R_K prediction in the MSSM

Kostas Mantzaropoulos

in collaboration with A. Crivellin, A. Dedes and J. Rosiek

University of Ioannina, Department of Physics

 ${
m HEP}\ 2023$ - 5 April 2023

- The Effective theory
- **2** The R_K in the MSSM
- 3 Direct/Indirect Searches
- 4 Final Results
- 6 Conclusions

Motivation

- MSSM has many attractive features, e.g. gauge coupling unification, solution to the hierarchy problem, dark matter candidate
- Can the MSSM explain the current tensions in B-Physics?
- Analytically understand the MSSM prediction for R_K .
- Numerically estimate the maximal effect of the MSSM in the R_K .

Motivation

• MSSM has many attractive features, e.g. gauge coupling unification, solution to the hierarchy problem, dark matter candidate

• Can the MSSM explain the current tensions in B-Physics? [LHCb: 2212.09153]

- Analytically understand the MSSM prediction for R_K .
- Numerically estimate the maximal effect of the MSSM in the R_K .

- The Effective theory
- **2** The R_K in the MSSM
- 3 Direct/Indirect Searches
- 4 Final Results
- 6 Conclusions

The EFT Description

EFT characteristics:

- Relevant scale of the EFT at m_b , integrated out everything above 4 GeV.
- We call this EFT either Weak Effective Theory (WET) or Low Energy Effective Theory (LEFT).
- Suitable EFT to study $b \to s\ell\ell$ transition.

Wilson coefficients:

• SM mainly contributes to 3 operators at the scale $\mu_b = 4.8$ GeV are

$$C_7^{\text{SM}}(\mu_b) = -0.29$$
 $C_9^{\text{SM}}(\mu_b) = 4.2$ $C_{10}^{\text{SM}}(\mu_b) = -4.2$

- Vector operators are dominant for the process $b \to s\ell\ell$.
- The Wilson coefficient C_7 contributes mostly to radiative decays.

Basis and Observables

• We define a chiral basis:

$$\mathcal{L}_{\text{eff}} = -\frac{1}{16\pi^2} \sum_{X,Y=L,R} C_{VXY} O_{VXY}$$

$$\mathcal{O}_{VXY}^{IJKL} = (\bar{q}^J \gamma^\mu P_X q^I) (\bar{\ell}^L \gamma_\mu P_Y \ell^K)$$
: semileptonic operators.

• Measure of lepton flavor universality violation (LFUV)

$$R_K = \frac{\text{Br}(B^+ \to K^+ \mu^+ \mu^-)}{\text{Br}(B^+ \to K^+ e^+ e^-)}, \quad R_{K^*} = \frac{\text{Br}(B \to K^* \mu^+ \mu^-)}{\text{Br}(B \to K^* e^+ e^-)}.$$

• In terms of WCs the two ratios are:

[Hiller, Schmaltz: 1411.4773]

$$R_K \simeq 1 + \Delta_+, \qquad R_{K^*} \simeq 1 + p(\Delta_- - \Delta_+) + \Delta_+ ,$$
 with $\Delta_{\pm} = 2 \operatorname{Re} \left[\frac{C_{VLL}^{\mu} \pm C_{VRL}^{\mu}}{C_{SM_-}^{SM_-}} - (\mu \to e) \right]$

- The Effective theory
- **2** The R_K in the MSSM
- 3 Direct/Indirect Searches
- 4 Final Results
- 6 Conclusions

Strategy of the Calculation

• Relevant Feynman diagrams in the MSSM:

- All contributions have been calculated (boxes, Z, γ -penguins and Higgses), in the mass basis. [Dedes, Rosiek, Tanedo: 0812.4320]
- Translate WCs from mass basis to flavor basis using FET to obtain the Mass Insertion (MI) approximation. [Dedes, et al.: 1504.00960]
- Analytically work out dominant contributions in the R_K , under NMFV assumptions.
- Verify numerically using SUSY_FLAVOR, while evading direct and indirect bounds.

