Dimension-8 EFT interpretation for the EWK production of ZZjj in the four-lepton channel

HEP 2023 - 40th Conference on Recent Developments in High Energy Physics and Cosmology 5-8 April 2023, Ioannina, Greece.

Alexandros Marantis

Hellenic Open University

Outline

Measurements of differential cross-sections for the EWK production of $ZZjj \rightarrow 4ljj$ in 13 TeV p-p collisions with the ATLAS detector

- EWK QCD Tree-Level Feynman diagrams
- Event Selection
- Event Categorization Observables

Anomalous Quartic Gauge Couplings (aQGC)

- Decomposition method
- Sensitivity of QGC operators
- Expected limits at detector-level
- Unitarity violation: Clipping Scan

Electroweak (EWK) signal

Measurement of Vector Boson pair production provides an excellent test of the ElectroWeaK Symmetry Breaking (EWKSB) sector of the Standard Model (SM).

The VBS topology consists of two high energy jets in the back and forward regions, with two vector bosons.

Quantum Chromodynamics (QCD) background

The main background processes for the ZZjj $\rightarrow lllljj$ VBS channels are the QCD ZZjj component and the fake (misidentified leptons) background.

Event Selection

Event Selection	Cut	Requirement
Event Preselection	Trigger Vertex	Fire at least one lepton trigger At least one vertex with 2 or more tracks
Dressed object kinematics	Lepton Kinematics	$egin{aligned} p_T^e > 7 \; GeV , \;\; p_T^\mu > 7 \; GeV , \;\; p_T^j > 30 \; GeV \ \eta^e < 2. 47 , \; \eta^\mu < 2. 7, \; \left \eta^j ight < 4. 5 \end{aligned}$
Quadruplet Selection	Lepton Kinematics Lepton Separation Pair Requirement Minimal Δm _z ZZ mass	$\begin{array}{l} p_T > 20 \; GeV \; \text{for two leading leptons} \\ \Delta R_{ij} > 0.05 \; \text{between leptons in quadruplet} \\ \text{Two SFOS lepton pairs with } m_{ll} > 5 \; GeV \\ \text{Select quadruplet with smallest } m_{12} - m_Z + m_{34} - m_Z \\ \text{Leading Pair: pair with highest } y_{ij} \\ m_{4l} > 130 \; GeV \end{array}$
Dijet Selection	Different Detector Sides Rapidity Separation Leading Jet p_T Dijet Mass	$egin{aligned} &\eta_{j1} imes \eta_{j2} < 0 \ &\Delta Y_{jj} > 2 \ &p_{T,j1} > 40 \; GeV \ &m_{jj} > 300 \; GeV \end{aligned}$
Event Categorization	VBS Enhanced Region VBS Suppressed Region	$\begin{array}{l} \zeta < 0.4 \\ \zeta > 0.4 \end{array}$

Event Categorization

Differential measurements are made in events with a signal quadruplet and a dijet in two distinct signal regions based on the kinematic quantity named *centrality*:

$$\zeta = \frac{|y_{quadruplet} - 0.5 \cdot (y_{leading jet} + y_{sub-leading jet})}{y_{leading jet} - y_{sub-leading jet}}$$

where y is the rapidity.

A minimum number of events is required in each bin of the observables' distributions (15 for the VBS-Suppressed and 20 for the VBS-Enhanced region)

Observable	Region	Binning
m_{jj} [GeV]	VBS-Enhanced	[300, 400, 530, 720, 1080, 3280]
	VBS-Suppressed	[300, 410, 600, 1780]
$ \Delta y_{jj} $	VBS-Enhanced	[2, 3.08, 3.74, 4.32, 5.06, 7.4]
	VBS-Suppressed	[2, 2.94, 3.78, 5.4]
m_{4l} [GeV]	VBS-Enhanced	[130, 210, 250, 304, 400, 1130]
	VBS-Suppressed	[130, 226, 304, 752]
$S_{T,4ljj}$	VBS-Enhanced	[70, 240, 320, 420, 580, 1410]
	VBS-Suppressed	[70, 330, 500, 1210]
$p_{T,jj}$	VBS-Enhanced	[0, 52, 82, 116, 172, 524]
	VBS-Suppressed	$[0,\ 80,\ 146,\ 448]$

