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Overview
• ASICs are now a vital part of (almost?) all experiments

– but what are ASICs?
– most of us “know”, but seemingly sometimes have different expectations

• What can we learn from history?
– the LHC era involved a step change in electronic developments
– why – and will it continue in the same way?
– history should include experience – and not only successes

• A survey of all ASICs is impossible – and probably not very interesting
– focus on some selected “typical” case studies

• given available time, necessarily with some bias – you can calibrate…

• Declaration of interest
– Now, many years of involvement in this area, mainly for the CMS experiment

• But I am not a chip designer or even, any longer, a hands-on user
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What is an ASIC and why do they matter?

• Application Specific Integrated Circuit
– customised electronic circuit for a well-defined requirement

• this need not mean a single detector, or even experiment
– generally manufactured in CMOS processes (Complementary Metal-Oxide-Silicon)

• dominant electronic technology, with steadily shrinking minimum feature size 

• Pros of ASICs
– can be optimised for demanding requirements: size, power, functions, performance,… 
– miniature, so ideal for high density HEP – large numbers of channels
– very dependable manufacturing quality with low unit cost on large scale
– radiation hardness now understood, and can be excellent in commercial processes

• Cons of ASICs
– Big development investment required in both time and cost 

• increasing as functionality (= complexity) increases
– Unchangeable once complete, unless a lot of flexibility built-in (adds complexity)
– Substantial design and evaluation requiring specialist skills (industry pays well!)

G Hall  April 2023 HEP 2023 Ioannina 3



Spot the ASIC
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• requires four different assembly jigs for 
• gluing of the Kapton isolation foils and HV bias circuit to sensors 
• gluing the sensors to the Al-CF bridges 
• gluing the FE and service hybrids to the sensor sandwhich 
• wire bonding



A very brief pre-history
• 1984 - first HEP ASIC: Microplex at SLAC (California!) Mark-II silicon vertex detector

– NMOS only : 128 channel - amplifier, Sample-Hold, DCS processing, multiplexing. 
• 34 mm2 , 5μm university lab process, 14 mW/ch. Pioneers learned from first principles! 

• Late 1980s:  MX3, MX7, CAMEX64 - LEP silicon vertex detectors 
– Commercial CMOS, initially ~3μm and later 1.5μm => 1-2 mW/channel

• Amplifiers: integrators with switched capacitor filters. Switching noise injected during the amplifier reset 
subtracted due to its very reproducible behaviour. trise ≈ 400 ns, tint ≈ 1.8 µs

• 1988: SVX ASIC for CDF (& L3) – memory & sparsification
– amplifier, comparator, multiplexer, nearest neighbour logic, pedestal subtraction

• 128 channels in 3 µm CMOS   tint ≈ 200 ns, tsample ≈ 0.5 µs

• 1990: Amplex for UA2 Si pads - feedback resistors using FETs
– 16 channel 3µm CMOS, precise control of non-linear R

• more conventional RC filters implemented: tpeak = 0.75 µs

• Early 1990s – LHC developments began
– originally 66 MHz beam crossing rate, later 40 MHz => t ≈ 25 ns

• almost x 106! - from 120 Hz at Mark-II in a decade
• but 1-2 µm processes
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Part of the Microplex circuit



MOSFETs – in principle and practice

• Transistor is simple device: layout and behaviour, especially digital 
– but also many good analogue properties, if needed
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Integrated circuit cross-section
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In practice Source or 
Drain is biased, not both 
at ground potential



MOSFET design

designer draws the masks

NMOS transistor is formed where gate area 
crosses n implanted area

contact regions are defined and metal layers
used for connections

only the width W and length L of the transistor
DUH$XQGHU$WKH$GHVLJQHU-V$FRQWURO transistor is here

W

L

L

n implant

contact

metal

W

9

transconductance is a rather simple function of  W/L

n practice toda  sophisticated 
computerised  desi n soft are is 
used to la  out transistors often ith 
li raries of fre uentl  used circuits

plus a lot of comple  simulation tools and chec in  to alidate desi ns

MOSFET design
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It really was like this 
around 1985!

Today it would be rare to 
design an individual 
transistor.

Circuit properties mainly 
scale with feature size

L, W, tox, V => 
L/S, W/S, tox/S, V/S

Mask set costs

16



Manufacture

• Repeat basic step many times
– Select from:

• Wafer preparation
• Oxidation
• Lithography
• Etching
• Diffusion
• Ion implantation
• Metallisation
• Deposition
• Thermal treatment
• …

G Hall  April 2023 HEP 2023 Ioannina 8

silicon wafer

material layer formation
deposition
evaporation
implantation
...

define pattern by photolithography

etch

mask(s) needed!



