

ATLAS Highlights

Stelios Angelidakis

on behalf of the ATLAS Collaboration

HEP2023 - 40th Conference on Recent Developments in High Energy Physics and Cosmology, Ioannina, Greece 5–8 Apr 2023

HELLENIC REPUBLIC

National & Kapodistrian

University of Athens

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers" (Project Number: 04612).

lake Pamvotis

ATLAS @ LHC

CMS Experimen

- 30 years of collaboration (Oct. 1, 1992).
- 10 years from the discovery of the Higgs boson (Jul. 4, 2012).

Interactive timeline: <u>https://atlas.cern/about</u>.

Broad research program

<u>1219 papers</u> (until March 24, 2023).

Physics Theme	Papers
Standard Model	222
Higgs	207
Тор	157
B-physics	37
BSM (SUSY, HDBS, Exotics)	512
Heavy Ion	84

<section-header>

In this talk

ATLAS-upgrades-LS2

After a challenging phase-I upgrade during the 2nd long shutdown of the LHC, ATLAS records and analyzes the first data.

LHC Run-3

LuminosityPublicResultsRun3

ATLAS Event Display of top-pair production in 13.6 TeV collisions (ATLAS-PHOTO-2022-061-1).

93% recording eff. (slightly lower than in Run-2).

 $<\mu>$ 26% higher than in Run-2.

MUON-2022-02

Dimuon invariant mass resolution.

 $\rightarrow \mu\mu$

 $Z \rightarrow \mu\mu$

MC

 10^{2}

<p_>[GeV]

EGAM-2022-04

Electron identification efficiency Vs p_{T}

MUON-2023-01

Muon identification efficiency Vs η .

NSW commissioning period: NSW hits are not yet counted as precision-layer hits.

$H\to\gamma\gamma$ fiducial cross-section measurement

- First measurement of $\sigma(H \rightarrow \gamma \gamma)$ @ 13.6 TeV.
- Two isolated photons, $E_T/m_{\gamma\gamma} > 0.35$ and > 0.25, $m_{\gamma\gamma} \in (105, 160)$ GeV.
- Main backgrounds: non-prompt *γγ*, *γj*, *jj*.
- $\sigma_{fid}(H \rightarrow \gamma \gamma)$ extracted by unbinned max LH fit to $m_{\gamma\gamma}$ spectrum.

LHC Run-2

ATLAS public online estimates

H → ZZ* → 2e2µ candidate event recorded in 2015 (<u>ATLAS-PHOTO-2022-061-1</u>).

Final Luminosity for Run-2 pp

arXiv: 2212.09379 (sub. to EPJC)

- Based on complimentary measurements from LUCID, InnerDetector and Calorimeters.
- absolute calibration of LUCID from vdM scans each year.
- final result for standard high pileup sample $L_{\text{int}} = 140.1 \pm 1.2 \text{ fb}^{-1}$.
- unprecedented uncertainty of 0.83% (0.9% achieved by second-generation ISR experiments).

Visible interaction rate per unit bunch population product vs beam horizontal beam separation during a VdM scan.

Higgs Production Cross-Section Measurements

10 years from the discovery of the Higgs boson: Nature volume 607, pages52-59 (2022)

- The Higgs boson discovered ten years ago is remarkably consistent with the predictions of the SM.
- Inclusive Higgs boson production rate relative to the SM prediction:

 μ = 1.05 ± 0.06 = 1.05 ± 0.03(stat.) ± 0.03(exp.) ± 0.04(sig. th.) ± 0.02(bkg. th.)

10

Higgs Coupling Measurements

10 years from the discovery of the Higgs boson: Nature volume 607, pages52–59 (2022)

- Interactions scale with mass.
- Confirmed for vector bosons and all 3^{rd} generation fermions (... except v_{τ}).
- 2nd generation fermions are now being constrained too!

Higgs mass measurement $(H \rightarrow ZZ^* \rightarrow 4I)$

arXiv: 2207.00320 (sub. to PLB)

Final states: 4μ, 4e, 2μ2e, 2e2μ.

