Entanglement and Expansion

Nikolaos Tetradis

University of Athens

- Consider a quantum mechanical system with many degrees of freedom, such as a spin chain or a quantum field.
- Assume it is in the ground state $|\Psi\rangle$, which is a pure state (zero temperature).
- The density matrix of the total system is $\rho_{\text{tot}} = |\Psi\rangle\langle\Psi|$.
- Its von Neumann entropy $S_{tot} = -tr \rho_{tot} \log \rho_{tot}$ vanishes.
- Now divide the total system into subsystems A and B and assume that B is inaccessible to A.
- Trace out the part B of the Hilbert space in order to obtain the reduced density matrix of A: $\rho_A = \operatorname{tr}_B \rho_{\text{tot}}$.
- The entropy $S_A = -\text{tr}_A \rho_A \log \rho_A$ is a measure of the entanglement between A and B.
- It is nonvanishing and $S_A = S_B$.

• In a static background, the leading contribution to the entanglement entropy is proportional to the area of the entangling surface separating subsystems A and B:

$$S_A \sim \frac{\partial A}{\epsilon^{d-1}} + \text{subleading terms.}$$

• Massless scalar field in 3+1 dimensions and a spherical entangling surface:

$$S_A = s (R/\epsilon)^2 + c \log(R/\epsilon) + d$$

 $s \simeq 0.3$ (scheme-dependent) (Srednicki 1993) c = -1/90 (universal) (Lohmayer, Neuberger, Schwimmer, Theisen 2009).

• Conformal field theory in 1+1 dimensions, with central charge c: For a finite system of physical length L with boundaries, divided into two pieces of lengths ℓ and $L - \ell$:

$$S_{A} = \frac{c}{6} \ln \left(\frac{2L}{\pi \epsilon} \sin \frac{\pi \ell}{L} \right) + \overline{c}'_{1},$$

with \bar{c}'_1 scheme-dependent. (Cardy, Calabrese 2004)

- How does the entanglement entropy evolve in a time-dependent background?
- Volume term?
- de Sitter space (Maldacena, Pimentel 2013).
- Relevance for the expanding Universe.
- Explicit calculations are hard even in a static background. Analytical calculations mostly use the replica trick. They exist for low-dimensional or highly symmetric quantum field theories (CFTs).
- The Ryu-Takayanagi proposal provides a simpler framework in the context of the AdS/CFT correspondence. However, it applies only to theories that have a gravitational dual.
- We generalize Srednicki's approach to expanding backgrounds.

References

- K. Boutivas, G. Pastras and N. Tetradis, "Entanglement and expansion," [arXiv:2302.14666 [hep-th]]
- D. Katsinis, G. Pastras and N. Tetradis, in preparation
- K. Boutivas, G. Pastras and N. Tetradis, in preparation

- The quantum field as a collection of quantum oscillators.
- Cosmology primer.
- The oscillator wave function in an expanding background.
- Entanglement entropy of two quantum oscillators.
- Entanglement entropy of a quantum field in 1+1 dimensions.
- Entanglement entropy of a quantum field in 3+1 dimensions.
- Conclusions.

Expanding the field in momentum modes

• Consider a free scalar field $\phi(\tau, x)$ in a FRW background

$$ds^2 = a^2(\tau) \left(d\tau^2 - dr^2 - r^2 d\Omega^2 \right). \label{eq:ds2}$$

• With the definition $\phi(\tau, \mathbf{x}) = f(\tau, \mathbf{x})/a(\tau)$, the action becomes

$$S = \frac{1}{2} \int d\tau d^3x \left(f'^2 - (\nabla f)^2 + \left(\frac{a''}{a} - a^2 m^2 \right) f^2 \right).$$

The field $f(\tau, x)$ has a canonically normalized kinetic term.

• For de Sitter: $a(\tau) = -1/(H\tau)$ with $-\infty < \tau < 0$, and

$$S = \frac{1}{2} \int d\tau d^3x \left(f'^2 - (\nabla f)^2 + \frac{2\kappa}{\tau^2} f^2 \right),$$

where $\kappa = 1 - m^2/2H^2$.