Anomalous Quartic Gauge Couplings

- VBS processes provide a great source of information on the structure of QGCs
- Neutral couplings ZZZZ, ZZZ γ , ZZ $\gamma\gamma$, Z $\gamma\gamma\gamma$ are forbidden in the Standard Model
- Effects increase with $\sqrt{\hat{s}}$
- Presence of aQGCs lead to enhancement of the cross section and modification of event kinematics in high p_T, high E_T or high mass regions
 - study of variables that carry system's energy (p_T, m_{zz})
- Shape difference between SM and aQGC MC kinematic distributions
- Common choice: effective field theory (EFT) with higher order dimensions operators
- Effective Langrangian Approach

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

• Set of dim-8 operators affecting quartic boson vertices:

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	X	Х	X						
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \! \mathcal{O}_{M,6}, \! \mathcal{O}_{M,7}$	X	Х	X	Х	Х	Х	X		
$\mathcal{O}_{M,2},\mathcal{O}_{M,3},\!\mathcal{O}_{M,4},\!\mathcal{O}_{M,5}$		Х	Х	X	Х	Х	Х		
$\mathcal{O}_{T,0},\mathcal{O}_{T,1},\!\mathcal{O}_{T,2}$	X	Х	X	Х	Х	Х	X	Х	X
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		Х	X	X	Х	Х	Х	Х	X
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$			X			Х	X	Х	X

Decomposition method of QGCs

EFT dim-8 predictions can be generated in independent samples including the EFT components. The total EFT amplitude can be expressed as:

Sensitivity of QGC operators

Distributions of observables

Limit Setting strategy

To find the quadratic function $N_i^{aQGC}(\lambda, \theta)$, we fit independent quadratic (pure aQGC) and linear (SM-aQGC interference) samples.

Since for $f_{T0} = 0$, the event yield is 0, only one extra point is needed.

Number of expected events in each bin *i*: $\mu_i(\lambda, \theta) = N_i^{SM}(\theta) + N_i^{aQGC}(\lambda, \theta)$

where $N_i^{aQGC}(\lambda, \theta) = N_i^{linear}(\lambda, \theta) + N_i^{quad}(\lambda, \theta)$

Construction of the profile likelihood function with the aQGC parameters

$$\mathcal{L} = \prod_{i=1}^{N_{bin}} \mathcal{L}_{poiss}(n_i | \mu_i(\lambda, \boldsymbol{\theta})) \times \mathcal{L}_{gauss}(\boldsymbol{\theta})_i$$

where n_i is the observed number of events, $\mu_i(\lambda, \theta)$ is the expected number of events in the i^{th} bin, $\lambda = f_T / \Lambda^4$ is the value of the aQGC under examination and θ is a list of nuisance parameters.

The 95% confidence interval for the parameter λ corresponds to $-2\Delta log(\mathcal{L}(\lambda)) = 1.96^2$

EFT dim-8 expected limits at detector-level for m_{4l}

$qq \rightarrow lllljj$ (EWK)	3.129	3.691	4.198	5.029	7.282	0.337
$qq \rightarrow llll$	16.820	14.792	14.340	14.269	15.171	0.570
$gg \rightarrow llll$	4.189	5.150	4.654	3.856	3.105	0.040
VVV	0.184	0.213	0.233	0.344	0.536	0.027
$t\overline{t}V$	2.998	2.228	2.767	3.819	5.132	0.093
DD Fakes	1.790	0.475	0.727	0.827	0.839	
f_{T0} quad	0.000	0.000	0.002	0.002	0.286	7.809
f_{T0} linear	0.001	0.004	0.010	0.027	0.335	0.359

Unphysical enhancement of the event yield (and cross-section) at high energies. Need of a unitarization method.

EFT dim-8 expected limits at detector-level for m_{ii}

Process	[300-400)	[400-530)	[530-720)	[720-1080)	[1080-3280)	[3280-∞)
$qq \rightarrow lllljj$ (EWK)	1.325	2.124	3.333	5.507	10.756	0.622
$qq \rightarrow llll$	19.249	17.599	15.452	13.664	9.720	0.278
$gg \rightarrow llll$	4.703	4.429	4.317	3.999	3.498	0.048
VVV	0.326	0.327	0.347	0.317	0.217	0.004
$t\overline{t}V$	4.456	4.242	3.765	2.735	1.811	0.028
DD Fakes	1.1701	1.1901	1.2601	0.7371	0.6251	-
f_{T0} quad	0.320	0.584	1.047	1.957	4.033	0.158
f_{T0} linear	0.033	0.058	0.097	0.175	0.356	0.018