- Disciminants: m_{4l} , D_{NN} (additional separation from $ZZ^* \rightarrow 4\ell$).
- Event-by-event invariant-mass resolution of 4l system.

Higgs width measurement

 $g_{ggH}^2 g_{HZZ}^2$

 m_{ZZ}^2

ATLAS-CONF-2022-068

and $\sigma_{gg \rightarrow H \rightarrow VV}^{\text{off-shell}} \sim$

 $\Gamma_{H} = 4.6^{+2.6}_{-2.5} \text{ MeV} @ 68\% \text{ CL}.$

 $m_H \Gamma_H$

- Γ_H measurements based on off-shell Higgs production study with $H \rightarrow ZZ \rightarrow 4\ell / 2\ell 2\nu$. $\frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{2}$
- Assumption that the Higgs boson decays to SM particles, with $\sigma_{gg \rightarrow H \rightarrow VV}^{\text{on-shell}} \sim$
- Destructive interference \rightarrow less $qq \rightarrow (H^* \rightarrow)ZZ$.
- Measured off-shell production with 3.2σ.

Higgs self-coupling

- Di-Higgs production: $\lambda_{HHH} = m_{H^2}/2v^2$
- SM HH production σ (HH) ~ 33 fb @ 13 TeV
- Expected near the end of HL-LHC; may come sooner...

Channel	<i>L</i> _{int} (<i>fb</i> ⁻¹)	Reference
$HH \rightarrow b\overline{b}\gamma\gamma$	139	<u>Phys. Rev. D 106, 052001</u>
$HH \rightarrow b\overline{b}\tau^{*}\tau$	139	arXiv: <u>2209.10910</u> (sub. to JHEP)
$HH \rightarrow b\overline{b}b\overline{b}$	126	arXiv: <u>2301.03212</u> (sub. to PRD)
Combination		arXiv: <u>2211.01216</u> (sub. to PLB)

$$\mu_{HH} = \sigma_{ggF+VFF}^{HH} / \sigma_{ggF+VFF}^{HH, SM} = -0.7 \pm 1.3 \times SM$$

----- H KV

---- H

 $\sigma_{VBF}^{SM}(pp \rightarrow HH) = 1.72 \pm 0.04 \text{ fb} @ 13 \text{ TeV}$

 $\kappa_{\lambda} = H$

Top quark measurements

ATL-PHYS-PUB-2022-051

- Top is the heaviest elementary particle.
- Plays a special role in BSM physics.
- Heavy particle final states, *t*t*V*, *t*t*t*t, *t*t*H* cross-sections (measured at Run 2), are background for new physics signatures at TeV energy scale.

Observation of 4-top production

arXiv: 2303.15061 (sub. EPIC)

Most sensitive channels:

- 2 leptons SS, >= 6jets (>=2b)
- >= 3 leptons, >= 6jets (>=2b)

Observable: GNN-based discriminant trained to separate the signal from dominant backgrounds.

Main Irreducible backgrounds: ttW, ttZ, ttH.

• ttw normalized in data CRs orthogonal to the SR.

Reducible tt+jets contaminates through:

- fake/non-prompt leptons
- electron charge mis-identification
- data driven estimation.

 $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3} (\text{stat.})^{+4.6}_{-3.4} (\text{syst.}) \text{ fb} = 22.5^{+6.6}_{-5.5} \text{ fb}$ $\sigma_{SM} = 12 \pm 2.4 \text{ fb}$

6.1 (4.3) observed (expected) significance above backround-only hypothesis.

Measurement of αs

\vec{q} \vec{c} \vec{c}

- Use 2012 dataset @ 8 TeV.
- Integrated luminosity: 20.2 fb⁻¹.
- Observable: recoil p_T of Z (\rightarrow II).
- 9 bins in p_T^z < 29 GeV
 x 8 bins in |y_z| < 3.6.
 within 80 < m_{ll} < 100 GeV.
- predictions using approximate N3LO MSHT20 PDF set.

 p_T^z distribution predicted at different values of $\alpha_s(m_Z)$, using the MSHT20 PDF set.

