T-Model Inflation	SUGRA FRAMEWORK	Post-Inflationary Completion	Conclusions
000	00 000	0000	0

T-MODEL HIGGS INFLATION IN SUPERGRAVITY

C. PALLIS

FACULTY OF ENGINEERING ARISTOTLE UNIVERSITY OF THESSALONIKI

BASED ON:

C.P., J. Cosmol. Astropart. Phys. 05, 043 (2021) [arXiv:2103.05534].

OUTLINE

T-MODEL INFLATION

FROM MINIMAL HI TO T-MODEL HI NON-SUSY T-MODEL INFLATION (TMI)

SUGRA FRAMEWORK

FORMULATION OF HI INFLATIONARY SCENARIOS - RESULTS

POST-INFLATIONARY COMPLETION

INFLATON DECAY & NON-THERMAL LEPTOGENESIS INTERCONNECTION WITH MSSM PHENOMENOLOGY

CONCLUSIONS

MATHEMATICAL APPENDIX

イロト イロト イヨト イヨト

HEP2023 - 40th Conference on Recent Developments in High Energy Physics and Cosmology, 5–8 April 2023, Ioannina, Greece

T-MODEL HI IN SUGRA

T-MODEL INFLATION	SUGRA FRAMEWORK	Post-Inflationary Completion	Conclusions
• 00 0	00	0000	0
			(

FROM MINIMAL HI TO T-MODEL HI

INFLATIONARY OBSERVABLES AND REQUIREMENTS

• INFLATION IS CALLED A PERIOD OF EXPONENTIAL EXPANSION OF THE UNIVERSE, DURING WHICH

$$\left(d\widehat{\phi}/\sqrt{2}dt
ight)^2 \ll V_{\mathrm{I}}(\widehat{\phi})\simeq \mathsf{Cst} \iff R(t)=R(t_{\mathrm{i}})e^{\Delta N_e}$$
 with ΔN_e the Number of e -Folding

t the Cosmic Time, R(t) the Scale Factor & $\widehat{\phi} = \widehat{\phi}(t)$ the Canonically Normalized Inflaton.

- A Successful Inflationary Scenario In Principle Requires:
 - The Number of e-foldings, N_{\star} , that the Scale $k_{\star} = 0.05/Mpc$ Underwent During HI has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$N_{\star} = \int_{\widetilde{\phi}_{\rm f}}^{\widetilde{\phi}_{\star}} d\widehat{\phi} \frac{V_{\rm I}}{V_{{\rm L}\widehat{\phi}}} \simeq (44-56) \ \, {\rm Depending \ on} \ \, w_{\rm th} \simeq (-0.24-0.58), \ \, {\rm Where}$$

- THE **BAROTROPIC INDEX** $w_{\rm rh}$ DEPENDS ON THE DEGREE OF THE POLYNOMIAL IN $V_{\rm I}$;
- $\widehat{\phi}_{\star}$ is The Value of $\widehat{\phi}$ When k_{\star} Crosses Outside The Inflationary Horizon;
- $\widehat{\phi}_{\rm f}$ is the Value of $\widehat{\phi}$ at the end of HI Which Can Be Found From The Condition:

$$\max\{\epsilon(\widehat{\phi}_{\mathrm{f}}), |\eta(\widehat{\phi}_{\mathrm{f}})|\} = 1, \quad \text{With} \quad \epsilon = \left(V_{\mathrm{I},\widehat{\phi}}/\sqrt{2}V_{\mathrm{I}}\right)^2 \quad \text{and} \quad \eta = V_{\mathrm{I},\widehat{\phi\phi}}/V_{\mathrm{I}}$$

The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Consistent with Planck Data:

$$A_{\rm s}^{1/2} = \frac{1}{2\sqrt{3}\pi} \frac{V_{\rm I}(\widehat{\phi_{\star}})^{3/2}}{|V_{{\rm I},\widehat{\phi}}(\widehat{\phi_{\star}})|} = 4.588 \cdot 10^{-5}$$

• The Models Fulfilling The Restrictions Above Can be Further Qualified by Computing the (Scalar) Spectral Index, n_s , its Running, α_s , and the Tensor-to-Scalar Ratio, r from the Formulas:

$$n_{\rm s} = \ 1 - 6\epsilon_\star \ + \ 2\eta_\star, \quad \alpha_{\rm s} = \ 2\left(4\eta_\star^2 - (n_{\rm s} - 1)^2\right)/3 - 2\xi_\star \quad {\rm and} \quad r = 16\epsilon_\star,$$

Where $\xi = V_{I,\widehat{\phi}}V_{I,\widehat{\phi}\widehat{\phi}}/V_{I}^{2}$ And The Variables With Subscript \star Are Evaluated at $\widehat{\phi} = \widehat{\phi}_{\pm}$.

T-Model Inflation	SUGRA Framework 00 000	Post-Inflationary Completion 0000 0	Conclusions O
FROM MINIMAL HI TO T-MODEL HI			

OBSERVATIONAL STATUS OF HIGGS INFLATION (HI)

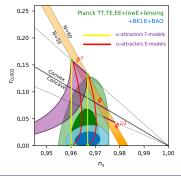
• We Aspire to **Identify** ϕ With the Radial Component of a **Higgs Field**, $\Phi = \phi e^{i\theta} / \sqrt{2}$, Within a **Grand Unified Theory (GUT)**. Therefore, We Choose As Inflationary Potential The One Employed for the Realization of the **Higgs Mechanism**,

$$V_{\rm HI}(\phi) = \lambda^2 (\phi^2 - M^2)^2 / 16 \simeq \lambda^2 \phi^4 / 16$$
 For $M \ll m_{\rm P} = 1.$ (: H)

• For $\phi = \hat{\phi}$, the Theoretically Derived Values $n_s \simeq 0.947$ and $r \simeq 0.28$ Are Not Compatible With the Observational Ones.

• The Combined Bicep2/Keck Array and Planck Results Require, for Fitted A_s and N_{\star} ,

 $n_{\rm s}=0.965\pm0.009~$ and $~r\lesssim0.032~$ at 95% c.l.



• On the Contrary, Observationally Friendly Are Models Called $\alpha\text{-}Attractors$ Which Employ Chaotic Potentials and so can be Activated with \mathcal{V}_{HI} in Eq. (H).