• The eom (Mukhanov-Sasaki equation) in Fourier space is

$$f_k'' + k^2 f_k - \frac{2\kappa}{\tau^2} f_k = 0.$$

• Its general solution is

000000

$$f_k(\tau) = A_1 \sqrt{-\tau} J_{\nu}(-k\tau) + A_2 \sqrt{-\tau} Y_{\nu}(-k\tau) \qquad \nu = \frac{1}{2} \sqrt{1 + 8\kappa}.$$

• Bunch-Davies vacuum: $A_1 = -\frac{\sqrt{\pi}}{2}$, $A_2 = -\frac{\sqrt{\pi}}{2}$ i. For $\tau \to -\infty$ we get a positive-frequency mode function similarly to flat space:

$$f_k(\tau) \simeq \frac{1}{\sqrt{2k}} e^{-ik\tau}$$
.

• For $\kappa = 1$ (massless scalar), the full solution reads

$$f_k(\tau) = \frac{1}{\sqrt{2k}} e^{-ik\tau} \left(1 - \frac{i}{k\tau}\right).$$

For $k\tau \to 0^-$ the mode becomes superhorizon and the oscillations stop. The mode freezes.

$$\hat{f}(\tau,x) = \int \frac{d^3k}{(2\pi)^{3/2}} \left[f_k(\tau) \hat{a}_k + f_k^*(\tau) \hat{a}_k^{\dagger} \right] e^{ik \cdot x}$$

where \hat{a}_{k}^{\dagger} , \hat{a}_{k} are standard creation and annihilation operators.

• The variance of the field is

Fields and oscillators 0000000

$$\langle \hat{f}^2 \rangle = \int d \ln k \, \frac{k^3}{2\pi^2} |f_k(\tau)|^2, \qquad |f_k(\tau)|^2 = -\frac{\pi}{4} \tau \left[J_\nu^2 \left(-k\tau \right) + Y_\nu^2 \left(-k\tau \right) \right].$$

For a massless field ($\nu = 3/2$), it results in the known scale-invariant inflationary power spectrum.

• For superhorizon modes with $k\tau \to 0^-$ the second term in the mode function of a massless scalar dominates. If only this term is retained one obtains

$$f_k(\tau) = -\frac{i}{\sqrt{2}k^{3/2}} \frac{1}{\tau} = -\tau f'_k(\tau)$$

and

$$\hat{\pi}(\tau, \mathbf{x}) = -\frac{1}{\tau}\hat{\mathbf{f}}(\tau, \mathbf{x}).$$

- The fact that the dominant term of the field and the dominant term of its conjugate momentum commute indicates that for most of its properties it can be viewed as a classical stochastic field instead of a quantum one.
- However, the full quantum field and its conjugate always obey the canonical commutation relation. This is guaranteed by the presence of the subleading first term in the mode function.
- The entanglement entropy is of purely quantum origin, for which a classical description is inadequate. It does not vanish for superhorizon modes.

Fields and oscillators 0000000

- One may consider the momentum-space entanglement between high and low-momentum modes, such as between modes with physical momenta below and above the Hubble scale H.
- For a free field described by a quadratic action, where the momentum modes do not interact, the entanglement entropy would vanish, as long as the initial state can be written as a tensor product of one state for each momentum mode, as in the Minkowski vacuum.
- The reduced density matrix, when some modes are traced over, would be one of a pure state, namely the state of the modes which have not been traced out.
- We are interested in the entanglement between degrees of freedom localized within two spatial regions separated by an entangling surface. For a dS background one may consider the entanglement between the interior of a horizon-size region of radius 1/H and the exterior.

Fields and oscillators 0000000

• For spherical entangling surfaces, define the spherical moments

$$f_{lm}(r) = r \int d\Omega Y_{lm}(\theta, \varphi) f(x), \qquad \pi_{lm}(r) = r \int d\Omega Y_{lm}(\theta, \varphi) \pi(x),$$

where Y_{lm} are real spherical harmonics.