Determination of $\alpha_s(m_z)$ at different orders in the QCD perturbative expansion,

	ATLAS Preliminary	 Hadron Colliders Category Averages PDG 2022 Lattice Average FLAG 2021 World Average PDG 2022 ATLAS Z p₇ 8 TeV
ATLAS ATEEC	-	0.1185 ± 0.0021
CMS jets		0.1170 ± 0.0019
W, Z inclusive	-	0.1188 ± 0.0016
tī inclusive		0.1177 ± 0.0034
τ decays		0.1178 ± 0.0019
$Q\overline{Q}$ bound states		• 0.1181 ± 0.0037
PDF fits		- 0.1162 ± 0.0020
e ⁺ e ⁻ jets and shapes		0.1171 ± 0.0031
Electroweak fit		0.1208 ± 0.0028
Lattice		• 0.1184 ± 0.0008
World average		• 0.1179 ± 0.0009
ATLAS Z p_ 8 TeV		• 0.1183 ± 0.0009
,	0.115	0.12 0.125 0.13 α _s (m _z)

$\alpha_s(m_Z) = 0.11828^{+0.00084}_{-0.00088}$

most precise determination of $\alpha_s(m_z)$

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

17

ATLAS-CONF-2023-015

Measurement of the W boson mass

- Use 2011 dataset @ 7 TeV.
- Integrated luminosity: 4.6 fb⁻¹.
- Observable: p_{T}^{lep} , m_{T} .
- Improved statistical model (employs profile likelihood fit).
- Improved pdf sets with smaller theoretical uncertainties.

ATLAS-CONF-2023-004

Obs.	Mean	Elec.	PDF	Muon	EW	PS &	Bkg.	Γ_W	MC stat.	Lumi	Recoil	Total	Data	Total
	[MeV]	Unc.	Unc.	Unc.	Unc.	A_i Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	sys.	stat.	Unc.
p_{T}^ℓ	80360.1	8.0	7.7	7.0	6.0	4.7	2.4	2.0	1.9	1.2	0.6	15.5	4.9	16.3
m_{T}	80382.2	9.2	14.6	9.8	5.9	10.3	6.0	7.0	2.4	1.8	11.7	24.4	6.7	25.3

Search for pair production of 3rd-gen. leptoquarks

arXiv: 2303.01294 (sub. to EPJC)

- Final state: $2b2\tau \rightarrow two$ channels lep-had, had-had
- Observable: MVA (PNN) trained to discriminate signal from dominant top-quark background.
- Previous ATLAS search in this final state (36 fb⁻¹) surpassed by more than 450 GeV for scalar LQs.

p

p

LO

LQ

Supersymmetry

ATL-PHYS-PUB-2023-005

• Impressive amount of work by search groups. Exclusion of large areas of the phase space.

Example #1:

- Analyses focusing on the pair production of gluinos, supersymmetric partner of the gluon.
- Different decay modes of gluinos to the LSP (neutralino or gravitino) are probed; assumed to proceed with 100% branching ratio.
- Strong increase in exclusion limits. Gluino masses below 2.44 TeV (Gtt) and 2.35 TeV (Gbb) are excluded for a massless neutralino.

Supersymmetry

ATL-PHYS-PUB-2023-005

• Impressive amount of work by search groups. Exclusion of large areas of the phase space.

Example #2:

- Analyses probing the electroweak production of sleptons with decays to lepton, neutralino.
- For a massless neutralino, masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.

$H \rightarrow invisible$ search combination

arXiv: 2301.10731 (sub. to PLB)

- Several models predict a massive, stable and electrically neutral particle X as a dark matter candidate.
- SM branching ratio for Higgs invisible decay (H→ZZ→4v) ~0.1%
- If DM exists in the right mass range, we may observe larger BR(H→inv) than SM prediction.