• These Are Based on the Specific Relation Established Between the Initial, ϕ , and the Canonically Normalized Inflaton $\widehat{\phi}$ and can be Classified into E-Model Inflation (EMI) (or α -Starobinsky model) and T-Model Inflation (TMI) And I.e.

$$\phi = \begin{cases} 1 - \mathrm{Exp}\left(-\sqrt{2/N}\widehat{\phi}\right) & \text{For EMI,} \\ \tanh\left(\widehat{\phi}/\sqrt{2N}\right) & \text{For TMI,} \end{cases} \text{ With } N > 0.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• Such Relations Between ϕ and $\widehat{\phi}$ Can be Achieved in The Presence Of A Pole In The Inflaton Kinetic Term.

э

T-Model Inflation ○○● ○	SUGRA Framework 00 000	Post-Inflationary Completion 0000 0	Conclusions O
FROM MINIMAL HI TO T-MODEL HI			

T-MODEL HI FROM A KINETIC POLE OF SECOND ORDER

• TMI Is "Taylor Made" for HI Since It Arises from a Kinetic Pole of Order Two Which Includes the GUT-Invariant Quantity $|\Phi|^2 := \Phi^{\dagger}\Phi$. In Particular, the Lagrangian \mathcal{L} of $\phi = \phi(t)$ Reads

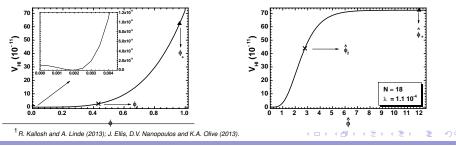
$$\mathcal{L} = \sqrt{-\mathfrak{g}} \Big(N_2 \dot{\phi}^2 / 2 f_2^2 - V_{\mathrm{HI}}(\phi) \Big)$$
 with $\dot{} = d/dt, \ f_2 = 1 - \phi^2$ and $N_2 > 0$

Also, g is the Determinant of the Space-time Metric $g_{\mu\nu}$.

• IF WE EXTRACT $\widehat{\phi}$, VIA THE RELATION $N_2 \dot{\phi}^2 / 2f_2^2 = (d \dot{\phi} / \sqrt{2} dt)^2$, WE OBTAIN¹

$$\frac{d\widehat{\phi}}{d\phi} = J = \frac{\sqrt{N_2}}{f_2} \quad \Rightarrow \quad \phi = \tanh \frac{\widehat{\phi}}{\sqrt{N_2}}. \quad \text{Therefore} \quad V_{\text{HI}}(\widehat{\phi}) \simeq \frac{\lambda^2}{16} \tanh^4 \frac{\widehat{\phi}}{\sqrt{N_2}}.$$

 $V_{\rm HI}$ Expressed as a Function of $\widehat{\phi}$ Develops a Plateau for $\widehat{\phi} > 1$ Which Renders it Convenient for the Realization of a Observationally Viable HI.



T-Model Inflation	SUGRA Framework 00 000	Post-Inflationary Completion 0000 0	Conclusions O
Nov SUSV T MODEL INTLATION (T)	(II)		

INFLATION ANALYSIS

• The Parameters ϵ & η (Expressed as a Function of ϕ) Decrease With the Pole Function $f_2 = 1 - \phi^2$

$$\epsilon\simeq 16 f_2^{~2}/N_2 \phi^2 \quad \text{and} \quad \eta\simeq 8 f_2 (3-5\phi^2)/N_2 \phi^2$$

And Can be Kept Below Unity As $\phi
ightarrow 1,$ Assuring Thereby an Inflationary Period.

• The Number of *e*-Foldings Turns out to be Inverse Proportional of $f_{2\star} = 1 - \phi_{\star}^2$,

$$N_\star \simeq N_2 \phi_\star^2 / 4 f_{2\star} \ \Rightarrow \ \phi_\star = \sqrt{4N_\star} / \sqrt{4N_\star + N_2} \sim 1 \gg \phi_{\rm f},$$

And so N_{\star} Can be Adequately Large For $\phi_{\star} \rightarrow 1$.

• The Proximity of ϕ_{\star} to 1 Signals a Just Mild Tuning In the Initial Conditions Since

$$0.01 \leq \Delta_{\star} \leq 0.04$$
 for $0.1 \leq N_2 \leq 55$ Where $\Delta_{\star} = (1 - \phi_{\star})$

• The Normalization of A_s Provides the Value of λ , I.E.,

$$A_{\rm s}^{1/2} \simeq \frac{\sqrt{2\lambda}N_{\star}}{\sqrt{3N_2\pi}} = 4.588 \cdot 10^{-5} \implies \lambda \simeq 2\sqrt{3N_2A_{\rm s}}\pi/N_{\star} \implies \underline{\lambda} \sim 10^{-5} \ \, {\rm For} \ \, N_{\star} \simeq 55 \ \, {\rm \&} \ \, N_2 = 1.$$

• For the Remaining Inflationary Observables We obtain

$$n_{\rm s} \simeq 1 - 2/N_{\star} \simeq 0.965, \ \alpha_{\rm s} \simeq -2/N_{\star}^2 = 9.5 \cdot 10^{-4} \ \text{and} \ r \simeq 2N_2/N_{\star}^2 \le 0.032 \ \Rightarrow \ N_2 \lesssim 55, \ N_2 \simeq 1 - 2/N_{\star}^2 = 0.032$$

Consistently With the Data, **Provided we Pose an Upper Bound on** N_2 .

• The Effective Theory Describing HI Remains Valid Up to a "Ultraviolet" Cutoff Threshold, $\Lambda_{UV} \sim m_P$, Assuring the Stability of the Inflationary Solutions,

(a)
$$V_{\rm I}(\phi_*)^{1/4} \leq \Lambda_{\rm UV}$$
 for (b) $\phi \leq \Lambda_{\rm UV}$.

• THE NATURAL FRAMEWORK FOR THE ANALYSIS OF A GUT IS SUPERSYMMETRY (SUSY) – AND ITS TOPICAL EXTENSION, SUPERGRAVITY (SUGRA) – WHERE THE GAUGE HIERARCHY PROBLEM CAN BE NATURALLY ARRANGED.