- Discretize the radial coordinate as $r_i = j\epsilon$, where $1 \le j \le N$.
- UV cutoff: $1/\epsilon$. IR cutoff: 1/L with $L = N\epsilon$. We set $\epsilon = 1$.
- Define the canonically commuting degrees of freedom

$$f_{lm}(j\epsilon) \to f_{lm,j}, \qquad \pi_{lm}(j\epsilon) \to \frac{\pi_{lm,j}}{\epsilon}.$$

Hamiltonian:

$$\begin{split} H &= \frac{1}{2\epsilon} \sum_{l,m} \sum_{j=1}^{N} \left[\pi_{lm,j}^{2} + \left(j + \frac{1}{2} \right)^{2} \left(\frac{f_{lm,j+1}}{j+1} - \frac{f_{lm,j}}{j} \right)^{2} \right. \\ &+ \left. \left(\frac{l(l+1)}{j^{2}} - \frac{2\kappa}{(\tau/\epsilon)^{2}} \right) f_{lm,j}^{2} \right]. \end{split}$$

Fields and oscillators 0000000

- We would like to trace out the oscillators with $j\epsilon < R$.
- The 'ground state' of the system is the product of the 'ground states' of the modes that diagonalize the Hamiltonian.
- In the Bunch-Davies vacuum as a 'ground state' of a mode we must define the solution of the time-dependent Schrödinger equation which reduces to the usual simple harmonic oscillator ground state as $\tau \to -\infty$.
- o One must determine first the eigenmodes of this system of coupled oscillators. The wave function of each mode depends on a linear combination of the various $f_{\mathrm{lm,j}}$. Various (l,m) do not mix.
- In summary, the discretized Hamiltonian for the free field in an inflationary background has the form

$$H = \frac{1}{2\epsilon} \sum_{l,m} \sum_{j=1}^{N} \left[\tilde{\pi}_{lm,j}^2 + \left(\omega_{lm,j}^2 - \frac{2\kappa}{(\tau/\epsilon)^2} \right) \tilde{f}_{lm,j}^2 \right], \tag{1}$$

with $\tilde{f}_{lm,j}$ the canonical coordinates.

• We need to solve for the harmonic oscillator with a time-dependent eigenfrequency of the form $\omega_0 - 2\kappa/\tau_-^2$.

• Oscillator with time-dependent frequency

$$\omega^2(\tau) = \omega_0^2 - \frac{2\kappa}{\tau^2}.$$

Find the general solution of the Ermakov equation

$$b''(\tau) + \omega^2(\tau)b(\tau) = \frac{\omega_0^2}{b^3(\tau)}$$

in terms of two linearly independent solutions of

$$y''(\tau) + \omega^2(\tau)y(\tau) = 0,$$

as

$$b^{2}(\tau) = c_{1} y_{1}^{2}(\tau) + c_{2} y_{2}^{2}(\tau) + 2c_{3} y_{1}(\tau) y_{2}(\tau).$$

 c_1 , c_2 and c_3 must obey $c_1c_2 - c_3^2 = A$, with A a constant that depends on the form of $\omega(\tau)$.

• For the problem at hand $y_1 = \sqrt{-\tau} J_{\nu} (-\omega_0 \tau)$ and $y_2 = \sqrt{-\tau} Y_{\nu} (-\omega_0 \tau)$, where $A = \pi^2 \omega_0^2 / 4$.

- \circ c₁, c₂ are fixed through appropriate initial conditions.
- $b(\tau)$ must tend to 1 for $\tau \to -\infty$.

$$b^{2}(\tau) = -\frac{\pi}{2}\omega_{0}\tau \left(J_{\nu}^{2}\left(-\omega_{0}\tau\right) + Y_{\nu}^{2}\left(-\omega_{0}\tau\right)\right).$$

• The solution of the Schrödinger equation can now be expressed as

$$F(\tau, f) = \frac{1}{\sqrt{b(\tau)}} \exp\left(\frac{i}{2} \frac{b'(\tau)}{b(\tau)} f^2\right) F^0\left(\int \frac{d\tau}{b^2(\tau)}, \frac{f}{b(\tau)}\right),$$

where $F^0(\tau, f)$ is a solution with constant frequency ω_0 .

• Variance of the conjugate operators $\hat{\mathbf{f}}$ and $\hat{\pi} = -i\partial/\partial \mathbf{f}$:

$$\langle \hat{\mathbf{f}}^2 \rangle = \frac{\mathbf{b}^2(\tau)}{2\omega_0} = -\frac{\pi}{4}\tau \left(\mathbf{J}_{\nu}^2 \left(-\omega_0 \tau \right) + \mathbf{Y}_{\nu}^2 \left(-\omega_0 \tau \right) \right), \quad \langle \hat{\mathbf{\pi}}^2 \rangle = \frac{\omega_0}{2\mathbf{b}^2(\tau)} + \frac{\mathbf{b}'^2(\tau)}{2\omega_0}$$

- For $\kappa > 0$ and $\tau \to -\infty$, we have $\Delta f \Delta \pi \to 1/2$.
- When $b(\tau)$ diverges for $\tau \to 0^-$, we have $\Delta f = \to \infty$, $\Delta \pi \to \infty$.
- For $\kappa > 0$ and $\tau \to 0^-$, we have $\Delta f/\Delta \pi \to 0$. The uncertainty is much larger in the determination of the momentum.
- Squeezed state.

