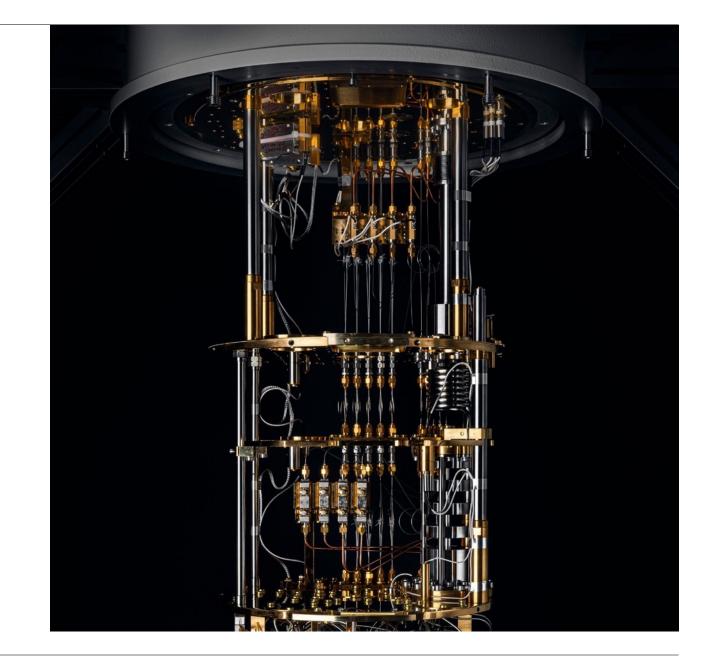
WE BUILD QUANTUM COMPUTERS

Low-depth simulations of fermionic systems on square-grid quantum hardware

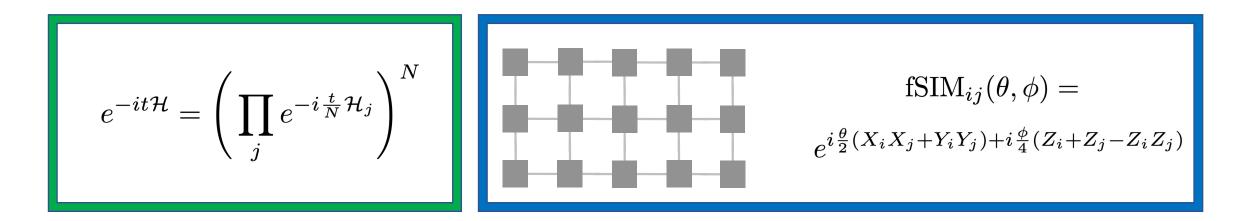
Manuel Algaba, P.V. Sriluckshmy, M. Leib, F. Šimkovic

arXiv:2302.01862 arXiv:2303.04498



Objective:

Simulate a single Trotter step of a fermionic system on a realistic quantum computer in minimal circuit depth.



1. Fermionic Models

Complexity

$$\begin{aligned} \mathcal{H}_{\mathrm{ES}} &= \sum_{pq} h^{pq} c_p^{\dagger} c_q + \sum_{pqrs} h^{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s \\ \mathcal{H}_{\mathrm{FH}} &= -\sum_{i,j,\sigma} t^{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \\ \mathcal{H}_{\mathrm{TB}} &= -\sum_{i,j} t^{ij} c_i^{\dagger} c_j \quad , \quad \text{1D FHM} \end{aligned}$$