T-Model Inflation 000 0	SUGRA Framework ●0 ○○○	Post-Inflationary Completion 0000 0	Conclusions O
FORMULATION OF HI			

SUGRA SCALAR POTENTIAL

• The General Lagrangian For The Scalar Fields z^{α} Plus Gravity In Four Dimensional, $\mathcal{N} = 1$ SUGRA is:

$$\mathcal{L} = \sqrt{-\mathfrak{g}} \left(K_{a\bar{\beta}} g^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{\ast \bar{\beta}} - V_{\mathrm{SUGRA}} \right) \quad \text{where} \quad K_{a\bar{\beta}} := \partial_{z^{\alpha} z^{\ast \bar{\beta}}}^{2} K > 0, \quad K^{\bar{\beta}\alpha} K_{\alpha \bar{\gamma}} = \delta_{\bar{\gamma}}^{\bar{\beta}};$$

$$V_{\rm SUGRA} = V_{\rm F} + V_{\rm D} \quad \text{With} \quad \begin{cases} V_{\rm D} = g^2 D_a^2/2, \quad {\rm D}_a = z_\alpha \left(T_a\right)^\alpha_\beta K_{,\beta} \\ V_{\rm F} = e^K \left(K^{\alpha\beta} D_\alpha W D^*_\beta W^* - 3|W|^2\right) \text{ and } \\ D_\alpha = \partial_\alpha + \partial_\alpha K. \end{cases} \quad \begin{cases} D_\mu z^\alpha = \partial_\mu z^\alpha + igA^a_\mu T^a_{\alpha\beta} z^\beta \\ D_\alpha = \partial_\alpha + \partial_\alpha K. \end{cases}$$

 A^a_μ is the Vector Gauge Fields, g is the Gauge Coupling and T_a are the Generators of the Gauge Transformations OF z^α . The Kinetic Mixing is Controlled by The Kähler Potential K Which Affects Also V_F . This Depends on an Holomorphic Function of the Superfields Called Superpotential W Too.

• Therefore, Possible Appearance of f_2 in $K_{\alpha\beta}$ is Expected to Impact on $V_{\rm F}$ too, In Contrast to Non-SUSY Case, Making More Difficult the Realization of TMI in SUGRA. We Propose Below Two Ways Out of this Difficulty.

• WE CONCENTRATE ON **HI DRIVEN BY** V_F Which Requires $V_D = 0$ During HI.

INTRODUCTION OF THE STABILIZER FIELD

• IN GENERAL, THE REALIZATION OF CHAOTIC INFLATION IN SUGRA CAN BE FACILITATED, IF WE INTRODUCE A GAUGE-SINGLET SUPERFIELD $z^1 = S$ Called Stabilizer or Goldstino². Its Introduction is Necessary For the Following Reasons:

• It can be **Stabilized** at S = 0 Without Invoking Higher Order Terms, if we Select³:

 $K_2 = N_S \ln\left(1 + |S|^2/N_S\right) \Rightarrow K_2^{SS^*} = 1$ With $0 < N_S < 6$ Which Parameterizes the Compact Manifold SU(2)/U(1).

- It Assures the Boundedness of $V_{\rm E}$: If We set S = 0 During HI, the Terms $K_{z^{\alpha}}W$, $\alpha \neq 1$, and $-3|W|^2$ Vanish. The 2nd one May Render $V_{\rm E}$ Unbounded From Below.
- It Generates the non-SUSY Potential From the Term $|W_{S}|^{2}$ for S = 0. E.g., For $W = \lambda S \Phi^{n/2}$ We Obtain

 $\langle V_{\rm F}\rangle_{\rm I} = \langle e^K K^{SS^*} |W_{,S}|^2 \rangle_{\rm I} \in V_{\rm non-SUSY} = \lambda^2 \phi^n \quad \text{with} \quad \phi = {\sf Re}(\Phi) \quad \text{the (Initial) Inflaton.}$

² R. Kallosh, A. Linde and T. Rube (2011). ³ C.P. and N. Toumbas (2016).

T-Model Inflation	SUGRA FRAMEWORK	Post-Inflationary Completion	Conclusions
000	○● ○○○	0000	0

FORMULATION OF HI

SELECTION OF K & W

• WE EMPLOY A PAIR OF CHIRAL SUPERFIELDS $z^2 = \Phi \& z^3 = \overline{\Phi}$. With Charged Oppositely Under a Gauge Symmetry, E.g., $U(1)_{B-L}$ and a Superpotential CHARGE ASSIGNMENTS

 $W = S \left(\lambda_2 \bar{\Phi} \Phi / 2 - M^2 / 4 + \lambda_4 (\bar{\Phi} \Phi)^2 \right)$

DETERMINED UNIQUELY FROM A $U(1)_{R-L}$ & A GLOBAL $U(1)_R$ Under Which R(W) = R(S).

SUPERFIELDS:	S	Φ	$\bar{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	2	-2

W Leads to a GUT Phase Transition in SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| \sim M/\sqrt{2\lambda_2}$.

• THE INTRODUCTION OF f_2 in the Kinetic Terms is Achieved, if We Adopt One of the Following Kähler

$$K_{21} = -N\ln\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right) \quad \text{Or} \quad \widetilde{K}_{21} = -N\ln\left(\frac{\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right)}{(1 - 2\bar{\Phi}\Phi)^{1/2}(1 - 2\bar{\Phi}^*\Phi^*)^{1/2}},$$

Which Share the Same Kähler Metric, $K_{\alpha\bar{\beta}}$ Parameterizing the Kähler Manifold $SU(2, 1)/(SU(2) \times U(1))$.

• For Both K, the D Term Due to $U(1)_{B-L}$ is $D_{BL} = N(|\Phi|^2 - |\bar{\Phi}|^2)/(1 - |\Phi|^2 - |\bar{\Phi}|^2) \implies V_D = 0$ If $|\Phi| = |\bar{\Phi}|$

I.e., the D Term is Eliminated During HI, If we Choose as Inflaton the Common Radial Part of Φ & $ar{\Phi}.$

- For $K = K_{21}$ We Obtain $\langle e^K \rangle_I = 1/f_2^N$ And So, A Pole Appears in $\langle V_F \rangle_I$. However, This Pole Can be Eliminated in $\langle V_F \rangle_I$, IF We set $N = 2 \& \lambda_2 \simeq -\lambda_4 = \lambda$ Resulting to $W \simeq \lambda S \Phi \overline{\Phi} (1 - \overline{\Phi} \Phi) - \text{for } M \ll 1$.
- For $K = \widetilde{K}_{21}$ We Obtain $\langle e^K \rangle_I = 1$ and so, no Pole Appears in $\langle V_F \rangle_I$.
- IN ALL. WE END UP WITH THE FOLLOWING MODELS:
 - δ T-Model (δ TM) With $K = K_{221} = K_2 + K_{21}$, N = 2 and $\lambda_4 = -\lambda_2(1 + \delta_\lambda)$ in W with $\delta_\lambda = O(10^{-5})$; THE RESULTS DEVIATE WITH THOSE OBTAINED IN NON-SUSY REGIME
 - T-Model 4 & 8 (TM4 & TM8) With $K = \tilde{K}_{221} = K_2 + \tilde{K}_{21}$ with Hierarchy $\lambda_2 \gg \lambda_4$ and $\lambda_2 \ll \lambda_4$ Respectively; N REMAINS A FREE PARAMETER AS IN THE NON-SUSY REGIME. イロト イポト イヨト イヨト 二日

