

An ATCA Processor for Level-1 Trigger Primitive Generation and Readout of the CMS Barrel Muon Detectors

7.4.2023

HEP 2023 - 40th Conference on Recent Developments in High Energy Physics and Cosmology

Ioannina, Greece

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Ioannis Bestintzanos, BMTL-1 team

Barrel Muon Trigger structure

Barrel Muon Trigger (BMT) reconstructs muons of the CMS barrel

Drift Tubes (DTs) and Resistive Plate Chambers (RPCs) transmit muon hit data to BMTL-1

Builds DTs track segments and clusters RPC hits Merges both subsystem information into "super-primitives"

Matches track segments to reconstruct standalone muon objects

Barrel Muon Trigger

Barrel Muon Trigger structure

- On detector Board for Drift Tubes (OBDT) transmits detector data to BMTL-1
 - Time digitization of DT signals
- BMTL-1 processes hit information to produce Muon stubs (track segments)
 - Analytical Method (AM) algorithm processes TDC hits and generates Trigger Primitives
 - Bunch crossing, Stub Position, Bending Angle
- Stubs of the 4 chambers are received by GMT
 - Kalman Muon Track Finder (KMTF) algorithm matches tracks and reconstructs muon candidates
 - Assigns position and momentum

Dete	ector	BMTL1 AM algorithm	GMT KMTF algorithm					
	Hits on Chamber 4	Stubs of Chamber 4						
Drift Tube	Hits on Chamber 3	Stubs of Chamber 3	Reconstructed					
Barrel Sector	Hits on Chamber 2	Stubs of Chamber 2	Muons of Sector					
	Hits on Chamber 1	Stubs of Chamber 1						

Barrel Muon Trigger structure

- CMS Barrel Muon system consists of 60 DT sectors
 - Each sector consists of 4 DT chambers
- OBDT boards transmit TDC hits to BMTL-1
 - 14 OBDT boards per sector
- Every BMTL-1 board processes data from 2 Sectors
 - 30 BMTL-1 boards needed for the whole barrel
- GMT receives primitives from BMTL-1
 - Using TMT18

BMTL-1 ATCA board architecture

FPGA used - Xilinx XCVU13P

Xilinx XCVU13P FPGA

- Ultrascale+ architecture
- 16 nm lithography
- 4 SLRs (Super Logic Regions)
- o 1,728,000 LUTs
- o 3,456,000 Flip Flops
- o 12,288 DSP slices
- o 128 GTY transceivers @ 28G
- 2577 ball BGA package
- -1 speed grade

• 38.3 TOP/s (DSP)

Simultaneous usage of 12228 DSPs

Capability to use VU9P, VU11P

 Design is drop-in compatible with these two smaller FPGAs, with only compromise a slight drop in connectivity

XCVU13P FPGA mounted on the BMTL-1 ATCA board

BMTL-1 ATCA board connectivity

Optical connectivity

- 40 RX @ 25 Gbps 10 x BiDir FireFly Modules 25G
- 40 TX @ 25 Gbps
- 80 RX @ 16 Gbps \implies 7 x Rx FireFly Modules 16G

120 RX + 76 TX ~ 3.9 Tbps

Onboard Ethernet switch circuitry provides access to many subsystems on board

~200.000 ADSL connections ~100.000 VDSL connections ~4000 Gbit connections

Samtec FireFly optical modules

Dense high-speed signal fanout under the FPGA

BMTL1 ATCA board system controller

- Enclustra Mercury XU5
 - XCZU5EV-1FSVC784E SoC
- Zynq Ultrascale+ architecture
- Quad core Arm Cortex A-53
 - Capable of running Linux
- Independent RAM on PS & PL
 - o 2 GB (PS)
 - o 1 GB (PL)
- Direct connections with the FPGA
 - 4 GTH MGTs @ 10G
 - o 20 LVDS pairs
- SSD & SD storage

Design challenges

Clocking

- Has to serve a large amount of links
- Has to be very low jitter
- Needs to be compatible with many operating scenarios

Signal integrity

- PCBs are very lossy at 25 Gbps NRZ
- Low loss dielectric material being used
- Special design considerations for RF frequencies
- Special technologies for PCB fabrication
 - Blind vias
 - Backdrilling

High speed signal fanout under FPGA

Highlighted part of the clocking network

High speed signal routing detail

Design challenges

Power delivery

- Core rail can consume current in excess of 200A
- Generation and delivery of such currents is not trivial

