SMEFT as a probe of New Physics at the LHC

Eleni Vryonidou University of Manchester

```
MANCHESTER
```


HEP2023
Ioannina, 05/04/23

LHC: the story so far

Rediscovering the SM

Searching for the unknown

Good agreement with the SM predictions No evidence of new light particles

Where is New Physics?

There is a good chance that New Physics is Heavy
Not enough energy to produce it

Indirect searches are needed new directions

SMEFT: What is it all about?

Energy

New Physics

SMEFT: What is it all about?

Energy

SMEFT: What is it all about?

Energy

SMEFT: What is it all about?

Energy

New Physics

SMEFT: What is it all about?

Energy

New Physics

SMEFT: What is it all about?

Energy

New Physics

SMEFT: What is it all about?

Energy

New Physics

SMEFT: What is it all about?

Energy

New Physics

^~M

SM

$$
\frac{1}{-M^{2}}
$$

$$
\mathcal{L}\left(\phi, Z^{\prime}\right)
$$

$$
\begin{aligned}
& \mathcal{L}_{S M}(\phi)+\mathcal{L}_{\operatorname{dim} 6}(\phi)+\ldots \\
& \mathcal{L}_{\text {dim } 6}=\frac{C}{\Lambda^{2}}\left(\bar{f} \gamma^{\mu} f\right)\left(\bar{f} \gamma_{\mu} f\right)
\end{aligned}
$$

How to find new physics with EFT?

Effective Field Theory (EFT): The way to probe New Physics beyond the direct collider energy reach

How to find new physics with EFT?

Rate Known particle
Effective Field Theory (EFT): The way to probe New Physics beyond the direct collider energy reach

How to find new physics with EFT?

Rate

Energy

Effective Field Theory (EFT): The way to probe New Physics beyond the direct collider energy reach

How to find new physics with EFT?

Rate

Effective Field Theory (EFT): The way to probe New Physics beyond the direct collider energy reach

Effective Field Theory

Energy

Standard Model $\mathcal{L}_{S M}(\phi)$

Effective Field Theory reveals high energy physics through precise measurements at low energy.

SMEFT basics

New Interactions of SM particles

$$
\mathcal{L}_{E F T}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}^{(6)} O_{i}^{(6)}}{\Lambda^{2}}+\mathcal{O}\left(\Lambda^{-4}\right)
$$

dim-6: 59 operators

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B P} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$	$Q_{\text {eq }}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{I}_{p} e_{r} \varphi\right)$
$Q_{\tilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	$Q_{\varphi \square}$	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$	$Q_{u \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\overline{(}_{p} u_{r} \widetilde{\varphi}\right)$
Q_{W}	$\varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$Q_{\text {de }}$	$\left(\varphi^{\dagger} \varphi\right)\left(\overline{(}_{p} d_{r} \varphi\right)$
$Q_{\widetilde{W}}$	$\varepsilon^{I J K} \widetilde{W}_{\mu}^{I L} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$				
$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{\text {eW }}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi l}^{(1)}$	$\left(\varphi^{\dagger} i{\left.\overleftrightarrow{\widehat{D}_{\mu}} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)}^{\text {a }}\right.$
$Q_{\varphi \tilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u G}$	$\left(\overline{(}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$Q_{\varphi e}$	$\left(\varphi^{\dagger} i{\overleftrightarrow{D_{\mu}}}_{\mu} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}$	$Q_{\varphi q}^{(1)}$	$\left(\varphi^{\dagger}{\left.\stackrel{3}{D_{\mu}} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)}^{\text {a }}\right.$
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\overline{(}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi \tilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$	$Q_{d G}$	$\left(\overline{(}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{\varphi W B}$	$\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi d}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{\varphi \widetilde{W} B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d B}$	$\left(\overline{(}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi u d}$	$i\left(\widetilde{\varphi}^{+} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653
Grzadkowski et al arXiv:1008.4884

