0}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \psi_{0}^{*}\left(\mathrm{x}_{1}, \mathrm{x}_{2}^{\prime}\right) .
$$

- The Gaussian integration gives
$\rho\left(\mathrm{x}_{2}, \mathrm{x}_{2}^{\prime}\right)=\sqrt{\frac{\gamma-\beta}{\pi}} \exp \left(-\frac{\gamma}{2}\left(\mathrm{x}_{2}^{2}+\mathrm{x}_{2}^{\prime 2}\right)+\beta \mathrm{x}_{2} \mathrm{x}_{2}^{\prime}\right) \exp \left(\mathrm{i} \frac{\delta}{2}\left(\mathrm{x}_{2}^{2}-\mathrm{x}_{2}^{\prime 2}\right)\right)$,
where γ, β, δ are functions of $\Omega_{ \pm}, \mathrm{G}_{ \pm}$.
- The eigenfunctions of the reduced density matrix satisfy

$$
\int_{-\infty}^{+\infty} \mathrm{dx}_{2}^{\prime} \rho\left(\mathrm{x}_{2}, \mathrm{x}_{2}^{\prime}\right) \mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{2}^{\prime}\right)=\mathrm{p}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{2}\right)
$$

- One finds

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{H}_{\mathrm{n}}(\sqrt{\alpha} \mathrm{x}) \exp \left(-\frac{\alpha}{2} \mathrm{x}^{2}\right) \exp \left(\mathrm{i} \frac{\delta}{2} \mathrm{x}^{2}\right)
$$

where $\alpha=\sqrt{\gamma^{2}-\beta^{2}}$ and H_{n} is a Hermite polynomial.

- The eigenvalues p_{n} are

$$
\mathrm{p}_{\mathrm{n}}=\sqrt{\frac{2(\gamma-\beta)}{\gamma+\alpha}}\left(\frac{\beta}{\gamma+\alpha}\right)^{\mathrm{n}}=(1-\xi) \xi^{\mathrm{n}},
$$

where

$$
\xi=\frac{\beta}{\gamma+\alpha} .
$$

They satisfy

$$
\sum_{\mathrm{n}=0}^{\infty} \mathrm{p}_{\mathrm{n}}=(1-\xi) \sum_{\mathrm{n}=0}^{\infty} \xi^{\mathrm{n}}=1
$$

- The entanglement entropy can be calculated as

$$
\mathrm{S}=-\sum_{\mathrm{n}=0}^{\infty}(1-\xi) \xi^{\mathrm{n}} \ln \left[(1-\xi) \xi^{\mathrm{n}}\right]=-\ln (1-\xi)-\frac{\xi}{1-\xi} \ln \xi .
$$

Figure: Left plot: The entanglement entropy in a dS background as a function of conformal time τ for $\omega_{+}=1, \omega_{-}=2$ and $\kappa=1,0.5,0.2,0,-0.1$, -0.5 (from top to bottom).

Figure: Left plot: The entanglement entropy in a dS background as a function of conformal time τ for $\omega_{+}=1, \omega_{-}=0.2$ and $\kappa=1,0.5,0.2,0$, $-0.1,-0.5$ (from top to bottom).

Figure: Left plot: The entanglement entropy as a function of conformal time τ for $\omega_{+}=1, \omega_{-}=1.5, \mathrm{H}=2$ and $\tau_{0}=0.5$. The black line corresponds to a dS background, with a transition at τ_{0} to either a RD era (blue line) or to a MD era (red line).

Figure: Similarly to the previous plot for $\omega_{+}=0.1, \omega_{-}=0.25, \mathrm{H}=2$ and $\tau_{0}=0.5$.

- The generalization to a system of N coupled oscillators proceeds along the lines of the original work of Srednicki.
- The system is assumed to lie in the ground state of each canonical mode in the asymptotic past (Bunch-Davies vacuum).
- Later this becomes a squeezed state, with a wave function that reflects the horizon crossing and freezing of each mode.
- When n oscillators are traced out, the reduced density matrix is

$$
\begin{aligned}
& \rho\left(\mathrm{x}_{2}, \mathrm{x}_{2}^{\prime}\right)=\left(\frac{\operatorname{det} \operatorname{Re}(\gamma-\beta)}{\pi^{\mathrm{N}-\mathrm{n}}}\right)^{1 / 2} \\
& \times \exp \left(-\frac{1}{2} \mathrm{x}_{2}^{\mathrm{T}} \gamma \mathrm{x}_{2}-\frac{1}{2} \mathrm{x}_{2}^{\prime \mathrm{T}} \gamma \mathrm{x}_{2}^{\prime}+\mathrm{x}_{2}^{\mathrm{T}} \beta \mathrm{x}_{2}^{\prime}+\frac{1}{2} \mathrm{x}_{2}^{\mathrm{T}} \delta \mathrm{x}_{2}-\frac{\mathrm{i}}{2} \mathrm{x}_{2}^{\prime \mathrm{T}} \delta \mathrm{x}_{2}^{\prime}\right) .
\end{aligned}
$$

- γ and δ are $(\mathrm{N}-\mathrm{n}) \times(\mathrm{N}-\mathrm{n})$ real symmetric matrices, while β is a $(N-n) \times(N-n)$ Hermitian matrix.
- The eigenvalues of the density matrix do not depend on δ.
- A major technical difficulty arises because the matrices γ and β cannot be diagonalized through real orthogonal transformations in order to identify the eigenvalues of the reduced density matrix.
- These are guaranteed to be real by the nature of the density matrix, but the determination of their exact values requires an extensive analysis.
- A method has been developed for their computation. A detailed presentation is given in the publications.