T-Model Inflation	SUGRA FRAMEWORK	Post-Inflationary Completion	Conclusions
000	00 ●00	0000	0

INFLATIONARY SCENARIOS - RESULTS

INFLATIONARY POTENTIAL

• IF WE USE THE PARAMETERIZATIONS: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi}$ and $\bar{\Phi} = \phi e^{i\bar{\theta}} \sin \theta_{\Phi}$ with $0 \le \theta_{\Phi} \le \pi/2$ and $S = (s + i\bar{s}) / \sqrt{2}$ We Select as Inflationary Path The D-Flat Direction is $\langle \theta \rangle_{\rm I} = \langle \bar{\theta} \rangle_{\rm I} = 0$, $\langle \theta_{\Phi} \rangle_{\rm I} = \pi/4$ and $\langle S \rangle_{\rm I} = 0$ (: I)

• The only Surviving term of $V_{\rm F}$ Along the Path in Eq. (P) is (With $r_{ij} = -\lambda_i/\lambda_j$ with i, j = 2, 4)

$$V_{\rm HI} = \langle e^{K} K^{SS^{*}} | W_{,S} |^{2} \rangle_{\rm I} = \frac{\lambda^{2}}{16} \begin{cases} \left(\phi^{2} - r_{42} \phi^{4} - M_{2}^{2} \right)^{2} / f_{2}^{N} & \text{for } \delta \text{TM}, \\ \left(\phi^{2} - r_{42} \phi^{4} - M_{2}^{2} \right)^{2} & \text{for } \text{TM4}, \\ \left(\phi^{4} - r_{24} \phi^{2} - M_{4}^{2} \right)^{2} & \text{for } \text{TM8}, \end{cases} \\ = \begin{cases} \lambda_{2} & \text{and } M_{2} = \frac{M}{\sqrt{\lambda_{2}}} & \text{for } \delta \text{TM} \text{ and } \text{TM4}, \\ \lambda_{4} & \text{and } M_{4} = \frac{M}{\sqrt{\lambda_{4}}} & \text{for } \text{TM8}. \end{cases}$$

• In All Three Cases, T-Model HI Can Be Realized Since the Convenient Relation $\phi - \widehat{\phi}$ can Be Achieved.

• To Verify This, We Compute $K_{\alpha\beta}$ Along Eq. (I), Which takes the Form

$$\left(\langle K_{\alpha\bar{\beta}}\rangle_{\mathbf{I}}\right) = \left(\langle M_{\Phi\bar{\Phi}}\rangle_{\mathbf{I}}, \langle K_{SS^*}\rangle_{\mathbf{I}}\right) \quad \text{with} \quad \langle M_{\Phi\bar{\Phi}}\rangle_{\mathbf{I}} = \frac{\kappa\phi^2}{2} \begin{pmatrix} 2/\phi^2 - 1 & 1\\ 1 & 2/\phi^2 - 1 \end{pmatrix}, \quad \kappa = \frac{N}{f_2^2} \quad \& \quad \langle K_{SS^*}\rangle_{\mathbf{I}} = 1.$$

• Upon Diagonalisation of $\langle M_{\Phi\bar\Phi}
angle_{
m I}$ the Canonically Normalized Fields, Are

$$\frac{\widehat{d\phi}}{d\phi} = J = \frac{\sqrt{2N}}{f_2} \quad \Rightarrow \quad \phi = \tanh \frac{\widehat{\phi}}{\sqrt{2N}}, \quad \widehat{\theta}_+ = \sqrt{\kappa}\phi\theta_+, \quad \widehat{\theta}_- = \sqrt{\kappa}f_2\phi\theta_- \quad \& \quad \widehat{\theta}_{\Phi} = \sqrt{2\kappa}f_2\phi\left(\theta_{\Phi} - \pi/4\right).$$

• WE CHECK THE STABILITY OF THE TRAJECTORY IN EQ. (I) W.R.T THE FLUCTUATIONS OF THE VARIOUS FIELDS. I.E.,

$$\left(\frac{\partial V_{\text{SUGRA}}}{\partial \overline{z}^{\alpha}}\right)_{\text{I}} = 0 \quad \& \quad \widehat{m}_{z^{\alpha}}^{2} > 0, \quad \text{Where} \quad \widehat{m}_{z^{\alpha}}^{2} = \mathsf{Egv}\left[\widehat{M}_{\alpha\beta}^{2}\right] \quad \text{With} \quad \widehat{M}_{\alpha\beta}^{2} = \left(\frac{\partial^{2} V_{\text{SUGRA}}}{\partial \overline{z}^{\alpha} \partial \overline{z}^{\beta}}\right)_{\text{I}} \quad \& \quad z^{\alpha} = \theta_{\pm}, \theta_{\Phi}, s, \overline{s}.$$

Here Egy Are the Eigenvalues of $\widehat{M}^2_{a\beta}$ & the Subscript I Denotes Computation along Eq. (1); $\overline{a} \rightarrow 4$ and $\overline{a} \rightarrow 5$

T-Model Inflation	SUGRA FRAMEWORK	Post-Inflationary Completion	Conclusions
000		0000	0
INFLATIONARY SCENARIOS - RESULTS			

STABILITY OF THE INFLATIONARY DIRECTION

Scalar Mass-Squared Spectrum for $K = K_{221}$ and \widetilde{K}_{221} Along The Inflationary Trajectory

Fields	Eigen-	Masses Squared		
	STATES		$K = K_{221}$	$K = \widetilde{K}_{221}$
2 REAL	$\widehat{\theta}_{+}$	$m_{\widehat{\theta}_{+}}^2$	3H ₁ ²	
SCALARS	$\widehat{\theta}_{\Phi}$	$m_{\widehat{\theta}^+}^2$ $\widehat{m}_{\theta_\Phi}^2$	$M_{BL}^2 + 6H_{\rm I}^2(1 + 4/N - 2/N\phi^2 - 2\phi^2/N)$	
1 COMPLEX	s, \bar{s}	\widehat{m}_s^2	$6H_{\rm I}^2(1/N_S-8(1-\phi^2)/N+N\phi^2/2$	$6H_{\rm I}^2(1/N_S - 4/N$
SCALAR			$+2(1-2\phi^2)+8\phi^2/N)$	$+2/N\phi^2+2\phi^2/N)$
1 gauge boson	A_{BL}	M_{BL}^2	$2Ng^2\phi^2/f_2^2$	
4 Weyl	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	$12f_2^2H_{\rm I}^2/N^2\phi^2$	
SPINORS	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$2Ng^2\phi^2/f_2^2$	