Implementability

IQM

1. Fermionic Models

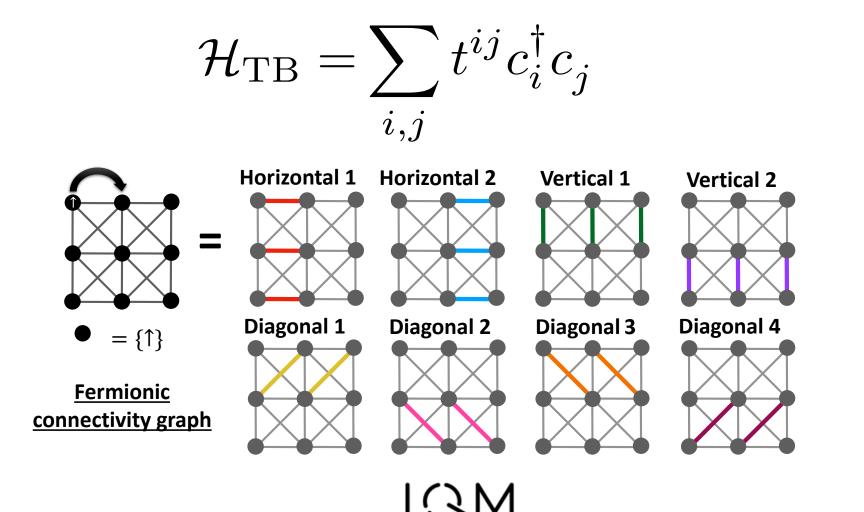
Complexity

$$\begin{aligned} \mathcal{H}_{\mathrm{ES}} &= \sum_{pq} h^{pq} c_p^{\dagger} c_q + \sum_{pqrs} h^{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s \\ \mathcal{H}_{\mathrm{FH}} &= -\sum_{i,j,\sigma} t^{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \end{aligned}$$

$$\begin{aligned} \mathcal{H}_{\mathrm{FH}} &= -\sum_{i,j,\sigma} t^{ij} c_{i\sigma}^{\dagger} c_j , \quad \mathbf{D} \text{ FIM} \end{aligned}$$

IQM

Tight Binding Hamiltonian:



$$\mathcal{H}_{\rm TB} = \sum_{i,j} t^{ij} c_i^{\dagger} c_j$$

$$\begin{aligned} \overline{\{c_i, c_j^{\dagger}\} = c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}} \\ \{c_i^{\dagger}, c_j^{\dagger}\} = \{c_i, c_j\} = 0 \end{aligned}$$

 $j E_{ij} i$ k V_k

Edge and vertex operators:

$$\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$$
$$[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$$

Hopping operators:

$$c_{j}^{\dagger}c_{k} + c_{k}^{\dagger}c_{j} \rightarrow \underbrace{\frac{i}{2}(V_{k} - V_{j})E_{jk}}_{\text{Fermions}}$$

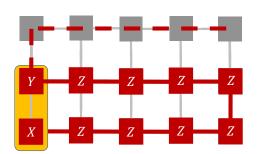
S. B. Bravyi and A. Y. Kitaev, Ann. Phys. 298, 210 (2002)

QM

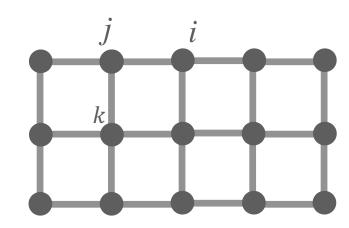
$$\begin{aligned} \mathcal{H}_{\mathrm{TB}} &= \sum_{i,j} t^{ij} c_i^{\dagger} c_j \\ \left\{ c_i, c_j^{\dagger} \right\} &= c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij} \\ \left\{ c_i^{\dagger}, c_j^{\dagger} \right\} &= \left\{ c_i, c_j \right\} = 0 \end{aligned}$$

 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$

Jordan-Wigner mapping

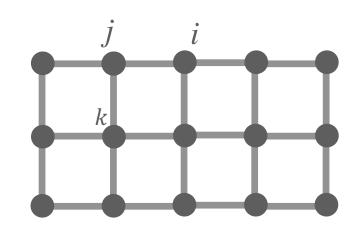


 $c_{i}^{\dagger}c_{j} + c_{j}^{\dagger}c_{i} = X_{i}Z_{i-1}...Z_{j+1}Y_{j} + Y_{i}Z_{i-1}...Z_{j+1}X_{j}$



$$\mathcal{H}_{\mathrm{TB}} = \sum_{i,j} t^{ij} c_i^{\dagger} c_j$$

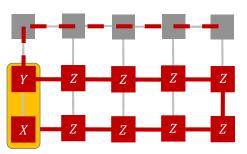
$$\{c_i, c_j'\} = c_i c_j' + c_j' c_i = \delta_{ij}$$
$$\{c_i^{\dagger}, c_j^{\dagger}\} = \{c_i, c_j\} = 0$$