Entanglement entropy of a quantum field in $1+1$ dimensions

- Consider a toy model of a massless scalar field in $1+1$ dimensions. The field is canonically normalized.
- Assume a background given by the FRW metric, neglecting the angular part. The curvature scalar R is equal to $-2 \mathrm{H}^{2}$.
- The de Sitter era can be mimicked by including an effective mass term arising from a non-minimal coupling to gravity $\xi \mathrm{R} \phi^{2}$ with $\xi=-1 / 2$.
- The Hamiltonian of the discretized system is

$$
H=\frac{1}{2 \epsilon} \sum_{j=2}^{N-1}\left[\pi_{j}^{2}+\left(f_{j+1}-f_{j}\right)^{2}-\frac{2 \kappa}{(\tau / \epsilon)^{2}} f_{j}^{2}\right]+\frac{1}{2 \epsilon} \sum_{j=1, \mathrm{~N}}\left[\pi_{\mathrm{j}}^{2}+\mathrm{f}_{\mathrm{j}}^{2}-\frac{2 \kappa}{(\tau / \epsilon)^{2}} \mathrm{f}_{\mathrm{j}}^{2}\right]
$$

with $\kappa=1$. We have modified the action for the oscillators at the ends of the chain, so as to impose boundary conditions corresponding to a vanishing field at the endpoints.

- The radiation dominated era with $\kappa=0$ can be mimicked by assuming a transition to a flat background with $\mathrm{R}=0$ at some time τ_{0}.

Figure: The entanglement entropy resulting from tracing out the part $\mathrm{n}<\mathrm{k} \leq \mathrm{N}$ of a one-dimensional chain at various times, for a dS background.

- For $\tau \rightarrow-\infty$, the entanglement entropy can be described very well by the expression

$$
\begin{equation*}
\mathrm{S}=\frac{\mathrm{c}}{6} \ln \left(\frac{2 \mathrm{~L}}{\pi \epsilon} \sin \frac{\pi \ell}{\mathrm{~L}}\right)+\overline{\mathrm{c}}_{1}^{\prime}, \tag{2}
\end{equation*}
$$

with $\mathrm{c}=1$, in agreement with Cardy, Calabrese 2004.

- For $\tau \rightarrow 0^{-}$the entanglement entropy can be described very well by the expression

$$
\begin{equation*}
\mathrm{S}=\ln \left(\frac{2 \mathrm{La}(\tau)}{\pi \epsilon} \sin \frac{\pi \ell}{\mathrm{L}}\right)+\mathrm{d} \tag{3}
\end{equation*}
$$

where $\mathrm{a}(\tau)=-1 /(\mathrm{H} \tau)$.

- The entropy grows with the number of efoldings $\mathcal{N}=\ln \mathrm{a}(\tau)$.

Figure: The entanglement entropy resulting from tracing out the part $\mathrm{n}<\mathrm{k} \leq \mathrm{N}$ of a one-dimensional chain at various times. The transition from a dS to a RD background (black line) occurs at $\tau_{0}=-5$. During the RD era, the maximal entanglement entropy (red line) is first achieved at $\tau=85$, and the minimal entanglement entropy (blue line) at $\tau=40$. For clarity, we also display the entanglement entropy at these times in the right plot.

Entanglement entropy of a quantum feld in $3+1$ dimensions

- Massless scalar field in $3+1$ dimensions.
- Hamiltonian:

$$
\begin{aligned}
H=\frac{1}{2 \epsilon} \sum_{l, m} \sum_{j=1}^{N}\left[\pi_{l m, j}^{2}\right. & +\left(j+\frac{1}{2}\right)^{2}\left(\frac{f_{l m, j+1}}{j+1}-\frac{f_{l m, j}}{j}\right)^{2} \\
& \left.+\left(\frac{l(l+1)}{j^{2}}-\frac{2 \kappa}{(\tau / \epsilon)^{2}}\right) f_{l m, j}^{2}\right]
\end{aligned}
$$

with $\kappa=1$.

- Trace out the oscillators with $\mathrm{j} \epsilon<\mathrm{R}$.
- Sum over l, m.
- Fit the result with a function $(\epsilon=1)$

$$
\mathrm{S}=\mathrm{s}(\tau) \mathrm{R}^{2}+\mathrm{c}(\tau) \mathrm{R}^{3}+\mathrm{d}(\tau)
$$

The logarithmic correction is assumed to be subleading.

Preliminary results

Figure: Entanglement entropy as a function of entangling radius and time. The red lines indicate the location of the horizon at various times. The black line indicates the entropy at the time $\tau_{0}=-5$ of the transition from the de Sitter era with $\mathrm{H}=10$ to the radiation dominated era.

Figure: The coefficient of the quadratic term in the entanglement entropy.

Figure: The coefficient of the cubic term in the entanglement entropy.

- Momentum modes that start as pure quantum fluctuations in the Bunch-Davies vacuum during inflation are expected to freeze when they exit the horizon and transmute into classical stochastic fluctuations.
- This is only part of the picture. Even though its classical features are dominant, the field never loses its quantum nature.
- The various modes evolve into squeezed states.
- The squeezing triggers a strong enhancement of quantum entanglement. The effect is clearly visible in the entanglement entropy.
- The enhancement is proportional to the number of efoldings during the inflationary era.
- The entanglement entropy survives during the eras of radiation or matter domination. A volume effect appears during these eras.
- Quantum mechanical picture of reheating?
- Observable consequences?