Stepper

20

Designed for high throughput and automation

People are to be avoided in fabrication facilities! 

e.g. Lithography
• One of the most crucial steps:

– nm features require ultra-short 
wavelengths, and high precision 
handling
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photoresist deposition

expose wafer through mask

etch exposed layer

remove remaining resist

prepared silicon wafer with surface layer 
(eg oxide, metal,…)

remove exposed resist

Avoid people & wafer handling in super-clean environment
using super-expensive, highly optimised equipment



The outcome

• In 1998 we were 
designing the APV25 
in 0.25 µm

– finalised 2000/2001

• We started designing 
the CBC chip in 2010, 
in 130 nm

– completed CBC3.1 in 
2018/2019

• Today HEP is 
designing in 65 nm

– Some are testing the 
water with 28 nm

• Note the lag to HEP
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Date is probably first use in the 
most advanced fabrication facilities 



Trapped charge next to the transistor

Solution: Enclosed layout transistors

38

Radiation effects

• CMOS electronics is mostly sensitive to trapped oxide charge
– originally observed in satellite electronics, attributed to gate oxides

• generated by charged particles, x-rays, …
– shifts threshold voltage and on-off transistor operation, increases noise 

• Because current flows in extremely thin layer under the gate CMOS is 
virtually immune to displacement of atoms in the lattice

• Subtle effects not ruled out
– e.g. dose rate dependence
– creation of parasitic devices

=> destructive latch-up

– gates are not the only oxide locations

• Single Event Effects 
– up to now less important, but becoming more so 
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Radiation behaviour of commercial CMOS

• Evidence of radiation tolerance in mid-1980s, improving with thinner oxides
– tunnelling of carriers reduces trapped oxide charge
– but confusing results from commercial chip evaluations

• negative effects attributed to leakage paths around NMOS transistors
– cured in CERN 1997 with enclosed gate geometry
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N. Saks et al. 
IEEE TNS (1984)

∆VFB/Mrad vs tox



How did we get to where we are today?

• Sponsored R&D (US SSC detector R&D 1988?, CERN DRDC 1990) played a big role
– much credit to the wise people who devised those programmes

• but was there any choice? SSC/LHC detectors were unbuildable
– serendipity: mass commercial electronics era -> internet age

• 1980s-1990s: RISC processors, PCs, Apple desktops, WWW, modems, mobile phones, laptops,…
– historians can explain the sequence but all were driving greater miniaturisation

• many “invisible” components, like connectors, packaging, batteries, not just ICs

• Integrated circuit electronics
– emergence of accessible ASIC processes, and design tools
– significant investment in training of new generation of engineers as designers

• Optoelectronics
– practically non-existent before LHC, and fortuitous technology co-evolution

• Off-detector electronics
– FPGAs evolved dramatically, coincidentally, from mid-1990s
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Several crucial areas - commercially driven - not by HEP



LHC ASIC requirements

• Developments initially driven mainly by trackers and ECALs
– Amplifiers, data conversion and storage, data transfer, ….
– Followed by clock and control distribution, and full system development 
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• Many possible design choices
– Preferences and prejudices

• e.g. analogue/digital/binary
• latency requirements
• performance

– on- or off-detector
– fraction of commercial parts
– radiation tolerance
– power
– cost issues
– innovation vs risk  

a couple of possible variants



Evolution of CMS silicon µstrip tracker ASICs

• Began in 1991 in RD20 DRDC project
– amplifier designed, with several variants investigated
– pipeline concept already proven, implemented in steps
– several prototype chips in supposed rad-hard 1.2 µm technology, 32- then 128-channel

• plus a couple of non-rad hard ASICs, for detector prototyping (NB important!)
• MSGCs were part of the detector concept – fortunately Si electronics was initially applicable
• By 1997: APV6 might have been a candidate for final system
• many irradiation studies of single transistors (noise) and chip performance

– Along the way, some important innovations
• programming chip parameters via serial command interface (I2C) using software control
– hugely beneficial in accelerating chip configuration and  evaluation
– primitive (by today’s standard) signal processing on chip (e.g. deconvolution) to save power

• Bad luck – which turned out to be good luck – in September 1997
– Foundry move of 1.2 µm process reduced radiation tolerance (marginal anyway)
– Unexpected positive CERN results on “standard commercial” 0.25 µm radiation tolerance

• In 1998 switched process – which was a turning point – for APV25 (Sept 1999)
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Short summary of history