Figure: The form of the function $b(\tau)$ for $\omega_0 = 1$ and $\kappa = 1, 0.5, 0, -0.1, -2$ (from top to bottom).

Figure: The amplitude of the 'ground-state' wave function for $\omega_0 = 5$.

Figure: The real part of the 'ground-state' wave function for $\omega_0 = 5$.

Radiation and matter domination

Figure: Left plot: The form of the function $b(\tau)$ for $\omega_0 = 1$ and H = 2, and $\tau_0 = 0.5$. The black line corresponds to the dS era, the blue line to a RD era, the red lines to the MD era.

Figure: Left plot: The amplitude of the 'ground-state' wave function for the transition from a dS to a RD background at $\tau = 0.5$, for $\omega_0 = 1$, H = 2.

Figure: Left plot: The amplitude of the 'ground-state' wave function for the transition from a dS to a MD background at $\tau = 0.5$, for $\omega_0 = 1$, H = 2.

Figure: Left plot: The product of uncertainties $\Delta f \Delta \pi$ during the evolution of the wave function.

Hamiltonian

$$H = \frac{1}{2} \left[p_1^2 + p_2^2 + k_0 (x_1^2 + x_2^2) + k_1 (x_1 - x_2)^2 - \lambda(\tau) (x_1^2 + x_2^2) \right].$$

Two oscillators •000000

- For oscillators arising from a massive field in dS, $\lambda(\tau) = 2\kappa/\tau^2$. For a massless field in a general background, $\lambda(\tau) = a''/a$.
- The Hamiltonian can be rewritten as

$$H = \frac{1}{2} \left[p_+^2 + p_-^2 + w_+^2(\tau) x_+^2 + w_-^2(\tau) x_-^2 \right],$$

$$\mathbf{x}_{\pm} = \frac{\mathbf{x}_1 \pm \mathbf{x}_2}{\sqrt{2}}, \ \omega_{0+}^2 = \mathbf{k}_0, \omega_{0-}^2 = \mathbf{k}_0 + 2\mathbf{k}_1, \ \mathbf{w}_{\pm}^2(\tau) = \omega_{0\pm}^2 - \lambda(\tau).$$

• The 'ground state' is the tensor product of the 'ground states' of the two decoupled normal modes:

$$\psi_0(\mathbf{x}_+, \mathbf{x}_-) = \left(\frac{\Omega_+ \Omega_-}{\pi^2}\right)^{\frac{1}{4}} \exp\left[-\frac{1}{2}\left(\Omega_+ \mathbf{x}_+^2 + \Omega_- \mathbf{x}_-^2\right) + \frac{\mathrm{i}}{2}\left(G_+ \mathbf{x}_+^2 + G_- \mathbf{x}_-^2\right)\right]$$

$$\Omega_{\pm}(au) \equiv rac{\omega_{0\pm}}{\mathrm{b}^2(au;\omega_{0\pm})}, \quad \mathrm{G}_{\pm}(au) \equiv rac{\mathrm{b}'(au;\omega_{0\pm})}{\mathrm{b}(au;\omega_{0\pm})}.$$

- Express the wave function in terms of x_1 , x_2 .
- The reduced density matrix is given by

$$\rho(\mathbf{x}_2, \mathbf{x}_2') = \int_{-\infty}^{+\infty} d\mathbf{x}_1 \psi_0(\mathbf{x}_1, \mathbf{x}_2) \psi_0^*(\mathbf{x}_1, \mathbf{x}_2').$$

Two oscillators

• The Gaussian integration gives

$$\rho(\mathbf{x}_2, \mathbf{x}_2') = \sqrt{\frac{\gamma - \beta}{\pi}} \exp\left(-\frac{\gamma}{2}(\mathbf{x}_2^2 + \mathbf{x}_2'^2) + \beta \mathbf{x}_2 \mathbf{x}_2'\right) \exp\left(i\frac{\delta}{2}(\mathbf{x}_2^2 - \mathbf{x}_2'^2)\right),$$

where γ , β , δ are functions of Ω_{\pm} , G_{\pm} .