Black arrows

 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$

Jordan-Wigner mapping

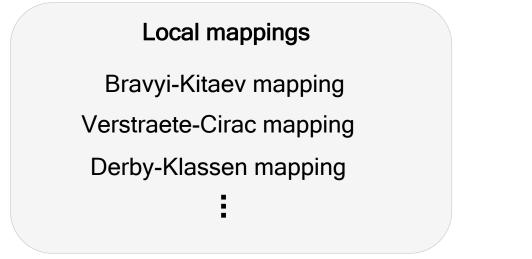


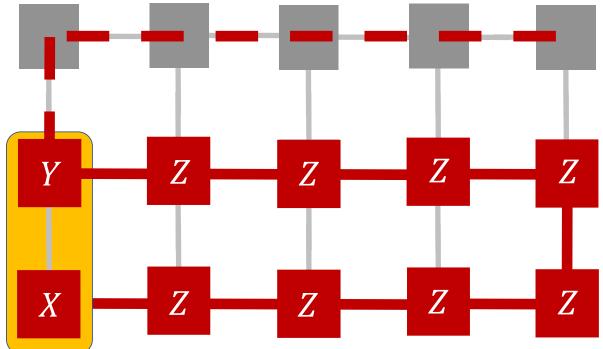
 $c_i^{\dagger} c_j + c_j^{\dagger} c_i = X_i Z_{i-1} \dots Z_{j+1} Y_j + Y_i Z_{i-1} \dots Z_{j+1} X_j$