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
Q_{u}	${ }^{\left(\bar{l}_{p} \gamma_{\mu} l_{r} l_{)}\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right)\right.}$	$Q_{\text {ee }}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$	$Q_{\text {le }}$	$\left(\bar{I}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{q 9}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{u u}$	${ }^{\left(\bar{u}_{p} \gamma_{\mu} u_{\tau}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)}$	$Q_{l u}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\overline{(}_{s} \gamma^{\mu} u_{t}\right)$
$Q_{q q}^{(3)}$	$\left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{\bar{q}^{\prime}}{ }^{\mu} \tau^{I} q_{t}\right)$	$Q_{\text {dd }}$	$\left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{l d}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
$Q_{1 q}^{(1)}$	${ }_{\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)}$	$Q_{e u}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{\tau}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{q e}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{l q}^{(3)}$	$\left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{\text {ed }}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{\tau}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
		$Q_{u d}^{(1)}$	${ }^{\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)}$	$Q_{q u}^{(8)}$	$\left(\overline{\bar{p}}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right)$
		$Q_{u d}^{(8)}$	$\left(\overline{(}_{p} \gamma_{\mu} T^{4} u_{r}\right)\left(\bar{d}_{s} \gamma^{4} T^{A} d_{t}\right)$	$Q_{q d}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{\tau}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
				$Q_{q d}^{\text {(8) }}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
$Q_{\text {ledq }}$	$\left({ }_{p}^{\text {j}}{ }_{p} e_{r}\right)\left(\bar{d}_{s} q_{t}{ }^{j_{t}}\right)$	$Q_{\text {duq }}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}[($	${ }^{\text {Cu }}$	$\left.\left(q_{g^{j}}\right)^{T} C l_{t}^{k}\right]$
$Q_{\text {quqg }}^{(1)}$	$\left(\bar{p}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{*} d_{t}\right)$	$Q_{q q u}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j_{j k}}\left[\left(q_{p}^{\alpha j}\right.\right.$	${ }^{T} C q_{r}^{B k}$	$\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$
$Q_{\text {quqd }}(8)$	$\left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right)$	$Q_{999}^{(1)}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k} \varepsilon_{m n}\left[\left(q_{p}^{o}\right.\right.$	$)^{T} C$	$]\left[\left(q_{s}^{7 m}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(1)}$	$\left.\left(\bar{i}_{p} \bar{j}_{r}\right)\right)_{j_{j k}\left(\bar{q}_{s}^{t} u_{t}\right)}$	$Q_{9 q 9}^{(3)}$	$\varepsilon^{\alpha \beta \gamma}\left(\tau^{I} \varepsilon\right)_{j k}\left(\tau^{I} \varepsilon\right)_{m n}$	$\left(q_{p}^{\alpha j}\right)^{T}$	$\left.C q_{r}^{\beta k}\right]\left[\left(q_{s}^{\text {m }}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(3)}$	${ }^{\left(\vec{p} \bar{p}_{p} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{\bar{q}_{s}^{*}} \sigma^{\mu \nu} u_{t}\right)}$	$Q_{\text {duu }}$	$\varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)^{2}\right.$	$\left.C u_{r}^{\beta}\right]$	$\left.\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$

SMEFT@higher dimensions

Dimension-7 Lehman arXiv: 1410.4193
Dimension-8 Li et al arXiv: 2005.00008
Dimension-9 Li et al arXiv: 2012.09188

Code to generate a basis (non-redundant set) at arbitrary dimension in SMEFT:
Li et al arXiv:2201.04639

SMEFT@dim6

59 operators in flavour universal scenario 2499 if fully general

SMEFT@dim6

59 operators in flavour universal scenario 2499 if fully general 0

SMEFT@dim6

59 operators in flavour universal scenario
2499 if fully general Θ
In practice:

- Not all operators enter in all observables
- Many observables available
- We can make "reasonable" assumptions

SMEFT@dim6

59 operators in flavour universal scenario
2499 if fully general θ
In practice:

- Not all operators enter in all observables
- Many observables available
- We can make "reasonable" assumptions no B,L violation
\rightarrow Flavour symmetries (universality, MFV)
CP conservation

<100 operators for the LHC

SMEFT@dim6

59 operators in flavour universal scenario
2499 if fully general θ
In practice:

- Not all operators enter in all observables
- Many observables available
- We can make "reasonable" assumptions no B,L violation
Flavour symmetries (universality, MFV)
CP conservation

> <100 operators for the LHC

EFT pathway to New Physics

EFT pathway to New Physics

Constraints $\frac{1}{\Lambda^{2}} c_{i}^{6}(\mu)$

EFT pathway to New Physics

Constraints $\frac{1}{\Lambda^{2}} c_{i}^{6}(\mu) \longrightarrow \mathrm{UV}$

EFT pathway to New Physics

$$
\text { Constraints } \frac{1}{\Lambda^{2}} c_{i}^{6}(\mu) \longrightarrow \mathrm{UV}
$$

Huge effort to improve each one of these steps!