• The eigenfunctions of the reduced density matrix satisfy

$$\int_{-\infty}^{+\infty} dx_2' \rho(x_2, x_2') f_n(x_2') = p_n f_n(x_2).$$

One finds

$$f_n(x) = H_n(\sqrt{\alpha}x) \exp\left(-\frac{\alpha}{2}x^2\right) \exp\left(i\frac{\delta}{2}x^2\right),$$

where $\alpha = \sqrt{\gamma^2 - \beta^2}$ and H_n is a Hermite polynomial.

• The eigenvalues p_n are

$$p_n = \sqrt{\frac{2(\gamma-\beta)}{\gamma+\alpha}} \left(\frac{\beta}{\gamma+\alpha}\right)^n = (1-\xi)\xi^n,$$

Two oscillators 0000000

where

$$\xi = \frac{\beta}{\gamma + \alpha}.$$

They satisfy

$$\sum_{n=0}^{\infty} p_n = (1-\xi) \sum_{n=0}^{\infty} \xi^n = 1.$$

The entanglement entropy can be calculated as

$$S = -\sum_{n=0}^{\infty} (1-\xi)\xi^n \ln [(1-\xi)\xi^n] = -\ln (1-\xi) - \frac{\xi}{1-\xi} \ln \xi.$$

Figure: Left plot: The entanglement entropy in a dS background as a function of conformal time τ for $\omega_{+}=1$, $\omega_{-}=2$ and $\kappa=1, 0.5, 0.2, 0, -0.1$, -0.5 (from top to bottom).

Two oscillators 0000000

Figure: Left plot: The entanglement entropy in a dS background as a function of conformal time τ for $\omega_{+}=1$, $\omega_{-}=0.2$ and $\kappa=1, 0.5, 0.2, 0$, -0.1, -0.5 (from top to bottom).

Figure: Left plot: The entanglement entropy as a function of conformal time τ for $\omega_+ = 1$, $\omega_- = 1.5$, H = 2 and $\tau_0 = 0.5$. The black line corresponds to a dS background, with a transition at τ_0 to either a RD era (blue line) or to a MD era (red line).

Two oscillators 0000000

Figure: Similarly to the previous plot for $\omega_{+}=0.1,\,\omega_{-}=0.25,\,\mathrm{H}=2$ and $\tau_0 = 0.5$.

- The generalization to a system of N coupled oscillators proceeds along the lines of the original work of Srednicki.
- The system is assumed to lie in the ground state of each canonical mode in the asymptotic past (Bunch-Davies vacuum).
- Later this becomes a squeezed state, with a wave function that reflects the horizon crossing and freezing of each mode.
- When n oscillators are traced out, the reduced density matrix is

$$\begin{split} \rho(\mathbf{x}_2, \mathbf{x}_2') &= \left(\frac{\text{det } \mathrm{Re}(\gamma - \beta)}{\pi^{N-n}}\right)^{1/2} \\ \times \exp\left(-\frac{1}{2}\mathbf{x}_2^T\gamma\,\mathbf{x}_2 - \frac{1}{2}\mathbf{x}_2'^T\gamma\,\mathbf{x}_2' + \mathbf{x}_2^T\beta\,\mathbf{x}_2' + \frac{\mathrm{i}}{2}\mathbf{x}_2^T\delta\,\mathbf{x}_2 - \frac{\mathrm{i}}{2}\mathbf{x}_2'^T\delta\,\mathbf{x}_2'\right). \end{split}$$

- γ and δ are $(N-n) \times (N-n)$ real symmetric matrices, while β is a $(N-n) \times (N-n)$ Hermitian matrix.
- The eigenvalues of the density matrix do not depend on δ .

- A major technical difficulty arises because the matrices γ and β cannot be diagonalized through real orthogonal transformations in order to identify the eigenvalues of the reduced density matrix.
- These are guaranteed to be real by the nature of the density matrix, but the determination of their exact values requires an extensive analysis.
- A method has been developed for their computation. A detailed presentation is given in the publications.