BR(H→inv) < 0.107 (0.077) @ 95% CL obs (exp)

Searches for long-lived particles

ATL-PHYS-PUB-2022-034

- No signs of BSM physics so far
 → search further away...
- A rich set of searches have been performed using LHC Run-2 data.
- LLPs are theoretically motivated, and experimentally motivating.
- Here: representative set of most sensitive recent results.

Conclusions

https://hilumilhc.web.cern.ch

- ATLAS is using 139fb⁻¹ @ 13TeV for most results.
- No signs of BSM physics in Run-2; SM predictions getting constrained.
- Run 3 expected to bring more than 300fb⁻¹ @ 13.6 TeV.
- HL-LHC will bring an order of magnitude more.

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers" (Project Number: 04612).

Additional Material

Heavy Resonance Searches

ATL-PHYS-PUB-2022-034

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits ATLAS Preliminary Status: July 2022 $\sqrt{s} = 8.13 \text{ TeV}$ $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ Model ℓ, γ Jets $\dagger E_{\tau}^{\text{miss}} \int \mathcal{L} dt [fb^{-1}]$ Limit Reference ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ 0 e. u. t. v 1 – 4 j 139 11.2 TeV n = 2 2102.10874 Yes 36.7 8.6 TeV n = 3 HLZ NLO 9.4 TeV n = 6 2 % 1707.04147 ADD QBH ADD BH multijet 2 j 139 3.6 1910.08447 9.55 TeV n = 6, M_D = 3 TeV, rot BH ≥3j 1512 02586 RS1 $G_{KK} \rightarrow \gamma\gamma$ $\frac{k}{M_{Pl}} = 0.1$ $\frac{k}{M_{Pl}} = 1.0$ 2γ 139 36.1 45 TeV 2102 13405 Bulk RS $G_{KK} \rightarrow WW/ZZ$ 2.3 TeV 1808.02380 multi-channel ww mass Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu q q$ 1 e, µ 2j/1J Yes 139 36.1 2.0 TeV $k/\overline{M}_{Pl} = 1.0$ 2004.14636 Bulk RS $g_{KK} \rightarrow tt$ 1 e, μ ≥1 b, ≥1J/2j Yes 1 e, μ ≥2 b, ≥3 j Yes 3.8 TeV $\Gamma/m = 15\%$ 1804.10823 2LIED / RPP 36.1 1.8 TeV Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$ 1803 09678 $SSM Z' \rightarrow \ell\ell$ 2 e, µ 139 1903.06248 5.1 TeV SSM $Z' \rightarrow \tau \tau$ 21 36.1 mass 2.42 TeV 1709.07242 Leptophobic $Z' \rightarrow bb$ 2 b 36.1 139 139 mass 2.1 TeV 1805 09299 0 e.u ≥1 b, ≥2 J Yes 4 1 ToV $\Gamma/m = 1.2\%$ Leptophobic $Z' \rightarrow tt$ mass 2005 05129 6.0 TeV SSM W/ -> /v 1 e. µ Yes 1906 05609 