 [J. Rosiek et al.: 1203.5023]

The R_K in the MSSM

- \bullet Z and γ penguins are LFU and \mathbf{drop} \mathbf{out} of the calculation
- $\bullet\,$ After FET, the dominant supersymmetric contribution is the box diagram
- \bullet To a good approximation in the MSSM

$$R_K \approx R_{K^*} \approx 1 + \Delta_+$$

• Major contribution from chargino-stop-muon sneutrino and the MI parameter $(\delta_U)_{LL}^{23}$

Semi-analytic expression for R_K

$$R_K(\chi^\pm)|_{\rm MSSM} \approx 1 - \underbrace{\left(\frac{v}{M_{\rm SUSY}}\right)^2 0.02}_{\rm MFV} - \underbrace{\left(\frac{v}{m_{\tilde{t}}}\right)^2 0.4 (\delta_U)_{LL}^{23}}_{\rm NMFV}$$

Back of the envelope calculation

- Wino and stop masses close to the EW scale.
- Large mass hierarchy between muon-sneutrino and electron-sneutrino
- The dominant MI, $(\delta_U)_{LL}^{23} \sim \mathcal{O}(1)$.
- A very first rough estimate:

$$|\Delta R_K|_{\rm MSSM} \approx 42\%$$

Reality check

How much of this contribution remains after imposing contraints from **direct** and **indirect** searches?

- The Effective theory
- **2** The R_K in the MSSM
- 3 Direct/Indirect Searches
- 4 Final Results
- 6 Conclusions

Direct production of $\chi_1^{\pm}\chi_2^0$ via SM bosons

- χ_1^0 : pure Bino $\Rightarrow M_1 = 200 \text{ GeV}$
- χ_2^0 and χ_1^{\pm} degenerate, pure Wino states $\Rightarrow M_2 = 300 \text{ GeV}$

Direct production of $\chi_1^{\pm}\chi_2^0$ via SM bosons

- χ_1^0 : pure Bino $\Rightarrow M_1 = 200 \text{ GeV}$
- χ_2^0 and χ_1^{\pm} degenerate, pure Wino states $\Rightarrow M_2 = 300 \text{ GeV}$

Smuon direct production,

- Bino mass at 200 GeV, \Rightarrow $\tilde{\mu} \sim 220 \text{ GeV}$
- Heavy mass scales ~ 3 TeV for other sleptons.

Various gluino decays into lightest neutralino

• Gluino mass: $\Rightarrow M_G > 2.4 \text{ TeV}$

Various gluino decays into lightest neutralino

• Gluino mass: $\Rightarrow M_G > 2.4 \text{ TeV}$

Direct stop production

- Lightest stop mass: $\Rightarrow m_{\tilde{t}_1} > 1.25 \text{ TeV}.$
- Common mass scales at ~ 2.5 TeV for all squarks.
- OR tune the masses at $m_{\tilde{\chi}_1^0} \sim 400$ GeV and $m_{\tilde{t}_1} \sim 600$ GeV.

Indirect Searches

• $B - \bar{B}$ mixing: where we allow

$$\frac{\Delta M_s^{\rm MSSM}}{\Delta M_s^{\rm SM}} \equiv \Delta M_s^{\rm NP} \leq 20\%$$

• Radiative decay of the *B*-meson:

$$Br(B \to X_s \gamma) = (3.32 \pm 0.15) \times 10^{-4}$$

To satisfy this constraint, using FET, we have found a cancellation mechanism for C_7 for large values of μ .

Indirect Searches

• B - B mixing: where we allow

$$\frac{\Delta M_s^{\rm MSSM}}{\Delta M_s^{\rm SM}} \equiv \Delta M_s^{\rm NP} \leq 20\%$$

• Radiative decay of the *B*-meson:

$$Br(B \to X_s \gamma) = (3.32 \pm 0.15) \times 10^{-4}$$

To satisfy this constraint, using FET, we have found a cancellation mechanism for C_7 for large values of μ .

- The Effective theory
- **2** The R_K in the MSSM
- 3 Direct/Indirect Searches
- 4 Final Results
- **6** Conclusions

Final results I

Finally, after considering both direct and indirect bounds and for $m_{\tilde{t}_1} \geq 1.25$ TeV:

Numerically,

 $|\Delta \mathbf{R_K}|_{\mathrm{MSSM}} < 4\%$

Final Results II

For the ATLAS gap scenario the final results is given by the contour plot:

Numerically,

$$|\Delta \mathbf{R_K}|_{\mathrm{MSSM}} \leq 5\%$$

- 1 The Effective theory
- **2** The R_K in the MSSM
- 3 Direct/Indirect Searches
- 4 Final Results
- 6 Conclusions

Conclusions

- Analytically tried to understand R_K contributions in the NMFV scenarios using FET.
- Identified the most dominant contribution coming from chargino boxes and the leading MI $(\delta_U)_{LL}^{23}$.
- Applied direct and indirect bounds on the relevant MSSM parameters.
- Numerically estimated the SUSY prediction for $0.95 \le R_K^{\text{MSSM}} \le 1.05$.

Conclusions

Thank you!