Thermal design

- The FPGA can dissipate more than 200W
- Firefly optics reliability sensitive to high temperature
- Extensive simulation of the card's thermal performance
 - Allowed for optimal component placement and aids optimal heat sink design
- Custom heatsinks under design
 - Independent block heatsinks for the FPGA and the FireFlies

Core voltage power stage comprised of 7 phases

IR simulations proved very useful in optimizing current delivery and part placement

Board routing - annotation

Technical aspects - PCB

- Layer stack
 - 16 layers
 - 6 ground
 - 4 power
 - 6 signal
- Materials
 - Mix of dielectrics
 - ITERA MT-40 between signal layers
 - **FR-480** between power layers
- HDI
 - Blind vias
 - Layers 2-3
 - Backdrilling
 - Layers 5-12-14
- 8 oz total copper weight for power layers
 - Reduced IR losses

Technical aspects - Clocking network

 Each MGT quad is capable of operating either in synchronous or asynchronous mode

Manufactured hardware

2 boards assembled - one without the FPGA populated, and one fully populated

25G Eyescans

IBERT with all 40 25G MGTs instantiated and operating simultaneously

- 2 meter optic fiber
- 25.6 Gb/s
- PRBS7
- Resolution 1
- Eyescan BER 1e-8

16G Eyescans

IBERT with all 80 16G MGTs instantiated and operating simultaneously

- 12 meter optic fiber
- 16 Gb/s
- PRBS31
- Eyescan BER 1e-8

Endurance testing

Q = +,																					
Name	TX	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern		RX Pattern		Loopback Mode	TX Pre-Cursor	TX Post-Cursor	TX Diff Swing	DFE Enabled	Inject Error	TX Reset	RX Reset	RX PLL Status	TX PLL Status
Ungrouped Links (0)																					
√ % Found Links (8)							Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	0.00 dB (00000)	0.00 dB (00000) v	950 mV (11000) 🗸		Inject	Reset	Reset		
% Found 0	MGT_X1Y46/TX	MGT_X1Y40/RX	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	0.00 dB (00000)	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 1	MGT_X1Y47/TX	MGT_X1Y41/RX	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	0.00 dB (00000)	0.00 dB (00000) v	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 2	MGT_X1Y44/TX	MGT_X1Y42/RX	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	0.00 dB (00000)	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 3	MGT_X1Y45/TX	MGT_X1Y43/RX	25.782 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	0.00 dB (00000)	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 4	MGT_X1Y42/TX	MGT_X1Y44/RX	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None -	0.00 dB (00000)	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 5	MGT_X1Y43/TX	MGT_X1Y45/RX	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	0.00 dB (00000)	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 6	MGT_X1Y40/TX	MGT_X1Y46/RX	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None -	0.00 dB (00000)	0.00 dB (00000) 🗸	950 mV (11000) 🗸		Inject	Reset	Reset	Locked	Locked
% Found 7	MGT X1Y41/TX	MGT X1Y47/RX	25.781 Gbps	1.114E15	0E0	8.977E-16	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	0.00 dB (00000)	0.00 dB (00000) v	950 mV (11000) V		Inject	Reset	Reset	Locked	Locked