Local mappings

- Bravyi-Kitaev mapping
- Verstraete-Cirac mapping
- Derby-Klassen mapping

 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$

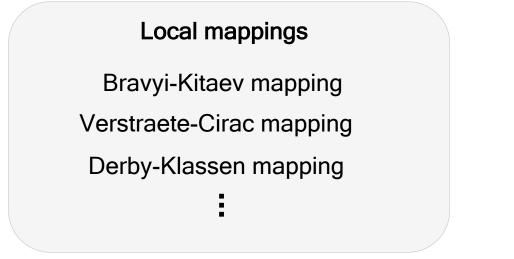


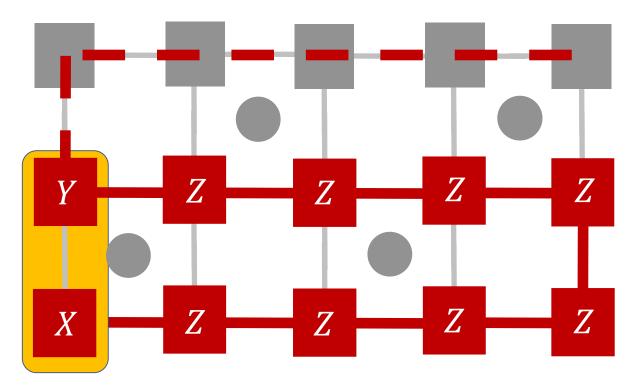


QM

 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$

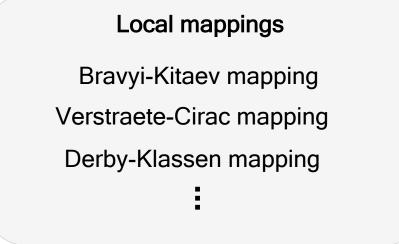
10

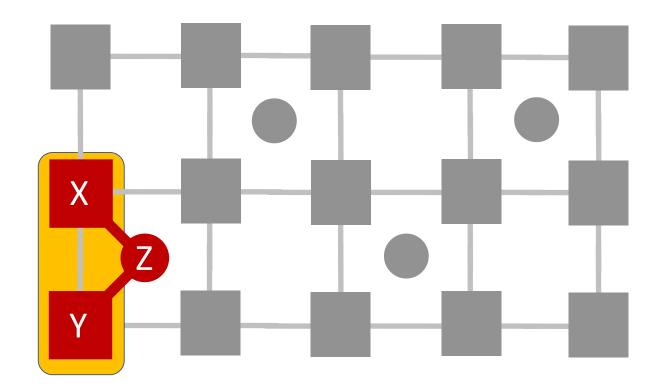




() M

 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$





QM

C. Derby et al. Phys. Rev. Res. 104 (2021)

Why local mappings are better when no ATA couplings?

- Local fermionic operators \longrightarrow Local two-qubit gates
- Less depth
- Less number of gates
- Error correction/mitigation properties

I. D. Kivlichan et al. PRL (2018)

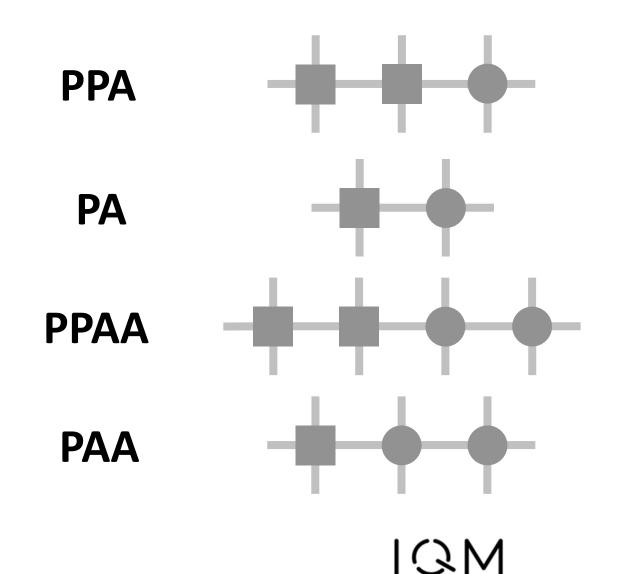
Why local mappings are better when no ATA couplings?

- Local fermionic operators \longrightarrow Local two-qubit gates
- Less depth
- Less number of gates
- Error correction/mitigation properties

But more ancillas? I prefer Jordan-Wigner

• Number of qubits are not the limiting step nowadays

I. D. Kivlichan et al. PRL (2018)

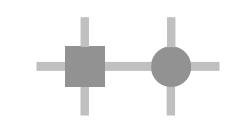


$\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$

MA et al. (2023), arXiv:2302.01862

 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$

PA



QM

MA et al. (2023), arXiv:2302.01862

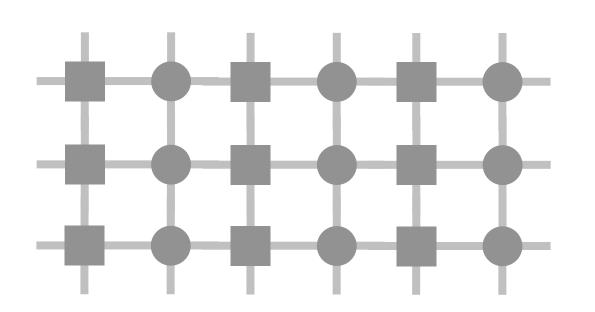
 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$

PA

 $\mathbb{Q}M$

MA et al. (2023), arXiv:2302.01862

PA



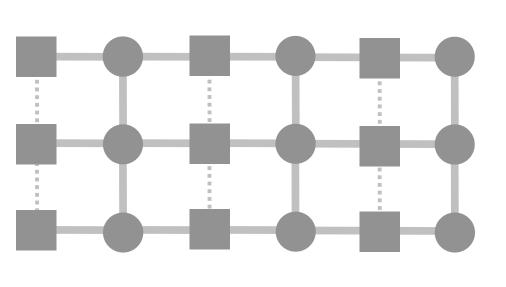
IQM

$$\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$$
$$[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$$
$$c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$$