• Process switch to IBM 0.25 µm was incredibly successful
– engineers from RAL, Imperial & CERN transferred design quickly 

• well characterised process: designs matched simulations
– big gains from scaling 1.2 µm to 0.25 µm
– radiation hardness was well in excess of requirements

• It was obvious that all tracker ASICs should use the technology (others took note)

• It wasn’t quite the end of the story
– unexpected yield variations were experienced at the early production stage
– weak points in the (not quite standard) manufacturing process were identified

• by IBM specialists - and fixed – we would not have been able to 
• production quality was subsequently excellent – very high yield of good chips
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APV25 architecture
• Only signal processing is the analogue deconvolution filter

– forms weighted sum of three consecutive samples to “reshape” sampled pulse
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CMS Tracker and its sub-systems

• Two main sub-systems: Silicon Strip Tracker and Pixels
– pixels quickly removable for beam-pipe bake-out or replacement
– SST not replaceable in reasonable time

Microstrip tracker Pixels (pre-2017)

~210 m2 of silicon, 9.3M channels ~1 m2 of silicon, 66M channels

73k APV25s, 38k optical links, 440 FEDs 16k ROCs, 2k olinks, 40 FEDs

27 module types 8 module types

~34kW ~3.6kW (post-rad)

Pixel upgrade 2017 
to 4-layer barrel and 
3-layer endcaps
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Tracker electronic system

• For a working system, several other important tracker ASICs were needed
– CCU – distribute clock and trigger, and slow control signals and data
– DCU – monitor internal detector parameters: currents, temperature, voltage
– PLL – recover clock and trigger
– DLL – fine tuning of delays in system
– APVMUX – multiplex APV25 2:1
– Laser driver and optical receiver
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Read-out and control architecture
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We don’t talk much about 
these ASICs but they’re vital 
and should not be 
completely forgotten



An interlude
• In 2002, tracker effort and developments deployed to revise ECAL system

– data and control optical links, control hardware
– 0.25 µm ASIC expertise to design MGPA FE ASIC, new ADC, digital logic ASIC

• entirely new implementation in different technology than previous attempts
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• Despite demanding requirements, successfully 
carried out in less than two years
– of course, profiting from prior extensive 

conceptual system design, so work focused on 
implementation

– collaboration – including with industry

MGPA
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The CBC3.0/3.1
• Global Foundries 130nm CMOS process (formerly IBM)*
• 250µm pitch C4 layout for commercial flip-chip bonding to module*
• 254 channels for 127 + 127 strips, ‘Top’ & ‘Bottom’*
• Enhanced Hit Detect with programmable HIP suppression
• 512 deep (12.8µs) Pipeline + 32 deep output buffer*
• 320 MHz readout of Triggered Data from Pipeline
• Up to 1MHz L1 Trigger rate capable
• L1 Counter
• Layer swap multiplexing of odd & even channels
• Correlation logic with half-strip resolution for stub ID
• Correlation Window Offset  4 programmable regions (1/4 chip)
• Stub Gathering Logic  Outputs up to 3 stubs plus Overflow
• Bend LUT for 5 to 4 bit bend translation
• 320 MHz readout of Stub Address & Bend Data
• 320 MHz serial Fast Command Interface (FCI)
• On-chip 40MHz clock recovery from FCI
• 40MHz DLL for BX timing adjustment.
• E-Fuses for Chip ID & Bandgap trimming
• I2C Interface for slow control & configuration*
• SEU resistant control logic

6

CBC 3

*As for CBC2
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CMS Tracker FE ASIC evolution into upgrade era

• 1999: APV25 0.25µm 2011: CBC 0.13µm 2019: CBC3.1 0.13µm
– 7 mm x 8mm (128 chan) 7mm x 4mm (128 chan) 11mm x 5mm (254 chan)

programmable settings
analogue data
~4 µs latency
wire-bondable 
pulse-shaping choice

binary data, 
6.4 µs latency
wire-bondable

bump-bondable
12.8 µs latency
cluster & correlation logic
many other features!

RAL TD-Imperial-CERN
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CBC architecture
• Much more complex than APV25

– but not the most complex tracker ASIC!
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The CBC 3.0/3.1: Architecture
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Some aspects of design work

• A lot of functionality to verify – not all displayed here
– analogue performance, logic, interfaces, timing, … many simulations

• several design methods – custom/synthesised/…
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CBC 3.0/3.1: Verification
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Analogue simulations @
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-- Voltage 1.2V +10%
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Voltage 1.3V, 1.2V, 1.1V
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Another example
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Full Readout chain verification

25/03/2020

Incorporating lpGBT and off-detector lpGBT FPGA
To verify stub data, L1 data paths and fast command synchronization

PS-module case

Simone Scarfi

Notice the complexity 
of the system and the 
number of elements 
which need verification



ASICs are everywhere…
• It’s probably easier to identify the few projects which don’t use ASICs

– there may be some, in non-accelerator applications? 
– although not all are developed from scratch –

• reuse could be a useful trend… how?