- We can Obtain $\forall \alpha, \ \widehat{m}^2_{\chi^{\alpha}} > 0.$ Especially $\widehat{m}^2_s > 0 \iff N_S < 6.$
- We can Obtain $\forall \alpha$, $\widehat{m}^2_{\nu^{\alpha}} > H^2_{I}$ and So No other Inflationary Perturbations Besides that of ϕ Contribute to A_s ;
- $M_{BL} \neq 0$ Signals the Fact that That $U(1)_{B-L}$ Is Broken and so, no Topological Defects are Produced.
- $M_2 \& M_4$ Can be Determined Demanding the GUT Scale $M_{GUT} \simeq 2/2.4 \times 10^{-2}$ In the Context of Minimal SUSY Standard Model (MSSM) Coincides With $\langle M_{BL} \rangle$, E.g.,

 $\langle M_{BL}\rangle = \sqrt{2N}gM_2/\langle f_2\rangle = M_{\rm GUT} \ \Rightarrow \ M_2 \simeq M_{\rm GUT}/g\sqrt{2N} \ll m_{\rm P} \ \text{with} \ g \simeq 0.7 \ ({\rm GUT \ Coupling \ Constant}).$

• The One-Loop Radiative Corrections à la Coleman-Weinberg to V_I Can Be Kept Under Control Once the Renormalization Scale is Conveniently Selected.

T-Model Inflation	SUGRA FRAMEWORK	Post-Inflationary Completion	Conclusions
000		0000	0

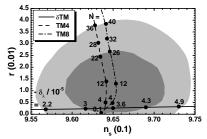
INFLATIONARY SCENARIOS - RESULTS

TESTING AGAINST THE INFLATIONARY DATA

• Enforcing $N_{\star} \simeq 44 - 56$ and $\sqrt{A_s} = 4.588 \cdot 10^{-5}$, we Obtain the Allowed Curves for Our Models In the $n_s - r$ Plane

• The Free Parameters of δ TM, TM4, TM8 Are $\delta_{\lambda} = r_{42} - 1$, (N, r_{42}) And (N, r_{24}) Respectively.

• We set $r_{42} = 0.01$ for TM4 and $r_{24} = 10^{-6}$ for TM8.



Model:	δΤΜ	TM4	TM8
$\delta_{\lambda} / r_{42} / r_{24}$	$-3.6 \cdot 10^{-5}$	0.01	10 ⁻⁶
Ν	2	12	12
$\phi_{\star}/0.1$	9.9555	9.75	9.877
$\Delta_{\star}(\%)$	0.445	2.5	1.23
$\phi_{\rm f}/0.1$	5.9	3.9	6.5
w _{rh}	0.33	0.266	0.58
N_{\star}	55.2	56.4	58
$\lambda/10^{-5}$	3.6	8.6	8.5
$n_{\rm s}/0.1$	9.65	9.64	9.65
$r/10^{-2}$	0.26	1.4	1.3

• In δ TM We Have N = 2 & All Allowed n_s Are Possible with r < 0.01, $\delta_\lambda \sim 10^{-5}$ & $\Delta_\star \sim 10^{-3}$.

• For TM4 & TM8 $n_{\rm s}$ Turns out to be Close to Its Observationally Favorable Value, r Increase With N and Δ_{\star} Covering all the Allowed Values, I.e.,

 $0.963 \lesssim n_{\rm s} \lesssim 0.965, \quad 0.1 \lesssim N \lesssim 40, \quad 0.45 \gtrsim \Delta_{\star}/10^{-2} \gtrsim 13.6 \quad \& \quad 0.0025 \lesssim r \lesssim 0.032 \; .$

The Upper Bound on $r \lesssim 0.032$ Implies an Upper Bound $N \lesssim 40$.

- For TM8 An Additional Tuning is Required Since $r_{24} \sim 10^{-6}$.
- TM4 Can be Qualified As the Most Natural one Regarding the Choice of the Parameters: 🗇 🕨 💷 👌 🧏 👘 🖓 🛇

T-Model Inflation	SUGRA FRAMEWORK	POST-INFLATIONARY COMPLETION	Conclusions
000	00	●000	0
0	000	0	

INFLATON DECAY & NON-THERMAL LEPTOGENESIS

INFLATON MASS

• FOR TM4 THE MASS OF THE INFLATON AT THE SUSY VACUUM IS

$$\widehat{m}_{\delta\phi} = \langle V_{\mathrm{HI},\widetilde{\phi\phi}} \rangle^{1/2} \simeq (4.4 - 25) \cdot 10^{10} \ \mathrm{GeV} \quad \mathrm{For} \quad 1 \lesssim N \lesssim 36.$$

I.E., $\widehat{m}_{\delta\phi}$ Crucially Depends on the Imposed GUT Constraint and Lies at the Intermediate Energy Scale.

EMBEDDING OF THE MODEL

• T Model HI Can Be Embedded in a B - L Extension of MSSM Promoting to Gauge the Pre-Existing Global $U(1)_{B-L}$. The Terms of the Total Superpotential Which Control the Coexistence of the Inflationary and the MSSM Sectors Are Charge Assignments

$$\Delta W = \lambda_{\mu} S H_u H_d + \lambda_{ij\nu} \bar{\Phi} N_i^c N_j^c$$

Where H_u and H_d are the Electroweak Higgs Superfields & N_i^c the *i*th Generation **Right-handed Neutrino** with i = 1, ..., 3.