MA et al. (2023), arXiv:2302.01862

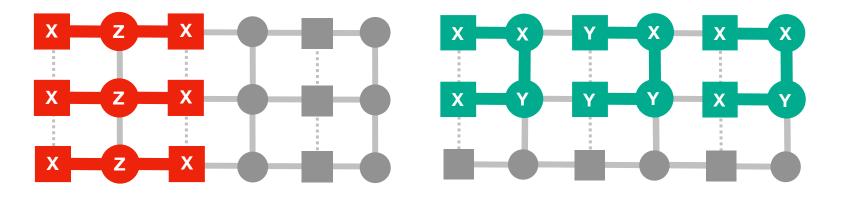
 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$

PA

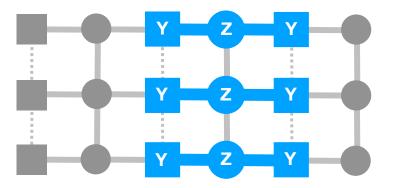


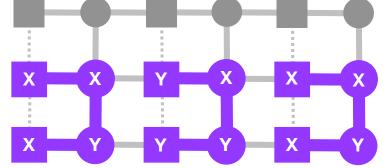
QM

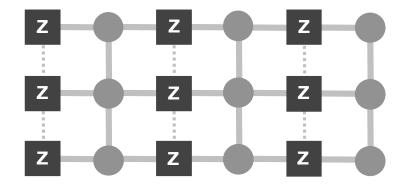
MA et al. (2023), arXiv:2302.01862



$$\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$$
$$[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$$
$$c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$$



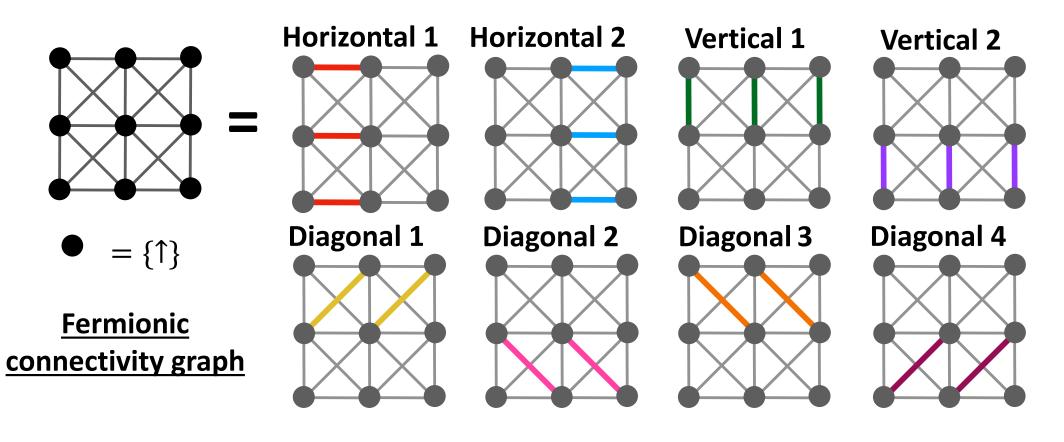




Edge operators

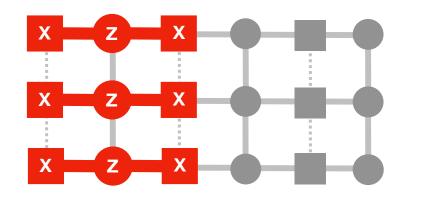
Vertex operators

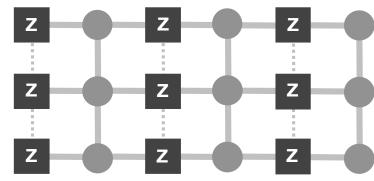
 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger} c_k + c_k^{\dagger} c_j \rightarrow \frac{i}{2} (V_k - V_j) E_{jk}$