• But the new ASICs are much more complex than the first LHC generation
– many more built-in features

• some functions that were separate chips, such as clock recovery

– and new functionality, such as time measurement
– external connections for control and data transfer, or assembly

• how long before optical elements are included? or wireless connectivity?

• Inevitably, development and qualification times have increased 
– more engineers and applied physicists are needed

• most with specialist skills
– many things to go wrong, and higher costs at stake 

• What can be done to control this?
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What can go wrong?
• Plenty – and we have many examples       (for later discussion?)

– many issues were overcome, so can be avoided in future
• but it’s rare that the same problems (not usually mistakes) occur the same way

– it can be difficult to find enough effort, or anticipate where it is needed most
• not always where expected – e.g. software readiness
• it’s traditional (and not wrong) to ask about radiation tolerance, but not so many other things…

– many of the problems are “small” – but with bigger repercussions
• but often hard to find, and need time to resolve

– manufacturing is not usually at fault – but has natural quality variations

• Nevertheless, today designs are remarkably successful
– Quality of design tools
– Quality of manufacture
– Experienced designers
– Prototyping via MPWs
– Careful evaluation
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Evolution of 
design rules

At a price, e.g.:

NB log scale



ASIC Design skills and approaches changing

The Issue:

• Its not just us – the whole industry is facing 
the same challenge

• Must work with validated IP to manage risk
• Strict QA is demanded at all stages

Consequences:

• Increased stress on design teams
• The software is becoming more specialised 

requiring committed teams dedicated over 
longer periods

• More effort required for the un-sexy 
verification and other tasks

• Links with National Labs and CERN are now 
mandatory

We simply can’t work in the ‘old’ ways…

slide from Marcus French RAL 2022

Even if not using such advanced processes, the 
same challenges are present – note breakdown by 
task

Design cost vs technology node 
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Pixel
Array

DAC

Macro Block

Dynamix 
Digital 
Core

Thanks to Mark Prydderch, RAL
Full circle…

• A starting point in late 1980s:
– pixel detectors for x-rays with RAL TD

• a lot of effort, but not much to show for it
• with hindsight, a lot was learned

• 2022: floor plan of a 65 nm prototype
– pixel array for future synchrotrons
– high frame rate, high dynamic range 
– ADC at pre-amp stage 
– 100 µm pixels
– segmented scalable architecture

• The Macro block contains
– 14 Gbps serialiser for data output
– 7 GHz PLL
– 500 MHz LVDS receiver
– DAC consisting of 12 10-bit IDACs



Some conclusions
• The LHC fortuitously coincided with the internet era

– explosion of relevant technology development – high volume, low unit cost
• much of it - but not all - accessible to small users (such as HEP)

– enabled implementation of increasingly complex functionality ASICs 
• now being exploited for HL-LHC era

• BUT greater complexity = longer development times and more resources
– higher risk and less flexibility for small projects

• How to manage this for the next generation?
– What are the needs after HL-LHC, and for which projects?
– MPW access and the need to train engineers should be beneficial

• Positive, but not to be taken for granted
– commercial motivations don’t necessarily match scientific interests

• Further reading for those interested
• G. Hall and A. A. Grillo ASICs for LHC intermediate tracking detectors NIM A1050 (2023), 168115  doi:10.1016/j.nima.2023.168115 

(part of a special issue on ASICs in HEP)
– Chris Miller  Chip Wars  Simon and Schuster (2022)
– Michael Riordan & Lillian Hoddeson Crystal Fire W. W. Norton (1998)
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Backup

G Hall  April 2023 30HEP 2023 Ioannina



NRE: Non-recurrent engineering

• Dominated by mask costs
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Mask set costs

16

Design rules and manuals 
scale in a similar way

Number of masks (TSMC)
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2. MPA-SSA-CIC
• 65nm CMOS (TSMC)
• ASICs are in design stage 

• MPA & SSA: final verification stage
• MPA-Light precursor available since 2015

• CIC: Digital system level modelling stage

Due for submission June 2017
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5. 2S FEH (2/2)

40FV/SPARES
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