• THE TERMS ABOVE ALLOW FOR THE PERTURBATIVE INFLATON DECAY INTO:

• A Pair of (N_j^c) With Majorana Masses M_{jN^c} Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\rightarrow N_{i}^{c}} = \frac{g_{iN^{c}}^{2}}{16\pi} \widehat{m}_{\delta\phi} \left(1 - \frac{4M_{iN^{c}}^{2}}{\widehat{m}_{\delta\phi}^{2}}\right)^{3/2} \quad \text{With} \quad g_{iN^{c}} = \lambda_{iN^{c}}/\langle J \rangle \text{ Arising from } \mathcal{L}_{\widetilde{\delta\phi}\rightarrow N_{i}^{c}} = g_{iN^{c}} \widehat{\delta\phi} \left(N_{i}^{c} N_{i}^{c} + \text{h.c}\right).$$

H_u and *H_d* Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to H} = \frac{2}{8\pi} g_H^2 \widehat{m}_{\delta\phi} \quad \text{with} \quad g_H = \frac{\lambda_\mu}{\sqrt{2}} \quad \text{Arising from } \mathcal{L}_{\delta\bar\phi\to H_uH_d} = -g_H \widehat{m}_{\delta\phi} \widehat{\delta\phi} \left(H_u^* H_d^* + \text{h.c} \right) \,.$$

• The Reheating Temperature, $T_{\rm rh}$, is given by

$$T_{\rm rh} = \left(72/5\pi^2 g_*\right)^{1/4} \widehat{\Gamma}_{\delta\phi}^{1/2} m_{\rm P}^{1/2} \quad \text{with} \quad \widehat{\Gamma}_{\delta\phi} = \widehat{\Gamma}_{\delta\phi \to N_i^c} + \widehat{\Gamma}_{\delta\phi \to H}, \quad \text{with} \quad g_* \simeq 228.75 \,.$$

C.	PALLIS	

SUPERFIELDS:	N_i^c	H_u	H_d
$U(1)_R$	1	0	0
$U(1)_{B-L}$	1	0	0

T-MODEL INFLATION	SUGRA FRAMEWORK	POST-INFLATIONARY COMPLETION	Conclusions
000	00	0000	0

INFLATON DECAY & NON-THERMAL LEPTOGENESIS

Leptogenesis and \widetilde{G} Abundance

• THE OUT-OF-EQUILIBRIUM DECAY OF N^c_i can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_B = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\text{rh}}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi \to N_i^c}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_i \quad \text{Where} \quad \varepsilon_i = \sum_{j \neq i} \frac{\text{Im}\left[(m_b^\dagger m_D)_{ij}^2\right]}{8\pi \langle H_u \rangle^2 (m_b^\dagger m_D)_{ii}} \Big(F_{\text{S}}\left(x_{ij}, y_i, y_j\right) + F_{\text{V}}(x_{ij})\Big).$$

Here $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_u \rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. Also F_V and F_S Represent, Respectively, The Contributions From Vertex And Self-Energy Diagrams.

• miD are the Dirac Masses Which May Be Diagonalized In the Weak (primed) Basis

$$U^{\dagger}m_{\rm D}U^{c\dagger}=d_{\rm D}={
m diag}\left(m_{1{
m D}},m_{2{
m D}},m_{3{
m D}}
ight)$$
 Where $L'=LU$ and $N^{c\prime}=U^cN^c$.

And Are Related to M_{iN^c} via the Type I Seesaw Formula

 $m_{v} = -m_{\rm D} \ d_{N^{\rm C}}^{-1} \ m_{\rm D}^{\sf T}, \ \text{Where} \ d_{N^{\rm C}} = \text{diag} \left(M_{1N^{\rm C}}, M_{2N^{\rm C}}, M_{3N^{\rm C}} \right) \ \text{with} \ M_{1N^{\rm C}} \le M_{2N^{\rm C}} \le M_{3N^{\rm C}} \ \text{Real and Positive.}$

• Replacing $m_{
m D}$ in the See-Saw Formula We Extract The Mass Matrix of Light Neutrinos In The Weak Basis

$$\bar{m}_{\nu} = U^{\dagger} m_{\nu} U^* = -d_{\rm D} U^c d_{N^c}^{-1} U^c^{\mathsf{T}} d_{\rm D},$$

Which Can Be Diagonalized by the Unitary PMNS Matrix U_{ν} Parameterized As Follows:

$$U_{\nu} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \cdot \begin{pmatrix} e^{-i\varphi_1/2} & e^{-i\varphi_2/2} & e^{-i\varphi_2/2} \\ & e^{-i\varphi_2/2} & e^{-i\varphi_2/2} & e^{-i\varphi_2/2} \\ & e^{-i\varphi_2/2} & e^{-i\varphi_2/2} & e^{-i\varphi_2/2} \end{pmatrix},$$

with $c_{ij} := \cos \theta_{ij}, s_{ij} := \sin \theta_{ij}, \delta$ the CP-Violating Dirac Phase and φ_1 and φ_2 the two CP-violating Majorana Phases.

• The Thermally Produced \widetilde{G} Yield At The Onset of Big-Bang Nucleosythesis (BBN) is Estimated To Be:

$$Y_{\widetilde{G}} \simeq 1.9 \cdot 10^{-22} T_{\rm rh}/{\rm GeV}.$$

イロト イロト イヨト イヨト 三日

T-Model Inflation 000 0	SUGRA Framework OO OOO	Post-Inflationary Completion	Conclusions O
INFLATON DECAY & NON-THERMAL	LEPTOGENESIS		

POST-INFLATIONARY REQUIREMENTS

THE BARYOGENESIS SCENARIO VIA NON-THERMAL LEPTOGENESIS (NTL) CAN BE CHARACTERIZED AS SUCCESSFUL IF:

(i) WE OBTAIN THE OBSERVATIONALLY REQUIRED B YIELD WHICH IS $Y_B = (8.697 \pm 0.054) \cdot 10^{-11}$ at 95% c.l.

(ii) Constraints on M_{iN^c} Are Satisfied. We have To Avoid Any Erasure Of The Produced Y_L ; Ensure That The ϕ Decay To N_i^c is Kinematically Allowed; and M_{iN^c} are Theoretically Acceptable, We Have To Impose The Constraints:

 $(a) \ M_{1N^c} \gtrsim 10 T_{\rm rh}, \ (b) \ \widehat{m}_{\delta\phi} \ge 2 M_{1N^c} \ \text{and} \ (c) \ M_{iN^c} \lesssim 7.1 M \ \Leftrightarrow \lambda_{iN^c} \lesssim 3.5.$

(iii) \widetilde{G} Constraint Is Under Control. Assuming Unstable \widetilde{G} , We Impose an Upper Bound⁴ on $Y_{\widetilde{G}}$ in Order to Avoid Problems With the BBN:

$$Y_{3/2} \lesssim \begin{cases} 10^{-14} \\ 10^{-13} \end{cases} \Rightarrow T_{\rm rh} \lesssim \begin{cases} 5.3 \cdot 10^7 \text{ GeV} \\ 5.3 \cdot 10^8 \text{ GeV} \end{cases} \text{ For } \widetilde{G} \text{ Mass } m_{3/2} \simeq \begin{cases} 0.69 \text{ TeV} \\ 10.6 \text{ TeV} \end{cases}$$

(IV) IT IS IN AGREEMENT WITH THE LIGHT NEUTRINO DATA.

