CMS High Granularity Calorimeter – Modules & Assembly

Dimitra Tsionou

HEP 2023, Ioannina

Why HGCAL

2030 20	31 2032	2 2033	2034	2035	2036	2037	2038
J F M A M J J A S O N D J F M A M J	JASONDJFMAMJJA	SONDJFMAMJJASON	IDJ FMAMJJASOND	JFMAMJJASOND	J FMAM J J A SOND	JFMAMJJASOND	J FMAMJ J ASOND
Run 4			LS4		R	un 5	

	LHC (now)	HL-LHC
Inst. Luminosity	2 x 10 ³⁴ s ⁻¹ cm ⁻²	5-7.5 x 10 ³⁴ s ⁻¹ cm ⁻²
Pileup events	O(40)	O(140-200)
Int. Luminosity	300 fb ⁻¹ (Run 3)	3000 fb ⁻¹

More radiation, more pile-up, higher track density, more data ,.. → Detector Upgrades

HGCAL Overview

- CMS is constructing a High Granularity Calorimeter for the HL-LHC
- It will be composed of different technologies: Si sensors, SiPM-on-tile
- HGCAL characteristics
 - $1.5 < |\eta| < 3.0$
 - High granularity
 - Radiation tolerant
 - Precise hit/cluster timing
 - Particle flow
 - Operation at -30 C

HGCAL Design

Active Elements

- Hexagonal modules based on Si sensors in EM part (CE-E) and high radiation regions of the hadronic part (CE-H)
- Scintillating tile with on-tile SiPM readout in low radiation regions of CE-H
- Cassettes → multiple modules mounted on cooling plates with electronics and absorbers

Parameters

- ~620 m² Si sensors in ~26K modules
- 6M Si channels, cell size ~0.5 or ~1 cm²
- ~400 m² scintillators in ~4K boards
- 240K sci channels, cell size 4-30 cm²

- EM calo (CE-E): Si, Cu/CuW/Pb absorbers, 26 layers, 27.7 X₀
- Hadronic Calo (CE-H): Si/scintillator, steel absorber, 21 layers, 8.5 λ

Particle Flow

Particle Flow Algorithms → make best use of all detectors to measure jet energy

Better performance for PF compared to calo only

Requires a highly granular calorimeter

Si sensors

- 8" wafer
- Hexagonal shape (and partials)
- Low and high density varieties (depending on where they are placed)
- 120, 200 or 300 μm sensors (depending on where they are placed)

Low density sensor ~200 cells of 1 cm² size 200 or 300 µm thick

High density sensor ~400 cells of 0.5 cm² size 120 µm thick

Different partial shapes for coverage

CE-E Layer 9

Close to the beam

- High radiation → thin sensors
- Higher track density → higher density sensor pads

Si Sensors Testing

Setup

CV curves for sensors with different active thickness

Leakage current at 1000V

Capacitance at 400 V

Test structures

4 quadrants because of four different cell geometries on the sensor (varying inter-pad gap)

Si Sensor Radiation Hardness

Per-pad leakage current for sensor (after annealing): 200 μ m, low density, irradiated to 1.9×10¹⁵ neq/cm²

Area close to beam to be equipped with 120 µm sensors

Si Modules

SiPM-on-Tile modules

- SiPM-on-Tile: individually wrapped plastic scintillator tiles placed on silicon photomultipliers
- Scintillator tiles with SiPM readout used in low radiation regions
- Require good MIP Signal/Noise after 3000fb⁻¹
- Tile size depends on radial-position (4cm² to 32cm²) → smaller tiles at lower radii

Cassettes

Full Si cassette (~400 components)

How to get there?

Hexagonal tiling

Wagons in different shapes. Connections from modules to engines

Engine boards collect data from wagons and send it to backend

Tests from 1-module to $2 \rightarrow$ (multi) \rightarrow trains \rightarrow cassettes

Slow control, fast control, data acquisition, testbeams,...

Cassette Assembly

Assembly centers: CERN, Fermilab

~700 cassettes

CERN p5, under construction

Electronics

- Different boards for the electronics
- Hexaboard for module → Different variants for HD/LD modules and partials
- HGCROC → ASIC used both for Si and SiPM-on-tile parts
- Requirements: high dynamic range (0.2 fC-10 pC), timing info (30ps), radiation tolerant, low power (<20mW per channel)

Front End Electronics & HGCROC

HGCROC architecture

<u>Measurements</u>

Charge

- ADC 10 bits @ 40 MHz
- TDC TOT (Time Over Threshold), 12 bits

Time

 TDC – TOA (Time Of Arrival), 10 bits

Two data flows

- DAQ path: Store ADC, TOT, TOA data
- Trigger path: Sum of 4 (9) channels, linearisation, compression

Beam Tests

- Test beams during the past few years
- 2018: test beam at CERN. Positrons / pions 20-300 GeV, muons 200 GeV
- 2 planned at CERN for 2023

CE-E

- 28 layers of single Si modules
- ~26 X₀

CE-H

- 9 layers of 7 Si modules + 3 layers of single Si modules
- $\sim 3.4 \lambda$

AHCAL

- 39 layers of SiPMon-tile modules
- 22K scintillator tiles of size 3x3x0.3 cm³
- ~4.4 λ

Longitudinal information

positron beam Shower max

pion beam

Reconstruction

- High Granularity Calorimeter → small cell size, 26 EM +21 Had layers
- Can use modern computing technologies and reconstruction algorithms
- GPUs can be used
- Machine learning for particle ID
- CLUE, CLUE3D, TICL and others explored

Development of EM (top) and had (bottom) shower in different test beams (FNAL, CERN)

Reconstruction - Clustering Options

• Large number of recorded hits ($\sim 10^5$ per event) \rightarrow reduce info by building clusters

CLUE: algorithm for energy clustering:

- Reduces the number of hit objects by building clusters of energy
 - Calculates energy density in a distance, defines seed/followers/outliers
- Can be parallelized and runs on GPUs
- Has been tested with testbeam data

TICL: The Iterative Clustering

- Particles deposit energy and create 'Rechits'
- Rechits are clustered together to form 2D LayerClusters (CLUE algorithm)
- Clusters on different layers are linked together to form Tracksters (showers)

Iterative approach: Reconstruct simpler objects first → Mask reconstructed objects → Reconstruct more complex objects in following iterations

Trackster connecting several 2D LayerClusters

Other activities at NTU/TIDC

- Taiwan Instrumentation and Detector Consortium (TIDC)
- → Hardware for HGCAL, sPHENIX, STAR, AnaBHEL,...

Superconducting Nanowire Single Photon Detectors: SNSPDs In-house manufacturing!

STAR Forward Silicon Tracker

sPHENIX Silicon Strip Tracker

Summary

- High Granularity Calorimeter upgrade for CMS HL-LHC
- → Si & SiPM-on-tile
- High precision → energy, spatial, timing
- Sensors will start arriving soon
- Electronics close-to-final
- Module pre-series production to start soon
- Cassette pre-series production to start later in 2023
- Validation of parts and procedures → All sorts of tests to come! (module, cassette, testbeams)
- Exciting times ahead!
- Talk on CMS upgrades by J. Virdee tomorrow