Global nature of EFT

Operator examples

currents $\quad i\left(\varphi^{\dagger} \overleftrightarrow{D}^{\mu} \varphi\right)\left(\bar{Q} \gamma^{\mu} Q\right)$

- Shift SM $f \bar{f} V$ couplings
- $f \bar{f} V h$ contact interactions
dipole
$\left(\bar{q} \sigma_{\mu \nu} t \tilde{\varphi}\right) V^{\mu \nu}$

 $C_{t V}$
- Chirality flipping $f \bar{f} V$ couplings
- $f \bar{f} V(V) h$ contact interactions
- $W, B \& G$ fields

Yukawa $\quad(\bar{q} t \tilde{\varphi})\left(\varphi^{\dagger} \varphi\right)$

$\cdots t \phi$

- Decouple $m_{t} \& y_{t}$
- $t \bar{t} h h(h)$ contact interactions

4 fermion $\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{Q} \gamma^{\mu} Q\right)$

- Contact interactions
- 2-heavy-2-light or 4-heavy
- Numerous (~O(20) w/ top)
+Purely bosonic operators

EFT in top pair production

SM EFT

4-fermion operators

$$
\begin{aligned}
& O_{Q q}^{1,8}=\left(\bar{Q} \gamma_{\mu} T^{A} Q\right)\left(\bar{q}_{i} \gamma^{\mu} T^{A} q_{i}\right) \\
& O_{Q q}^{3,8}=\left(\bar{Q} \gamma_{\mu} T^{A} \tau^{I} Q\right)\left(\bar{q}_{i} \gamma^{\mu} T^{A} \tau^{I} q_{i}\right) \\
& O_{Q q}^{1,1}=\left(\bar{Q}_{\gamma_{\mu}} Q\right)\left(\bar{q}_{i} \gamma^{\mu} q_{i}\right) \\
& O_{t u}^{8}=\left(\bar{t} \gamma_{\mu} T^{A} t\right)\left(\bar{u}_{i} \gamma^{\mu} T^{A} u_{i}\right) \\
& O_{t d}^{8}=\left(\bar{t} \gamma^{\mu} T^{A} t\right)\left(\bar{d}_{i} \gamma_{\mu} T^{A} d_{i}\right) \\
& O_{Q q}^{3,1}=\left(\bar{Q}_{\gamma_{\mu}} \tau^{I} Q\right)\left(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{i}\right) \\
& O_{Q u}^{8}=\left(\bar{Q} \gamma^{\mu} T^{A} Q\right)\left(\bar{u}_{i} \gamma_{\mu} T^{A} u_{i}\right) \\
& O_{t u}^{1}=\left(\bar{t} \gamma_{\mu} t\right)\left(\bar{u}_{i} \gamma^{\mu} u_{i}\right) \\
& O_{t d}^{1}=\left(\bar{t}^{\mu} t\right)\left(\bar{d}_{i} \gamma_{\mu} d_{i}\right) \text {; } \\
& O_{Q d}^{8}=\left(\bar{Q} \gamma^{\mu} T^{A} Q\right)\left(\bar{d}_{i} \gamma_{\mu} T^{A} d_{i}\right) \\
& O_{Q_{u}}^{1}=\left(\bar{Q} \gamma^{\mu} Q\right)\left(\bar{u}_{i} \gamma_{\mu} u_{i}\right) \\
& O_{t q}^{8}=\left(\bar{q}_{i} \gamma^{\mu} T^{A} q_{i}\right)\left(\overline{\tau_{\gamma}} \gamma^{A} T^{A}\right) \\
& O_{Q d}^{1}=\left(\bar{Q} \gamma^{\mu} Q\right)\left(\bar{d}_{i} \gamma_{\mu} d_{i}\right) \\
& O_{t q}^{1}=\left(\bar{q}_{i} \gamma^{\mu} q_{i}\right)\left(\bar{t}_{\mu} t\right) \text {; }
\end{aligned}
$$