N' mae SSM $W' \rightarrow \tau v$ 17 Yes 139 5.0 TeV ATLAS-CONF-2021-025 N' mas SSM $W' \rightarrow tb$ ≥1 b, ≥1 J 139 139 139 N' mas 4.4 TeV ATLAS-CONF-2021-043 HVT $W' \rightarrow WZ \rightarrow \ell \nu q q \mod B$ Yes Yes Yes 1 e, µ 21/11 N' mass 4.3 TeV $g_V = 3$ 2004 14626 2 j (VBF) HVT $W' \rightarrow WZ \rightarrow \ell \gamma \ell' \ell' \mod C \quad 3 \ e, \mu$ 340 GeV $g_V c_H = 1, g_f = 0$ $g_V = 3$ ATLAS-CONE-2022-005 N' mas HVT $W' \rightarrow WH \rightarrow \ell\nu bb$ model B 1 e, μ HVT $Z' \rightarrow ZH \rightarrow \ell\ell/\nu\nu bb$ model B 0,2 e, μ 1-2 b. 1-0 i 139 139 80 2207.00230 N' mass 3.3 TeV 1-2 b, 1-0 j mass 3.2 TeV $g_V = 3$ 2207.00230 LRSM $W_R \rightarrow \mu N_R$ 2μ 1 J 5.0 Te $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$ 1904.12679 CI agaa 2 j 37.0 21.8 TeV 1703.09127 Cillaa 2 e. u 139 35.8 TeV η_i 2006.12946 5 CI eebs 2 e 2 µ 1 b 139 1.8 TeV 2.0 TeV 2.57 TeV $g_* = 1$ 2105.13847 CI µµbs 1 6 139 $g_* = 1$ $|C_{til}| = 4\pi$ 2105 13847 ≥1 e,µ >1 b. >1 i CI tttt Yes 36.1 1811 02305 Axial-vector med. (Dirac DM) 0 e, µ, τ, γ 1 - 4Yes 139 2.1 TeV gg=0.25, gy=1, m(x)=1 GeV 2102.10874 Pseudo-scalar med. (Dirac DM) 0 e, µ, τ, γ 1 - 4Yes 139 139 139 376 GeV gq=1, gχ=1, m(χ)=1 GeV 2102.10874 Vector med. Z'-2HDM (Dirac DM) 0 e, µ 2 b nor 3 1 TeV $\tan \beta = 1, g_Z = 0.8, m(\chi) = 100 \text{ GeV}$ $\tan \beta = 1, g_\chi = 1, m(\chi) = 10 \text{ GeV}$ 2108 13391 560 GeV Pseudo-scalar med, 2HDM+a multi-channel TLAS-CONF-2021-036 Scalar LQ 1st ger 2006.05872 2e ≥2j ≥2j Yes Yes 139 1.8 TeV $\beta = 1$ Scalar LQ 2nd gen 2μ 139 1.7 TeV B = 12006.05872 $\begin{array}{ccc} 1 \tau & 2 b \\ 0 e, \mu & \geq 2 j, \geq 2 b \end{array}$ 1.2 TeV 1.24 TeV $\mathcal{B}(LO_{2}'' \rightarrow b\tau) = 1$ Scalar LQ 3rd gen Yes 139 139 2108.07665 Q $\mathcal{B}(LQ_3^{\prime\prime} \rightarrow t\nu) = 1$ Scalar LQ 3rd gen mas 2004 14060 Scalar LQ 3rd gen $\geq 2 e, \mu, \geq 1 \tau \geq 1 j, \geq 1 b$ 139 139 1.43 TeV $\mathcal{B}(LQ_1^d \rightarrow t\tau) = 1$ 2101.11582 Scalar LQ 3rd gen 0 e, µ, ≥1 τ 0 - 2 j, 2 b Yes 1.26 TeV $\mathcal{B}(LQ_1^d \rightarrow bv) = 1$ 2101.12527 Vector LQ 3rd gen 139 1.77 TeV 1 7 2 b Yes $\mathcal{B}(LQ_1^V \rightarrow br) = 0.5$, Y-M coupl. 