Parameter	BEST FIT V	Value <mark>(2021)</mark>	• The Masses, <i>m</i> _{iv} , of <i>v</i> _i Are Calculated as Follows:
	Normal	INVERTED	
	Hie	RARCHY	$m_{2\nu} = \sqrt{m_{1\nu}^2 + \Delta m_{21}^2}$ and
$\Delta m_{21}^2 / 10^{-3} \text{eV}^2$		7.5)
$ \Delta m_{21}^2 / 10^{-3} \text{eV}^2 \Delta m_{31}^2 / 10^{-3} \text{eV}^2 $	2.55	2.45	$\int m_{3\nu} = \sqrt{m_{1\nu}^2 + \Delta m_{31}^2}, \text{ for Normally Ordered (NO) } m_{\nu}\text{'s}$
$\sin^2 \theta_{12} / 0.1$	3	3.18	OR
$\sin^2 \theta_{13} / 0.01$	2.2	2.225	$m_{1\nu} = \sqrt{m_{3\nu}^2 + \Delta m_{31}^2 }$, for invertedly Ordered (IO) m_{ν} 's
$\sin^2 \theta_{23}/0.1$	5.74	5.78	
δ/π	1.08	1.58	• $\sum_{i} m_{iv} \le 0.12 \ [0.15] \text{ eV at } 95\% \text{ c.l. For NO [IO] } m_{v}$'s.

⁴ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

・ロト ・四ト ・ヨト ・ヨト

T-MODEL INFLATION	SUGRA FRAMEWORK	POST-INFLATIONARY COMPLETION	Conclusions
000	00	0000	0
0	000	0	

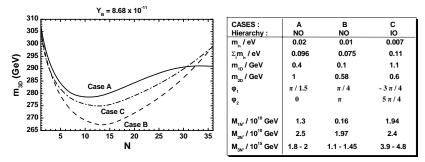
INFLATON DECAY & NON-THERMAL LEPTOGENESIS

COMBINING INFLATIONARY AND POST-INFLATIONARY REQUIREMENTS

• ENFORCING THE POST-INFLATIONARY CONSTRAINTS, WE CAN OBTAIN PREDICTIONS FOR *m_{iD}*'s or *M_{iN}*c

Employing as Input Parameters m_{TY} , φ_1 and φ_2 , (Where m_{TY} is A Reference Scale for the Neutrino Masses).

• All the Requirements can be Met Along the Lines Presented in the $N - m_{3D}$ Plane for $\mu \simeq 4$ TeV.



• We take $m_{rv} = m_{1v}$ for NO m_v 's and $m_{rv} = m_{3v}$ for IO m_v 's.

- The Inflaton Decays into the Lightest and Next-to-Lightest of N_i^c Since $2M_{iN^c} > \widehat{m}_{\delta\phi}$ for i = 3.
- Y_B and $Y_{\widetilde{G}}$ can be **Reconciled With Data** for $m_{3/2}$ Even Lighter than 10 TeV, Since We Obtain

 $3.2 \lesssim Y_{\widetilde{G}}/10^{-15} \lesssim 44.3$ With $1.6 \lesssim T_{\rm rh}/10^7 {\rm GeV} \lesssim 23.3$ for $0.89 \lesssim \lambda_{\mu}/10^{-6} \lesssim 5.2$.

• Successful NTL Requires M_{iN^c} and m_{3D} in the Ranges $(10^9 - 10^{15})$ GeV and (270 - 310) GeV Respectively.

T-Model Inflation	SUGRA FRAMEWORK	POST-INFLATIONARY COMPLETION	CONCLUSIONS
000	00	•	0

INTERCONNECTION WITH MSSM PHENOMENOLOGY

GENERATION OF THE *µ*-TERM OF MSSM APPLYING THE MECHANISM OF G. DVALI, G. LAZARIDES AND Q. SHAFI (1999)

- The Origin of the μ Term Can be Explained, IF We Combine the Terms $W_{\text{HI}} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi / 2 M^2 / 4 \right) + \lambda_{\mu} S H_u H_d$.
- The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI}$ + W_{μ} Are Included In

$$V_{\text{soft}} = \left(\lambda A_{\lambda} S \,\bar{\Phi} \Phi/2 + \lambda_{\mu} A_{\mu} S \,H_u H_d - a_S S \,\lambda M^2/4 + \text{h.c.}\right) + m_{\tilde{a}}^2 \left| z^{\tilde{a}} \right|^2 \quad \text{with} \quad z^{\tilde{a}} = \Phi, \bar{\Phi}, S, H_u, H_d$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_{S} are Soft SUSY Breaking Mass Parameters Of the Order of Gravitino Mass $m_{3/2}$.

• Minimizing $V_{\rm tot} = V_{\rm SUSY} + V_{\rm soft}$ w.r.t Phases and Substituting in $V_{\rm soft} \langle \Phi \rangle = \langle \bar{\Phi} \rangle \simeq M / \sqrt{2}$ we get

$$\langle V_{\text{tot}}(S) \rangle = \lambda^2 M^2 S^2 / 4N - \lambda a_\mu m_{3/2} M^2 S$$
, where $m_S \ll M$ and $(|A_\lambda| + |a_S|) = 2a_\mu m_{3/2}$.

Minimizing Finally $\langle V_{tot}(S) \rangle$ w.r.t S We Obtain a non-Vanishing $\langle S \rangle$ as Follows:

$$\langle S \rangle \simeq 2N a_\mu m_{3/2} / \lambda \simeq N N_\star a_\mu m_{3/2} / 2\pi \sqrt{6NA_s} \quad \text{Due to } \lambda - A_s \text{ Relation} - \text{see Page 5}.$$

- Therefore, the Generated μ Parameter From W_{μ} is $\mu = \lambda_{\mu} \langle S \rangle$ is Of the Order $m_{3/2}$ if $\lambda_{\mu} \sim 10^{-6}$ Since $N_{\star} / \sqrt{A_s} \sim 10^6$.
- This λ_{μ} Value is Welcome Since Stability of the $H_u H_d$ System Requires $\lambda_{\mu} \leq \lambda (1 + N_S) \phi_f^2 / 4N_S \sim 10^{-5}$.
- The Allowed λ_{μ} Values Render Our Models Compatible With The Best-Fit Points in the CMSSM⁵ Setting, E.g.,