Octets
 Singlets

c_{i}	$\mathcal{O}\left(\Lambda^{-2}\right)$		
	LO	NLO	
$c_{t u}^{8}$	$4.27_{-9 \%}^{+11 \%}$	$4.06{ }^{+}$	
$c_{t d}^{8}$	$2.79_{-9 \%}^{+11 \%}$	2.77_{-}^{+}	
$c_{t q}^{8}$	$6.99_{-9 \%}^{+11 \%}$	$6.67{ }^{+}$	
$c_{Q u}^{8}$	$4.26{ }^{+11 \%}$	$3.93{ }^{+}$	
${ }^{\text {c }} \mathrm{Qu}$	$\begin{aligned} & 4.20-9 \% \\ & 279+11 \% \end{aligned}$		
$c_{Q d}^{8}$	$2.79_{-9 \%}^{+11 \%}$	$2.93+$	
$c_{\text {Qq }}^{8,1}$	$6.99_{-9 \%}^{+11 \%}$	$6.82{ }^{+}$	
$c_{\text {Qq }}^{8,3}$	$1.50{ }_{-9 \%}^{+10 \%}$	$1.32+$	
$c_{\text {tu }}^{1}$	$\left[0.67_{-1 \%}^{+1 \%}\right]$	$-0.078(7)_{-23 \%}^{+31 \%}$	$\left[0.41_{-17 \%}^{+13 \%}\right]$
$c_{t d}^{1}$	$[-0.21-2 \%]$	$-0.306_{-22 \%}^{+30 \%}$	$\left[-0.15{ }_{-13 \%}^{+10 \%}\right]$
$c_{t q}^{1}$	$\left[0.39_{-1 \%}^{+0 \%}\right]$	$-0.47_{-18 \%}^{+24 \%}$	$[0.50-2 \%]$
$c_{Q u}^{1}$	$\left[0.33_{-0 \%}^{+0 \%}\right]$	$-0.359_{-17 \%}^{+23 \%}$	$\left[0.57{ }_{-5 \%}^{+6 \%}\right]$
$c_{Q d}^{1}$	$\left[-0.11_{-1 \%}^{+0 \%}\right]$	$0.023(6)_{-75 \%}^{+114 \%}$	$\left[-0.19_{-5 \%}^{+6 \%}\right]$
$c_{Q q}^{1,1}$	$\left[0.57_{-1 \%}^{+0 \%}\right]$	$-0.24_{-22 \%}^{+30 \%}$	$\left[0.39_{-12 \%}^{+9 \%}\right]$
$c_{\text {Qq }}^{1,3}$	$\left[1.92_{-1 \%}^{+1 \%}\right]$	$0.088(7)_{-20 \%}^{+28 \%}$	$\left[1.05{ }_{-22 \%}^{+17 \%}\right]$

Different chiralities and colour structures
Interesting interference patterns
Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

Breaking degeneracies

LHC can probe more sensitive observables

Different top chiralities
Basan, Berta, Masetti, EV, Westhoff arXiv:2001.07225

An asymmetry observable
$A_{E}\left(\theta_{j}\right)=\frac{\sigma_{t \bar{t} j}\left(\theta_{j}, \Delta E>0\right)-\sigma_{t \bar{t} j}\left(\theta_{j}, \Delta E<0\right)}{\sigma_{t \bar{t} j}\left(\theta_{j}, \Delta E>0\right)+\sigma_{t \bar{t} j}\left(\theta_{j}, \Delta E<0\right)}$

Optimised sensitivity
Broken degeneracies

The impact of multiple measurements

$$
\begin{aligned}
& O_{Q q}^{1,8}=\left(\bar{Q} \gamma_{\mu} T^{A} Q\right)\left(\bar{q}_{i} \gamma^{\mu} T^{A} q_{i}\right) \\
& O_{Q q}^{3,8}=\left(\bar{Q} \gamma_{\mu} T^{A} \tau^{I} Q\right)\left(\overline{q_{i}} \gamma^{\mu} T^{A} \tau^{I} q_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
O_{t q}^{8} & =\left(\bar{q}_{i} \gamma^{\mu} T^{A} q_{i}\right)\left(\bar{t} \gamma_{\mu} T^{A} t\right) \\
O_{Q q}^{1,8} & =\left(\bar{Q} \gamma_{\mu} T^{A} Q\right)\left(\bar{q}_{i} \gamma^{\mu} T^{A} q_{i}\right)
\end{aligned}
$$

