Detecting Stochastic Gravitational Wave Backgrounds
 with future space-based observatories

Nikolaos Karnesis
Aristotle University of Thessaloniki
karnesis@auth.gr
HEP2023 - University of loannina 05/04/2023

CONSORTIUM

Gravitational Waves Stochastic signals

 \square What are the challenges of detection?

\square Science-rich data sets!

Astrophysical stochastic signals.

- UCBs [blue]: Cyclo-stationary, Anisotropic, change with time, spectral shape unveils properties of the Galaxy.
- SMBHBs [red]: Existence to be proven, dependent on the population model.
- SOBHBs [pink]: Stationary, isotropic. Extrapolated from ground-based measurements. Shape to unveil properties of their population.
- EMRIs [yellow]: Non-Stationary, isotropic, very uncertain predictions.

\square Cosmological Stochastic signals

Cosmological stochastic signals.

Cosmology with the Laser Interferometer Space Antenna [2204.05434]

Cosmological stochastic signals.

\square How to reach that point of searching for noisy signals?

LISA Global Fit

Searching for different types of sources simultaneously

\triangleright Computational reasons: sequential fits are inefficient.
■ Grid searches are impossible.
\triangleright Correlations between sources become important for that many signals.
\triangleright Imperfect source subtraction yields imperfect residuals.
\triangleright Uncertainties propagation
\triangleright Not fixed dimensions!

arXiv:2004.08464
arXiv:2301.03673

- Extract stochastic signals from the data.

LISA Data Analysis

Bayesian Framework

- Define a likelihood function.

$$
\pi(y \mid \vec{\theta})=C \times e^{-\frac{1}{2}(y-h(\vec{\theta}) \mid y-h(\vec{\theta}))}=C \times e^{-\chi^{2} / 2}
$$

- Define priors
- Form posterior

$$
\pi(\vec{\theta} \mid y) \propto \pi(y \mid \vec{\theta}) p(\vec{\theta})
$$

- Sample

$$
(a \mid b)=2 \int_{0}^{\infty} \mathrm{d} f\left[\tilde{a}^{*}(f) \tilde{b}(f)+\tilde{a}(f) \tilde{b}^{*}(f)\right] / \tilde{S}_{n}(f)
$$

LISA Data Analysis

Assuming no spectral shape for the signal - Previews efforts

- Ordered by the Cosmology WG.
- Divide the data into bins.
- Fit power-laws at those bins.
- Fit also an analytic model of the noise.
- Join bins if power-law models are similar (e.g. using the AIC)

\square But the instrumental noise knowledge is crucial

LISA Data Analysis

Assuming no spectral shape for the noise

- Usually, we adopt a model of the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ or A, E, T TDI channels for the noise.
- This allows us to fit a few noise parameters together with the signal.
- More parameters for more complexity (unequal arms, unequal noise PSDs)
- In this work we adopt a shape-agnostic model, based on interpolating cubic Bspline functions.

LISA Data Analysis

Assuming no spectral shape for the noise

- Usually, we adopt a model of the X, Y, Z or A, E, T TDI channels for the noise.
- This allows us to fit a few noise parameters together with the signal.
- More parameters for more complexity (unequal arms, unequal noise PSDs)

- In this work we adopt a shape-agnostic model, based on interpolating cubic Bspline functions.

$$
\log S_{n}(f)=\sum_{i=1}^{Q+1} a_{i} B_{i, 3}(\xi, f)
$$

LISA Data Analysis

Assuming no spectral shape for the noise

LISA Data Analysis

Assuming no spectral shape for the noise

LISA Data Analysis

Assuming no spectral shape for the noise

Trans-dimensional sampling:

Assume a model with a changing dimensionality...

- Same procedure, now generalized for \boldsymbol{k}-order of model. It is organized in two steps.
- Before all, we begin with $\boldsymbol{\theta}_{\mathbf{k}}$ for model \boldsymbol{k}.

1. In-Model Step: The usual MH step, for model \boldsymbol{k}.
2. Outer-Model Step:

- Propose new $\boldsymbol{\theta}_{\boldsymbol{m}}$ for model \boldsymbol{m} from a given proposal distribution q.
" Essentially propose the "birth" or "death" of dimensions at each iteration.
- Accept, or reject with a probability:

$$
\alpha=\min \left[1, \frac{p\left(y \mid \vec{\theta}_{k}\right) p\left(\vec{\theta}_{k}\right) q\left(\left\{k, \vec{\theta}_{k}\right\},\left\{m, \theta_{m}\right\}\right)}{p\left(y, \vec{\theta}_{m}\right) p\left(\vec{\theta}_{m}\right) q\left(\left\{m, \vec{\theta}_{m}\right\},\left\{k, \theta_{k}\right\}\right)}\right]
$$

Trans-dimensional sampling:

Assume a model with a changing dimensionality...

- Same procedure, now generalized for \boldsymbol{k}-order of model. It is organized in two steps.
- Before all, we begin with $\boldsymbol{\theta}_{\mathbf{k}}$ for model \boldsymbol{k}.

1. In-Model Step: The usual MH step, for model \boldsymbol{k}.
$\alpha=\min \left[1, \frac{p\left(y \mid \vec{\theta}_{k}\right) p\left(\vec{\theta}_{k}\right) q\left(\left\{k, \vec{\theta}_{k}\right\},\left\{m, \theta_{m}\right\}\right)}{p\left(y, \vec{\theta}_{m}\right) p\left(\vec{\theta}_{m}\right) q\left(\left\{m, \vec{\theta}_{m}\right\},\left\{k, \theta_{k}\right\}\right)}\right]$

We continue by defining a likelihood function

- We want to analyse the data into chunks, in order to make it computationally lighter.
- In that case, we get the Wishart distribution, which is written as

$$
p(\mathbf{Y}(f) \mid \theta)=\frac{|\mathbf{Y}(f)|^{\nu-3} \exp \left\{-\operatorname{tr}\left(\mathbf{C}_{d}^{-1} \mathbf{Y}(f)\right)\right\}}{\left|\mathbf{C}_{d}(f)\right|^{\nu} \cdot \mathcal{C} \widetilde{\Gamma}_{3}(\nu)}
$$

- With its logarithm

$$
\log p(\mathbf{Y}(f) \mid \theta)=-\operatorname{tr}\left(\mathbf{C}_{d}^{-1} \mathbf{Y}(f)\right)-\nu(f) \log \left|\mathbf{C}_{d}(f)\right|
$$

LISA Data Analysis

Assuming no spectral shape for the noise

LISA Data Analysis

Parameter estimation

LISA Data Analysis

Assuming detectability of power-law signals

\square Searching for stochastic GW signals (astro+cosmo) is going to be very very challenging.

The Global fit is a no trivial procedure, but we are getting there.
Combine different techniques/methodologies.
\square LISA is very promising at the mHz range!

'E६tpa Matépıa入