EFT dim-8 expected limits at detector-level

Wilson	Expected (Asimov) 95% CL Limit										
Coefficient	m_{jj}	Δy_{jj}	PT, jj	m_{4l}	$S_{T,lllljj}$						
f_{T0}	[-1.72 , 1.63]	[-2.43 , 2.34]	[-1.36 , 1.31]	[-0.74, 0.69]	[-0.73, 0.69]						
f_{T1}	[-2.12, 2.10]	[-3.03, 3.01]	[-1.70, 1.69]	[-0.85, 0.84]	[-0.90, 0.90]						
f_{T2}	[-4.39 , 4.21]	[-6.24 , 6.06]	[-3.48 , 3.38]	[-1.78 , 1.69]	[-1.87, 1.79]						
f_{T5}	[-4.37 , 4.20]	[-6.22, 6.06]	[-3.67, 3.57]	[-1.78 , 1.69]	[-1.88, 1.80]						
f_{T6}	[-6.22, 6.17]	[-8.97, 8.92]	[-5.51, 5.49]	[-2.67 , 2.65]	[-2.86 , 2.84]						
f_{T7}	[-14.13 , 13.60]	[-20.48 , 19.92]	[-11.34 , 11.04]	[-5.85 , 5.56]	[-6.18 , 5.93]						
f_{T8}	[-3.51 , 3.51]	[-4.83 , 4.83]	[-3.18, 3.18]	[-1.45 , 1.45]	[-1.56, 1.56]						
f_{T9}	[-7.53 , 7.53]	[-10.36 , 10.36]	[-6.85, 6.85]	[-3.13, 3.14]	[-3.38, 3.38]						

Expected 95% CL limits of F_T couplings, by using non-unitary predictions

Unitarity violation – Clipping Scan m_{4l}

Wilson	Expected (Asimov) 95% CL Limit									The clipping scan
Coefficient	2 TeV	2.2 TeV	2.4 TeV	2.6 TeV	3 TeV	3.5 TeV	5 TeV	10 TeV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	is not considered
f_{T0}	[-1.46, 1.32]	[-1.27, 1.15]	[-1.15, 1.04]	[-1.05, 0.96]	[-0.93, 0.85]	[-0.85, 0.78]	[-0.76, 0.70]	[-0.74, 0.69]	[-0.74, 0.69]	a unitarization
f_{T1}	[-1.77, 1.74]	[-1.55, 1.52]	[-1.39, 1.37]	[-1.27, 1.25]	[-1.12, 1.10]	[-1.01, 1.00]	[-0.88, 0.87]	[-0.85, 0.84]	[-0.85, 0.84]	method but a
f_{T2}	[-3.64, 3.35]	[-3.18, 2.94]	[-2.87, 2.66]	[-2.63, 2.44]	[-2.32, 2.17]	[-2.09, 1.97]	[-1.85, 1.74]	[-1.78, 1.69]	[-1.78, 1.69]	way of achieving
f_{T5}	[-3.64, 3.37]	[-3.18, 2.96]	[-2.85, 2.66]	[-2.62, 2.45]	[-2.31, 2.17]	[-2.09, 1.97]	[-1.84, 1.75]	[-1.78, 1.69]	[-1.78, 1.69]	unitarity by
f_{T6}	[-4.70, 4.65]	[-4.18, 4.13]	[-3.82, 3.78]	[-3.56, 3.52]	[-3.22, 3.19]	[-2.98, 2.95]	[-2.73, 2.70]	[-2.67, 2.65]	[-2.67, 2.65]	
f_{T7}	[-11.46, 10.67]	[-10.02, 9.36]	[-9.06, 8.48]	[-8.37, 7.85]	[-7.44, 7.00]	[-6.77, 6.39]	[-6.02, 5.71]	[-5.85, 5.56]	[-5.85, 5.56]	discarding any
f_{T8}	[-2.90, 2.90]	[-2.54, 2.54]	[-2.29, 2.29]	[-2.11, 2.11]	[-1.86, 1.86]	[-1.69, 1.69]	[-1.49, 1.49]	[-1.45, 1.45]	[-1.45, 1.45]	predictions made
<i>f</i> _T 9	[-6.17, 6.17]	[-5.41, 5.41]	[-4.86, 4.86]	[-4.48, 4.48]	[-3.97, 3.97]	[-3.62, 3.62]	[-3.23, 3.23]	[-3.13, 3.14]	[-3.13, 3.14]	for energy above