2108.07665 VLQ $TT \rightarrow Zt + X$ 2e/2µ/≥3e,µ ≥1 b, ≥1 j 139 1.4 TeV SU(2) doublet ATLAS-CONF-2021-024 $VLQ BB \rightarrow Wt/Zb + X$ multi-channel 36.1 1.34 TeV SU(2) doublet 1808.02343 mass VLQ $T_{5/3}T_{5/3}|T_{5/3} \rightarrow Wt$ VLQ $T \rightarrow Ht/Zt$ 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 36.1 s/a mas 1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) =$ 1807 11883 1 e, μ ≥1 b, ≥3 j Yes 1 e, μ ≥1 b, ≥1 j Yes 0 e,μ ≥2b, ≥1 j, ≥1 J – 139 36.1 139 mass 1 8 ToV SU(2) singlet, KT = 0.5 ATLAS-CONF-2021-040 $VLQ Y \rightarrow Wb$ 1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ 1812 07343 $VLQ B \rightarrow Hb$ SU(2) doublet, KB= 0.3 ATLAS-CONF-2021-018 mass 2.0 Te VLL $\tau' \rightarrow Z\tau/H\tau$ multi-channel ≥1 j Yes 139 898 GeV SU(2) doublet ATLAS-CONF-2022-044 Excited quark $a^* \rightarrow ag$ 139 6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1910 08447 2j Excited quark $q^* \rightarrow q^*$ 1γ 36.7 only u^* and d^* , $\Lambda = m(a^*)$ 1709.10440 Excited quark $b^* \rightarrow bg$ 1 b. 1 j -139 1910.0447 Excited lepton & 3 e, µ 20.3 $\Lambda=3.0 \text{ TeV}$ 1411.2921 Excited lepton 3 e, µ, τ 20.3 $\Lambda = 1.6 \text{ TeV}$ 1411 2921 139 Type III Seesaw 2.3.4 e. u ≥2 j Yes 910 GeV 2202.02039 LRSM Majorana y 2 μ 21 36.1 3.2 TeV $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ 1809.11105 2,3,4 e, µ (SS) various Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Yes 139 139 350 GeV DY production 2101.11961 Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 1.08 TeV 2,3,4 e, µ (SS) DY production TI AS-CONE-2022-010 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ 3 e, µ, τ 20.3 DY production, $\mathcal{B}(H_{\ell}^{\pm\pm} \rightarrow \ell \tau) = 1$ 1411.2921 Multi-charged particles DY production, |q| = 5e1.59 TeV ATLAS-CONF-2022-034 Magnetic monopoles 34.4 2.37 TeV DY production, |g| = 1g_D, spin 1/ 1905.10130 √s = 13 TeV √s = 13 TeV √s = 8 TeV partial data 10^{-1} full data 1 10 Mass scale [TeV] *Only a selection of the available mass limits on new states or phenomena is shown +Small-radius (large-radius) jets are denoted by the letter j (J).