Name	TX	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern		RX Pattern		Loopback Mo	ide
Ungrouped Links (0)													
🛚 📎 Found Links (24)							Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	~
% Auto detected link 0	Quad_125/MGT_X0Y23/TX (xcvu13p_0)	Quad_120/MGT_X0Y0/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	~
% Auto detected link 1	Quad_124/MGT_X0Y18/TX (xcvu13p_0)	Quad_120/MGT_X0Y1/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	,
% Auto detected link 10	Quad_124/MGT_X0Y17/TX (xcvu13p_0)	Quad_122/MGT_X0Y10/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	,
% Auto detected link 11	Quad_123/MGT_X0Y12/TX (xcvu13p_0)	Quad_122/MGT_X0Y11/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 12	Quad_121/MGT_X0Y4/TX (xcvu13p_0)	Quad_224/MGT_X1Y16/RX (xcvu13p_0)	16.003 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	,
% Auto detected link 13	Quad_120/MGT_X0Y0/TX (xcvu13p_0)	Quad_224/MGT_X1Y17/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 14	Quad_120/MGT_X0Y3/TX (xcvu13p_0)	Quad_224/MGT_X1Y18/RX (xcvu13p_0)	16.002 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	3
% Auto detected link 15	Quad_121/MGT_X0Y5/TX (xcvu13p_0)	Quad_224/MGT_X1Y19/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 16	Quad_120/MGT_X0Y1/TX (xcvu13p_0)	Quad_225/MGT_X1Y20/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 17	Quad_121/MGT_X0Y6/TX (xcvu13p_0)	Quad_225/MGT_X1Y21/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
Nuto detected link 18	Quad_122/MGT_X0Y10/TX (xcvu13p_0)	Quad_225/MGT_X1Y22/RX (xcvu13p_0)	15.998 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 19	Quad_121/MGT_X0Y7/TX (xcvu13p_0)	Quad_225/MGT_X1Y23/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 2	Quad_125/MGT_X0Y22/TX (xcvu13p_0)	Quad_120/MGT_X0Y2/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 20	Quad_122/MGT_X0Y8/TX (xcvu13p_0)	Quad_226/MGT_X1Y24/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
Nato detected link 21	Quad 122/MGT X0Y9/TX (xcvu13p 0)	Quad 226/MGT X1Y25/RX (xcvu13p 0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
Nuto detected link 22	Quad_122/MGT_X0Y11/TX (xcvu13p_0)	Quad_226/MGT_X1Y26/RX (xcvu13p_0)	15.994 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
Nuto detected link 23	Quad_120/MGT_X0Y2/TX (xcvu13p_0)	Quad_226/MGT_X1Y27/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
Nuto detected link 3	Quad_124/MGT_X0Y19/TX (xcvu13p_0)	Quad_120/MGT_X0Y3/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
Nuto detected link 4	Quad_125/MGT_X0Y20/TX (xcvu13p_0)	Quad_121/MGT_X0Y4/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
Nuto detected link 5	Quad_125/MGT_X0Y21/TX (xcvu13p_0)	Quad_121/MGT_X0Y5/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 6	Quad_123/MGT_X0Y15/TX (xcvu13p_0)	Quad_121/MGT_X0Y6/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 7	Quad_124/MGT_X0Y16/TX (xcvu13p_0)	Quad_121/MGT_X0Y7/RX (xcvu13p_0)	15.998 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 8	Quad_123/MGT_X0Y14/TX (xcvu13p_0)	Quad_122/MGT_X0Y8/RX (xcvu13p_0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	
% Auto detected link 9	Quad 123/MGT X0Y13/TX (xcvu13p 0)	Ouad 122/MGT X0Y9/RX (xcvu13p 0)	16.000 Gbps	3.073E14	0E0	3.254E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	None	

 No errors have been observed so far

Further Operational Tests

- Power supplies
 - All rails stressed up to 45A with external load
 - VCCINT stressed up to 180A
 - Excellent performance
- Clocking network
- Mechanicals
- ZYNQ FPGA connectivity
 - o GTH links & LVDS

- ✓ All I2C devices
- All optics slots
- Ethernet (switch circuitry)

 Front Panel

 Zone 2

 ZYNQ
- Zone 1 & 2
- ZYNQ peripherals

Infrastructure Developments

- ZYNQ System Controller
 - Functionality for access/control/programming of the FPGA
 - IPBus over AXI
 - Software for controlling on-board peripherals
- FPGA EMP Framework Integration
 - Provides control of the FPGA firmware over ZYNQ
 - Includes functionality such as CSP, GBT, LpGBT link protocols, TTC & TCDS2, etc.
- Analytical Method Algorithm Integration
 - o 8 instances of the AM algorithm
 - Steady progress towards the final shape of the system

Utilization of the FPGA die for 2 barrel sectors (8 x Analytical Method algorithm instances) 19

Integration

- The prototype board is in operation in SX5 (CMS surface) 24/7 since Fall 2022
 - Algorithm integration & development
- Collision data have been captured & processed with the board (Late 2022), instrumenting 4 DT chambers
 - Installed in the BMTF rack of the CMS counting room
 - Shown excellent performance
 - Successfully demonstrated in realistic conditions a slice of the CMS Phase 2 Trigger

Conclusion

- An ATCA board meeting the specifications of the BMTL-1 was designed
- 3 PCBs were produced
- 2 boards were assembled
- The functionality of the design was tested and verified
- 1 more board to arrive soon
- A lot of progress in system integration

Thank you!