a certain point

Limits

Unitarity violation – Clipping Scan m_{jj}

Wilson	Expected (Asimov) 95% CL Limit									
Coefficient	2 TeV	2.2 TeV	2.4 TeV	2.6 TeV	3 TeV	3.5 TeV	5 TeV	10 TeV	8	
f_{T0}	[-3.40, 3.11]	[-3.00, 2.76]	[-2.71, 2.51]	[-2.49, 2.32]	[-2.21, 2.07]	[-2.00, 1.88]	[-1.78, 1.68]	[-1.72, 1.63]	[-1.72, 1.63]	
f_{T1}	[-4.07, 4.00]	[-3.62, 3.56]	[-3.29, 3.24]	[-3.03, 2.99]	[-2.70, 2.67]	[-2.45, 2.42]	[-2.18, 2.16]	[-2.12, 2.10]	[-2.12, 2.10]	
f_{T2}	[-8.31, 7.77]	[-7.38, 6.94]	[-6.72, 6.33]	[-6.21, 5.88]	[-5.55, 5.27]	[-5.05, 4.81]	[-4.51, 4.32]	[-4.39, 4.21]	[-4.39, 4.21]	
f_{T5}	[-8.31, 7.80]	[-7.38, 6.95]	[-6.69, 6.33]	[-6.20, 5.88]	[-5.52, 5.26]	[-5.04, 4.82]	[-4.50, 4.32]	[-4.38, 4.21]	[-4.37, 4.20]	
f_{T6}	[-10.31, 10.19]	[-9.31, 9.21]	[-8.58, 8.49]	[-8.05, 7.97]	[-7.36, 7.29]	[-6.86, 6.80]	[-6.33, 6.28]	[-6.22, 6.18]	[-6.22, 6.17]	
f_{T7}	[-25.78, 24.29]	[-22.95, 21.71]	[-20.94, 19.87]	[-19.51, 18.56]	[-17.51, 16.72]	[-16.09, 15.41]	[-14.46, 13.90]	[-14.14, 13.60]	[-14.13, 13.60]	
f_{T8}	[-6.51, 6.51]	[-5.79, 5.79]	[-5.28, 5.28]	[-4.90, 4.90]	[-4.37, 4.37]	[-4.00, 4.00]	[-3.60, 3.60]	[-3.51, 3.51]	[-3.51, 3.51]	
f_{T9}	[-13.72, 13.72]	[-12.26, 12.26]	[-11.16, 11.16]	[-10.39, 10.39]	[-9.31, 9.31]	[-8.53, 8.53]	[-7.72, 7.72]	[-7.53, 7.53]	[-7.53, 7.53]	