Representative set of most sensitive recent results

Model	Si	ignatur	e ∫.	L dt [fb	Mass limit	Reference
$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 139	7 [1x, 8x Degen.] 1.0 1.85 m(ℓ ⁰)<400 GeV 7 [8x Degen.] 0.9 m(ℓ ⁰)=5 GeV	2010.14293 2102.10874
$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	β 2.3 m(k ²)=0 GeV ξ Forbidden 1.15-1.95 m(k ⁰)=1000 GeV	2010.14293 2010.14293
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 e,µ	2-6 jets		139	ğ 2.2 m(λ ⁰)<600 GeV	2101.01629
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}^0_{1}$	$ee, \mu\mu$	2 jets	E_T^{miss}	139	₹ 2.2 m(X ⁰ ₁)<700 GeV	2204.13072
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	$E_T^{\rm miss}$	139 139	ğ 1.97 m(ℓ [*] ₁) <600 GeV ğ 1.15 m(ℓ) =200 GeV	2008.06032 1909.08457
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 b 6 jets	$E_T^{\rm miss}$	139 139	ğ 2.45 m(ℓ ² ₁)<500 GeV ğ 1.25 m(ℓ)-m(ℓ ² ₁)=300 GeV	2211.08028 1909.08457
$\tilde{b}_1 \tilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b	$E_T^{\rm miss}$	139	م الم 1.255 m(ℓ ²)<400 GeV م 10 GeV< http://www.sec.org/10 GeV	2101.12527 2101.12527
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_{T_{i}}^{miss}$	139	5 Forbidden 0.23-1.35 Δm($\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})$ =130 GeV, m($\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0}$)=100 GeV	1908.03122
	2τ	2 b	$E_T^{\rm miss}$	139	b_1 0.13-0.85 $\Delta m(\tilde{k}_2^{\prime}, \tilde{k}_1^{\prime}) = 130 \text{ GeV}, m(\tilde{k}_1^{\prime}) = 0 \text{ GeV}$	2103.08189
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\mathcal{X}}_1'$	0-1 e, µ	≥ I jet	Emiss	139	$m(\tilde{\chi}_1^n) = 1 \text{ GeV}$	2004.14060, 2012.03799
$t_1t_1, t_1 \rightarrow WbX_1^-$ $\tilde{t}, \tilde{t}, \tilde{t}, \rightarrow \tilde{\pi}, by, \tilde{\pi}, \rightarrow \pi \tilde{C}$	1-2 -	2 jets/1 b	Emiss	139	r1 Forbidden 0.65 m(X1)=500 GeV	2012.03/99
$I_1I_1, I_1 \rightarrow I_1DV, I_1 \rightarrow I_0$ $\tilde{L}_1 \tilde{L} \rightarrow a \tilde{V}_1^0 / \tilde{a} \tilde{a} \rightarrow a \tilde{V}_1^0$	0.e.u	20	Emiss	36.1	0.85 m(1)-00.064	1805 01649
$[\eta,\eta \rightarrow \alpha]$ / $cc, c \rightarrow \alpha$	0 e, µ	mono-jet	$E_T^{\rm fmiss}$	139	$m(t_1) = 500$ $m(t_1, z) - m(t_1') = 5 \text{ GeV}$	2102.10874
$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ $\tilde{i}_1 \tilde{i}_2, \tilde{i}_2 \rightarrow \tilde{i}_1 + Z$	1-2 e,μ 3 e.μ	1-4 b	E_T^{miss} E^{miss}	139	7 ₁ 0.067-1.18 m(k_2^0)=500 GeV	2006.05880
$\tilde{\chi}_1^* \tilde{\chi}_2^0$ via WZ	Multiple <i>l</i> /jets	3 > Lint	ET ET Emiss	139	22 7000000 000 mit(1)=00000, m	2106.01676, 2108.07586
S [±] S [∓] WW	2	E i joi	Emiss	120	1/Λ ₁ /Λ ₂ 0.200 mix 1)-m(x 1)=5 GeV, wind-bind	1000 00015
$\tilde{X}_1 X_1$ via w w $\tilde{Y}_1^{\pm} \tilde{Y}_1^0$ via W/h	Multiple //iets		Emiss	139	$m_{k_1 =0}$, whice only $m_{k_1 =0}$,	2004 10894 2108 07586
$\tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{\dagger}$ via $\tilde{\ell}_{1}/\tilde{\nu}$	2 e.µ		Emiss	139	1.0 m(t)=-10 GeV, m(t)=-0.00	1908.08215
$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2τ		ET	139	$m(\tilde{t}_{L}^{0}, \tilde{\tau}_{R,L})$ 0.16-0.3 0.12-0.39 $m(\tilde{t}_{L}^{0}) = 0$	1911.06660
$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, µ ee, µµ	0 jets > 1 jet	E ^{miss} E ^{miss}	139	0.7 m(\tilde{t}_1^0)=0 m(\tilde{t}_1^0)=0 m(\tilde{t}_1^0)=0 m(\tilde{t}_1^0)=0 m(\tilde{t}_1^0)=0 m(\tilde{t}_1^0)=0 m(\tilde{t}_1^0)=0 m(\tilde{t}_1^0)=0 m(1908.08215