IQM

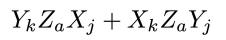
2. Fermion-to-qubit mappings

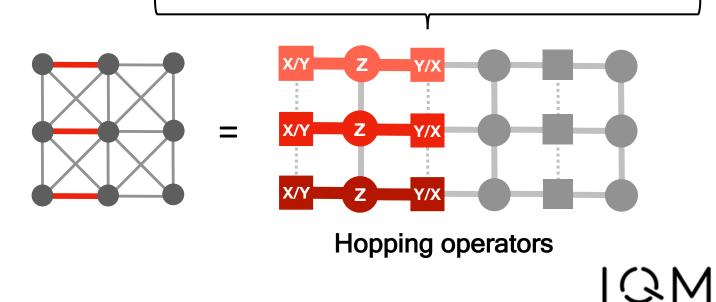




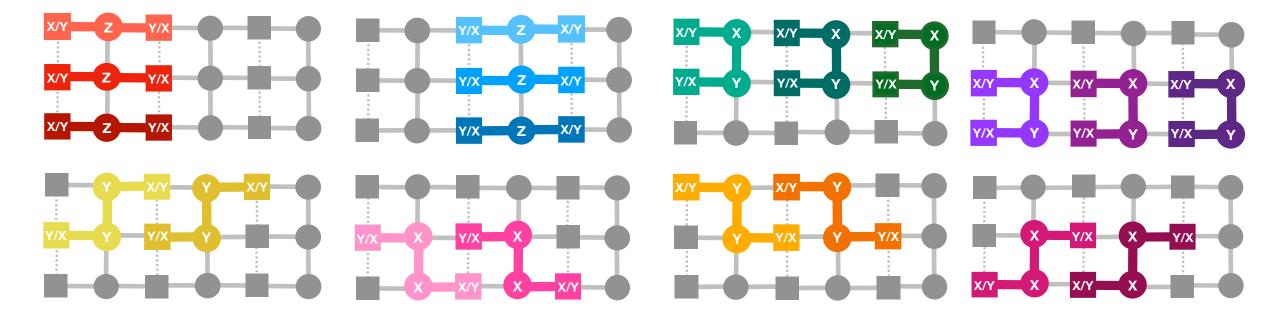
 $\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$ $[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$ $c_j^{\dagger}c_k + c_k^{\dagger}c_j \rightarrow \frac{i}{2}(V_k - V_j)E_{jk}$ \downarrow $(Z_k - Z_j)X_kZ_aX_j$ \downarrow