Entanglement entropy of a quantum field in 1+1 dimensions

- Consider a toy model of a massless scalar field in 1+1 dimensions. The field is canonically normalized.
- Assume a background given by the FRW metric, neglecting the angular part. The curvature scalar R is equal to $-2\mathrm{H}^2$.
- The de Sitter era can be mimicked by including an effective mass term arising from a non-minimal coupling to gravity $\xi R \phi^2$ with $\xi = -1/2$.
- The Hamiltonian of the discretized system is

$$H = \frac{1}{2\epsilon} \sum_{j=2}^{N-1} \left[\pi_j^2 + (f_{j+1} - f_j)^2 - \frac{2\kappa}{(\tau/\epsilon)^2} f_j^2 \right] + \frac{1}{2\epsilon} \sum_{j=1,N} \left[\pi_j^2 + f_j^2 - \frac{2\kappa}{(\tau/\epsilon)^2} f_j^2 \right]$$

with $\kappa = 1$. We have modified the action for the oscillators at the ends of the chain, so as to impose boundary conditions corresponding to a vanishing field at the endpoints.

• The radiation dominated era with $\kappa = 0$ can be mimicked by assuming a transition to a flat background with R = 0 at some time τ_0 .

Figure: The entanglement entropy resulting from tracing out the part $n < k \le N$ of a one-dimensional chain at various times, for a dS background.

• For $\tau \to -\infty$, the entanglement entropy can be described very well by the expression

$$S = \frac{c}{6} \ln \left(\frac{2L}{\pi \epsilon} \sin \frac{\pi \ell}{L} \right) + \overline{c}_1', \tag{2}$$

with c = 1, in agreement with Cardy, Calabrese 2004.

• For $\tau \to 0^-$ the entanglement entropy can be described very well by the expression

$$S = \ln\left(\frac{2La(\tau)}{\pi\epsilon}\sin\frac{\pi\ell}{L}\right) + d,\tag{3}$$

where $a(\tau) = -1/(H\tau)$.

• The entropy grows with the number of efoldings $\mathcal{N} = \ln a(\tau)$.

Figure: The entanglement entropy resulting from tracing out the part $n < k \le N$ of a one-dimensional chain at various times. The transition from a dS to a RD background (black line) occurs at $\tau_0 = -5$. During the RD era, the maximal entanglement entropy (red line) is first achieved at $\tau = 85$, and the minimal entanglement entropy (blue line) at $\tau = 40$. For clarity, we also display the entanglement entropy at these times in the right plot.

- Massless scalar field in 3 + 1 dimensions.
- Hamiltonian:

$$H = \frac{1}{2\epsilon} \sum_{l,m} \sum_{j=1}^{N} \left[\pi_{lm,j}^{2} + \left(j + \frac{1}{2} \right)^{2} \left(\frac{f_{lm,j+1}}{j+1} - \frac{f_{lm,j}}{j} \right)^{2} + \left(\frac{l(l+1)}{j^{2}} - \frac{2\kappa}{(\tau/\epsilon)^{2}} \right) f_{lm,j}^{2} \right],$$

with $\kappa = 1$.

- Trace out the oscillators with $j\epsilon < R$.
- Sum over l, m.
- Fit the result with a function $(\epsilon = 1)$

$$S = s(\tau) R^2 + c(\tau) R^3 + d(\tau).$$

The logarithmic correction is assumed to be subleading.

Preliminary results

Figure: Entanglement entropy as a function of entangling radius and time. The red lines indicate the location of the horizon at various times. The black line indicates the entropy at the time $\tau_0=-5$ of the transition from the de Sitter era with H=10 to the radiation dominated era.

Figure: The coefficient of the quadratic term in the entanglement entropy.

Figure: The coefficient of the cubic term in the entanglement entropy.

- Momentum modes that start as pure quantum fluctuations in the Bunch-Davies vacuum during inflation are expected to freeze when they exit the horizon and transmute into classical stochastic fluctuations.
- This is only part of the picture. Even though its classical features are dominant, the field never loses its quantum nature.
- The various modes evolve into squeezed states.
- The squeezing triggers a strong enhancement of quantum entanglement. The effect is clearly visible in the entanglement entropy.
- The enhancement is proportional to the number of efoldings during the inflationary era.
- The entanglement entropy survives during the eras of radiation or matter domination. A volume effect appears during these eras.
- Quantum mechanical picture of reheating?
- Observable consequences?