	CMSSM REGION	$ A_0 $ (TeV)	m_0 (TeV)	$ \mu $ (TeV)	a _µ	λ _μ (10⁻⁶)
$(m_h \simeq$	$125 \text{ GeV } \& \Omega_{\chi} h^2 \lesssim 0.12)$					<i>N</i> = 1	<i>N</i> = 36
(I)	A/H Funnel	9.9244	9.136	1.409	1.086	1.81	3.5
(II)	$ ilde{ au}_1 - \chi$ Coannihilation	1.2271	1.476	2.62	0.831	14.48	5
(III)	$\tilde{t}_1 - \chi$ Coannihilation	9.965	4.269	4.073	2.33	5.2	1
(IV)	${ ilde\chi}_1^{\pm} - \chi$ Coannihilation	9.2061	9.000	0.983	1.023	1.35	0.2

 $m_0 = m_{3/2}$ and $|A_\lambda| = |\mathbf{a}_S| = |A_0|$

⁵ P. Athron et al. [GAMBIT Collaboration] (2018) – It is obtained $m_{\tilde{g}} \ge 2.9$ TeV, $m_{\tilde{\chi}^{\pm}} \ge 1.1$ TeV & $m_{\tilde{f}_1} \ge 3.6$ TeV (Besides Region III) so, Regions I, II, IV Are Still Alive. On the Other hand, The muon g - 2 Anomaly is not Interpreted in These Regions.

T-MODEL INFLATION	SUGRA FRAMEWORK	Post-Inflationary Completion	Conclusions
000	00	0000	0

SUMMARY

• WE PROPOSED NEW IMPLEMENTATIONS OF T-MODEL INFLATION IN SUGRA USING AS INFLATON A HIGGS FIELD.

• We Employ W Consistent with The GUT and an R Symmetries and two K's Which Parameterize the Kähler Manifold $SU(2, 1)/(SU(2) \times U(1))$.

• We Analyzed Three (δ TM, TM4 & TM8) Cosmologically Successful Inflationary Models, From Which one (TM4) Can Be Qualified as the Most Natural One. It Predicts $n_s \sim 0.965$, and r Increasing with the Coefficient N of \tilde{K}_{21} .

• We Proposed a Post-Inflationary Completion for TM4 Which Offers a Nice Solution to the μ Problem of MSSM and Allows for Baryogenesis via non-TL With M_{iN^c} in the Range $(10^9 - 10^{15})$ GeV.

• IT REMAINS THE INTRODUCTION OF A CONSISTENT SOFT SUSY BREAKING SECTOR TO ACHIEVE A FULLY SELF-CONTAINED THEORY.

THANK YOU!

T-Model Inflation 000 0	SUGRA FRAMEWORK OO OOO	Post-Inflationary Completion 0000 0	Conclusions •

MATHEMATICAL APPENDIX

The Kähler Manifold Corresponding to K_{21} and \widetilde{K}_{21}

- $K = K_{21}$ and \widetilde{K}_{21} Parameterize the Kähler Manifold $SU(2,1)/(SU(2) \times U(1))$.
- To Show it, WE Extract the Line Element and the Scalar Curvature In the Moduli Space, Which are

$$ds_{21}^2 = K_{\alpha\bar{\beta}} dz^{\alpha} dz^{*\bar{\beta}} = N \left(\frac{|d\Phi|^2 + |d\bar{\Phi}|^2}{1 - |\Phi|^2 - |\Phi|^2} + \frac{|\Phi^* d\Phi + \bar{\Phi}^* d\bar{\Phi}|^2}{\left(1 - |\Phi|^2 - |\bar{\Phi}|^2\right)^2} \right) \quad \text{Kal} \quad \mathcal{R}_{21} = -\frac{6}{N}.$$

• The Action of $SU(2,1)/(SU(2) \times U(1))$ to $\Phi \otimes \overline{\Phi}$ May be Found if an Element of $U \in SU(2,1)$, Which Fulfils the Relations

 $U^{\dagger}\eta_{21}U = \eta_{21}$ and det U = 1 With $\eta_{21} = \text{diag}(1, 1, -1)$,

is Parameterized by $a,b,d,f\in\mathbb{C},\gamma\in\mathbb{R}_+,\vartheta\in\mathbb{R}$ as Follows $U=\mathcal{UP}$ With

$$\begin{aligned} \mathcal{U} &= \begin{pmatrix} 1/N_a & 0 & a \\ N_a b a^* & N_a \gamma & b \\ N_a \gamma a^* & N_a b^* & \gamma \end{pmatrix} & \& \ \mathcal{P} &= e^{i\theta} \begin{pmatrix} d & f & 0 \\ -f^* & d^* & 0 \\ 0 & 0 & e^{-3i\theta} \end{pmatrix}, \ \text{Where} \ \begin{cases} N_a &= 1/\sqrt{1 + |a|^2} \\ |a|^2 + |b|^2 - \gamma^2 &= -1 \\ |d|^2 + |f|^2 &= 1. \end{cases} \\ & \in SU(2, 1)/(SU(2) \times U(1)) & \in SU(2) \times U(1) \end{aligned}$$

• Acting With the Line Parameters of ${\cal U}^\dagger$ to Φ & $ar \Phi,$ We Define the Isometréc Transformations

$$\Phi \rightarrow \frac{(1/N_a)\Phi + N_a b^* a \bar{\Phi} + N_a a \gamma}{a^* \Phi + b^* \bar{\Phi} + \gamma} \quad \text{and} \quad \bar{\Phi} \rightarrow \frac{N_a \gamma \bar{\Phi} + N_a b}{a^* \Phi + b^* \bar{\Phi} + \gamma} \quad \text{with} \quad (B-L)(a,b,\gamma) = (1,-1,0)$$

Which Let Invariant ds_{21}^2 and Justifies the Symmetry of K_{21} and \widetilde{K}_{21} .

• COUNTING OF FREE PARAMETERS OF EACH SPACE SHOWS THAT THE DEMONSTRATION IS SELF-CONSISTENT.

SPACE:	SU(2,1)	$SU(2,1)/(SU(2) \times U(1))$	$SU(2) \times U(1)$
Parameters:	$a, b, d, f, \gamma, \vartheta$	a, b, γ	d, f, ϑ
CONSTRAINTS:	2	1	1
DIMENSION:	10 - 2 = 8	5 - 1 = 4	▶ 5∰1≥4≣ ►

T-MODEL HI IN SUGRA