Edge operators

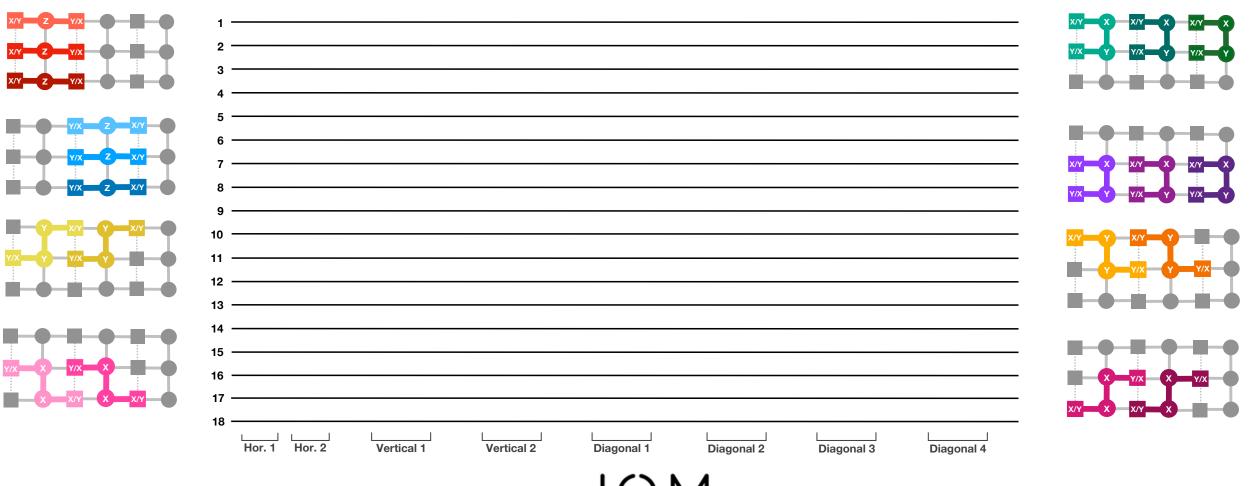


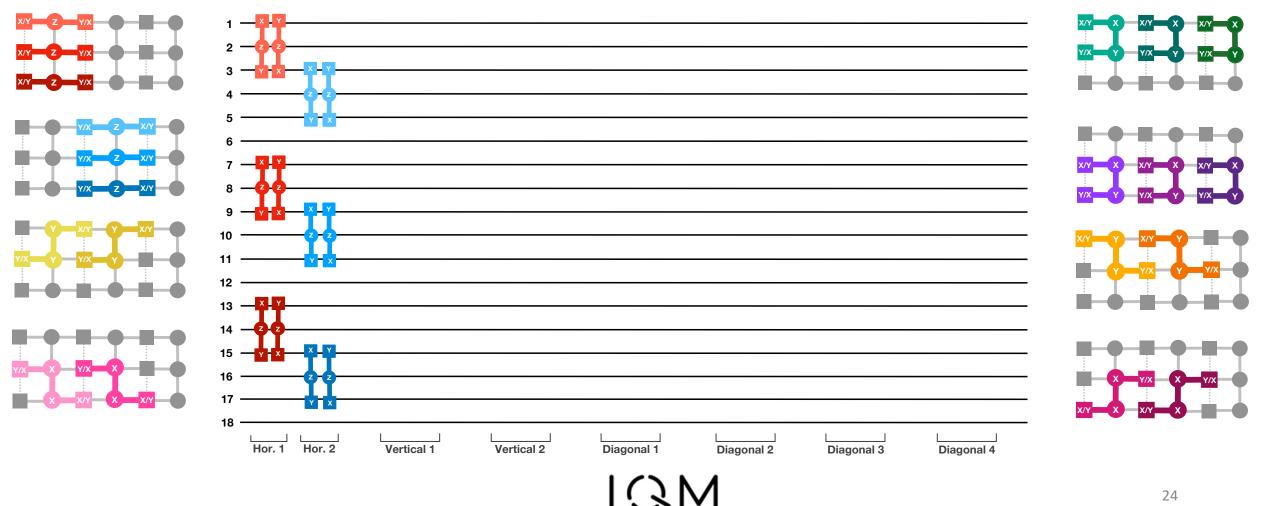


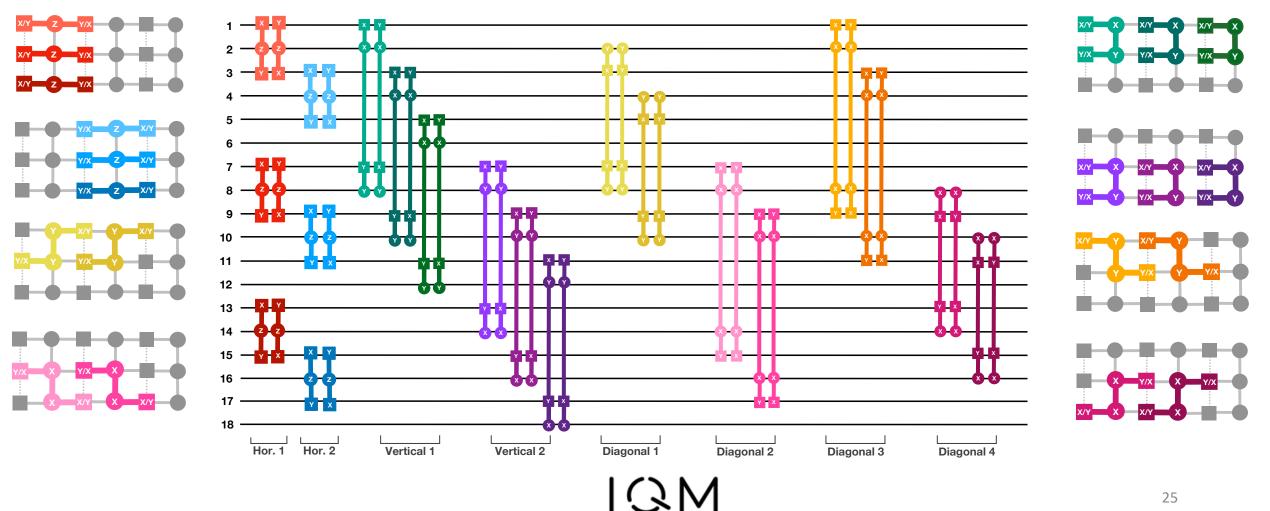
 $c_j^{\dagger}c_k^{} + c_k^{\dagger}c_j^{}
ightarrow rac{i}{2}(V_k - V_j)E_{jk}$



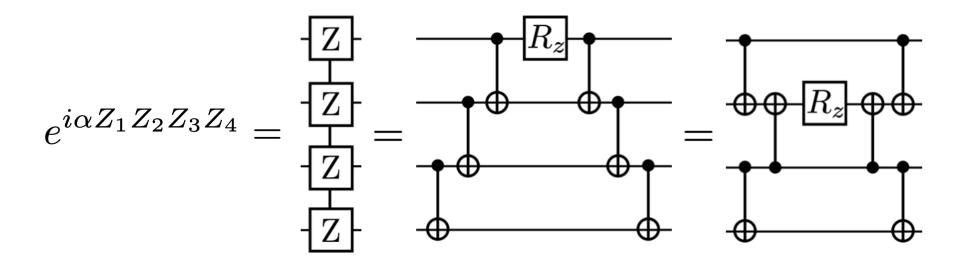
IQM