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606

Global fit observables

	Category	Processes	$n_{\text {dat }}$
Top	Top quark production	```t\overline{t}\mathrm{ (inclusive)} t\overline{t}Z,t\overline{t}W single top (inclusive) tZ,tW t\overline{t}t\overline{t},t\overline{t}b\overline{b} Total```	$\begin{gathered} 94 \\ 14 \\ 27 \\ 9 \\ 6 \\ \mathbf{1 5 0} \end{gathered}$
Higgs	Higgs production and decay	Run I signal strengths Run II signal strengths Run II, differential distributions \& STXS Total	$\begin{aligned} & 22 \\ & 40 \\ & 35 \\ & \mathbf{9 7} \end{aligned}$
$\text { 巨 } W$	Diboson production	LEP-2 LHC Total	$\begin{aligned} & 40 \\ & 30 \\ & \mathbf{7 0} \end{aligned}$
	Baseline dataset	Total	317

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Global fit results

Bounds vary from operator to operator! Lots of information
Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10 s of TeV . Bounds depend on:

$$
\frac{c_{i}^{6}(\mu)}{\Lambda^{2}}=\frac{\lambda^{2}}{M^{2}}<X
$$

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)

- linear or quadratic bounds

Where is most information from?

Higgs-Top interface
Fisher information table

Where is most information from?

Fisher information table

What can we learn from these fits?

- EFT bounds translate to constraints on parameters of UV models
- Simplest case: single-field extensions of the SM

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

Future of global fits

More observables:

- particle level observables
- spin correlations
- new final states

More/different operators:

- different flavour assumptions
- dimension-8 operators

Better EFT predictions

Higher Orders in $1 / \wedge^{4}$

- squared dim-6 contributions
- double insertions of dim-6
- dim-8 contributions

Higher Orders in QCD and EW
EFT is a QFT, renormalisable order-by order in $1 / \wedge^{2}$

$$
\mathcal{O}\left(\alpha_{s}, \alpha_{e w}\right)+\mathcal{O}\left(\frac{1}{\Lambda^{2}}\right)+\mathcal{O}\left(\frac{\alpha_{s}}{\Lambda^{2}}\right)+\mathcal{O}\left(\frac{\alpha_{e w}}{\Lambda^{2}}\right)
$$

SMEFT of computations at dimension-6

$$
\Delta \mathrm{Obs}_{n}=\mathrm{Obs}_{n}^{\mathrm{EXP}}-\mathrm{Obs}_{n}^{\mathrm{SM}}=\sum_{i} \frac{c_{i}^{6}(\mu)}{\Lambda^{2}} a_{n, i}^{6}(\mu)+\mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)
$$

Tree level: Done (SMEFTsim) https://smeftsim.github.io/ Brivio, arXiv: 2012.11343

NLO QCD: ~Done (SMEFT@NLO) http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743
NLO EW: Some examples available, needed to probe unconstrained operators.

SMEFT of computations at dimension-6

$$
\Delta \mathrm{Obs}_{n}=\mathrm{Obs}_{n}^{\mathrm{EXP}}-\mathrm{Obs}_{n}^{\mathrm{SM}}=\sum_{i} \frac{c_{i}^{6}(\mu)}{\Lambda^{2}} a_{n, i}^{6}(\mu)+\mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)
$$

Tree level: Done (SMEFTsim) https://smeftsim.github.io/ Brivio, arxiv: 2012.11343

NLO QCD: ~Done (SMEFT@NLO) http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743
NLO EW: Some examples available, needed to probe unconstrained operators.

$$
\text { How about this } \mu \text { ? }
$$

Running and mixing in SMEFT

$$
\frac{d c_{i}(\mu)}{d \log \mu}=\gamma_{i j} c_{j}(\mu)
$$

One loop anomalous dimension known:
(Alonso) Jenkins et al arXiv:1308.2627, 1310.4838, 1312.2014
Example: Turn one 1 operator at high-scale
Compute effect on top pair cross-section

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

Impact of RGE on constraints

How does running and mixing impacts the constraints?

Top sector fit:

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067
Effect becomes more important for differential distributions \& measurements with very different scales

Conclusions

- SMEFT is a consistent way to look for new interactions
- The LHC gives a lot of opportunities to explore SMEFT through a lot of new measurements
- First global fits results already available: important to combine as many processes as possible
- Strong link between Higgs and top sectors
- Precise EFT predictions (NLO, RGE-improved) maximise the potential of EFT probes
- Eventually global fit results give us a clear indication of the scale of potential new physics

Thank you for your attention