Current limits for f_T operators

Aug 2020	ATLAS		Channel	Limits	∫Ldt	s
$f_{T,0} / \Lambda^4$			WWW E	-1.2e+00, 1.2e+00] -3.8e+00_3.4e+00]	35.9 fb ⁻¹	13 TeV 8 TeV
1,0		н	Z_{γ}^{s}	-7.4e-01, 6.9e-01]	35.9 fb^{-1}	13 TeV
			Δy Wy	-5.4e+00, 5.6e+00]	29.2 fb ⁻¹ 19.7 fb ⁻¹	8 TeV 8 TeV
		<u> </u>	Wy ss WW	-6.0e-01, 6.0e-01] -4.2e+00, 4.6e+00]	35.9 fb ⁻¹ 19 4 fb ⁻¹	13 TeV 8 TeV
		- 出 - 「	ss WW	-2.8e-01, 3.1e-01]	137 fb ⁻¹	13 TeV
		ፀ	ZZ	-2.4e-01, 2.2e-01]	137 fb ⁻¹	13 TeV
f/Λ^4			WV ZV	-1.2e-01, 1.1e-01] -3.3e+00, 3.3e+00]	<u>35.9 fb</u> 35.9 fb	13 TeV 13 TeV
'T,1''			Zy Zy	-4.4e+00, 4.4e+00] -1.2e+00, 1.1e+00]	19.7 fb ⁻¹ 35 9 fb ⁻¹	8 TeV 13 TeV
			Ŵy	-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	H		ss WW	-2.1e+00, 2.4e+00]	19.4 fb ₁	8 TeV
		Å	ss WW E	-1.2e-01, 1.5e-01] -3.7e-01, 4.1e-01]	137 fb ⁻¹ 137 fb ⁻¹	13 TeV 13 TeV
		A.		-3.1e-01, 3.1e-01] -1.2e-01, 1.3e-01]	137 fb ⁻¹ 35 9 fb ⁻¹	13 TeV 13 TeV
f_{τ_2}/Λ^4	F	<u> </u>	<u> </u>	-2.7e+00, 2.6e+00]	35.9 fb ⁻¹	13 TeV
1,2	- , ⁻	'	Zy	-2.0e+00, 1.9e+00	35.9 fb ⁻¹	13_TeV
		H-1	W_{γ}	-1.1e+01, 1.2e+01 -1.0e+00, 1.2e+00]	19.7 fb ⁻¹ 35.9 fb ⁻¹	8 TeV 13 TeV
			ss WW	-5.9e+00, 7.1e+00] -3.8e-01, 5.0e-01]	19.4 fb ⁻¹ 137 fb ⁻¹	8 TeV 13 TeV
		÷	WZ	-1.0e+00, 1.3e+00]	137 fb ⁻¹	13 TeV
		<u> </u>	<u></u> <u>WV ZV</u>	-2.8e-01, 2.8e-01]	<u>35.9 fb⁻¹</u>	13 TeV
f _{Τ,5} /Λ ⁴		н	Zyy Zy	-9.3e+00, 9.1e+00] -7.0e-01, 7.4e-01]	20.3 fb ⁻¹ 35.9 fb ⁻¹	13 TeV
			Wy Wy	-3.8e+00, 3.8e+00] -5.0e-01, 5.0e-01]	19.7 fb ⁻¹ 35 9 fb ⁻¹	8 TeV 13 TeV
f_{T_6}/Λ^4		<u> </u>	Ży Ws.	-1.6e+00, 1.7e+00]	35.9 fb ⁻¹	13 TeV
1,0		н	<u><u> </u></u>	-4.0e-01, 4.0e-01]	35.9 fb^{-1}	<u>13 TeV</u>
f _{τ,7} /Λ*			Ŵy	-2.8e+00, 2.8e+00] -7.3e+00, 7.7e+00]	35.9 fb - 19.7 fb -	8 TeV
f/Λ^4		<u> </u>	$-\frac{W\gamma}{Z\gamma}$	-9.0e-01, 9.0e-01 -1.8e+00, 1.8e+00	<u>35.9 fb⁻¹</u> 19.7 fb ⁻¹	13 TeV 8 TeV
T _{,8} / A		н	Ξŷ	-4.7e-01, 4.7e-01]	35.9 fb ⁻¹	13 TeV
		н'	<u>ZŽ</u>	-4.3e-01, 4.3e-01]	137 fb^{-1}	<u>13 TeV</u>
f _{T,9} / Λ ⁻⁺			$Z_{\gamma}^{\gamma\gamma}$	-4.0e+00, 4.0e+00]	20.3 fb 1 19.7 fb 1	8 TeV
			Z_{γ}	-1.3e+00, 1.3e+00] -3.9e+00, 3.9e+00]	35.9 fb ⁻¹ 20.2 fb ⁻¹	13 TeV 8 TeV
			<u>zž</u> [·	-9.2e-01, 9.2e-01]	137 fb ⁻¹	13 TeV
-20		0	20		40	4
aC summary p	olots at: http://cern.ch/	go/8ghC	aQG	C Limits @95	5% C.L	. [TeV⁻⁴]
Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitar	ity bound
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	-0.24(-0.26)	0.22 (0.24)		2.4
$f_{\rm T1}/\Lambda^4$	-0.49	0.49	-0.31(-0.34)	0.31 (0.34)		2.6
$f_{\rm T2}/\Lambda^4$	-0.98	0.95	-0.63(-0.69)	0.59 (0.65)		2.5
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43(-0.47)	0.43 (0.48)		1.8
$f_{\rm T9}/\Lambda^4$	-1.5	1.5	-0.92(-1.02)	0.92 (1.02)		1.8

~ ~ ~

CMS: Expected and observed lower and upper 95% CL limits on the couplings of the quartic operators T0, T1 and T2, as well as the neutral current operators T8 and T9. All coupling parameter limits are in TeV^{-4} , while the unitarity bounds are in TeV. arXiv:2008.07013

Thank you!

Backup

Sensitivity of QGC operators

Sensitivity of QGC operators