$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e, µ	$\geq 3 b$	Emiss	36.1	\tilde{H} 0.13-0.23 0.29-0.88 BR($\tilde{t}_1^0 \to h\tilde{G}$)=1	1806.04030
	4 e, µ	0 jets	ETniss	139	\tilde{H} 0.55 BR $(\tilde{k}_{\perp}^{0} \rightarrow Z \tilde{C})=1$	2103.11684
	2 e, µ	≥ 2 jets	E_T^{miss}	139	\tilde{H} $0.430.83$ $BR(\tilde{x}_1^0 \rightarrow Z \tilde{G}) = R$ \tilde{H} 0.77 $BR(\tilde{x}_1^0 \rightarrow Z \tilde{G}) = BR(\tilde{x}_1^0 \rightarrow h \tilde{G}) = 0.5$	2204.13072
$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	139	Pure Wino	2201.02472
Stable @ B-hadron	nixel dE/dx		Fmiss	130	2 05	2205.06013
Metastable # B-badron #=>aa ^V	pixel dE/dx		E_T^{miss}	139	ž [r(ž) =10 ns] 2.2 miž ⁰ -100 GaV	2205.06013
$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep		Emiss	139	$\pi(\tilde{\rho}) = 0.1$ $\pi(\tilde{\rho}) = 0.1$	2011.07812
	pixel dE/dx		E_T^{miss}	139	τ 0.34 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 10 \text{ ns}$	2011.07812 2205.06013
$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{\pm}\rightarrow Z\ell\rightarrow\ell\ell\ell$	3 e. µ			139	ζ ⁷ /λ ⁰ [BR(Zτ)=1. BR(Zε)=1] 0.625 1.05 Pire Win	2011.10543
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow W W / Z \ell \ell \ell \ell \nu \nu$	4 e, µ	0 jets	E_T^{miss}	139	$\tilde{\chi}_{1}^{+}/\tilde{\chi}_{2}^{0} = [\lambda_{23} \neq 0, \lambda_{12k} \neq 0]$ 0.95 1.55 m($\tilde{\chi}_{1}^{0}$)=200 GeV	2103.11684
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}^0_1, \tilde{\chi}^0_1 \rightarrow qqq$	4	4-5 large jet	s	36.1	g [m(X ⁰ ₁)=200 GeV, 1100 GeV] 1.3 1.9 Large X'' ₁₁₂	1804.03568
$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow t b s$		Multiple		36.1	7 [A'' ₃₂₃ =2e-4, 1e-2] 0.55 1.05 m(\tilde{k}_1^0)=200 GeV, bino-like	ATLAS-CONF-2018-003
$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$		$\geq 4b$		139	Forbidden 0.95 $m(\tilde{\chi}_1^{\pm})$ =500 GeV	2010.01015
$t_1 t_1, t_1 \rightarrow bs$ $\tilde{t}, \tilde{t}, \tilde{t}, \gamma \rightarrow a\ell$	2.4.11	2 jets + 2 b		36.7	(1 [qq, bs] 0.42 0.61	1710.07171
$q_{1}q_{1}$	2 e,μ 1 μ	DV		136	$\frac{1}{r_1} \begin{bmatrix} 1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k} < 3e-9 \end{bmatrix} = \begin{bmatrix} 0.4-1.45 \\ 1.0 \end{bmatrix} = BR(\tilde{t}_1 \to e/(h)) > 20\%$	2003.11956
$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1-2 e, µ	≥6 jets		139	Pure higgsino Pure higgsino	2106.09609

simplified models, c.f. refs. for the assumptions made.

Performance Measurements

Eur. Phys. J. C 81 (2021) 578, arXiv: 2211.16345

Improved *b*-tagging algorithms boost searches for multiple *b*-tagged jets (e.g. *HH*, $t\bar{t}t\bar{t}$)

continuous improvements of identification and calibration of reconstructed objects.

MC modelling with correction factors (close to 1) measured in data.

28

Top mass measurement

• Observable: $m_{l\mu}$ of l (e, μ) from W decay and μ from B-hadron decay from the same top-quark.

arXiv: 2209.00583 (sub. to JHEP)

Dark Matter Searches

ATL-PHYS-PUB-2022-036

- Missing energy and resonance searches can be used to limit specific DM models.
- In the example shown, lepto-phobic vector mediator model is explored.
- Upper limits set with the LHC can compliment those of direct experiments.