3. XYZ decomposition



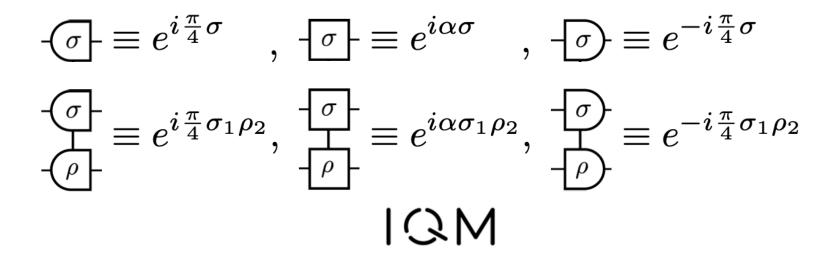
Standard decomposition

3. XYZ decomposition

P. V. Sriluckshmy, MA et al. (2023) arXiv:2303.04498

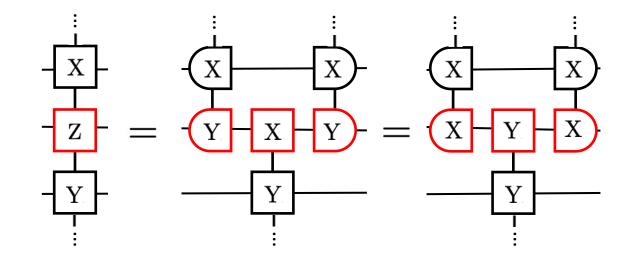
 $\begin{array}{l} \mathsf{XYZ} \ \mathsf{decomposition} \\ e^{i\alpha\mathcal{O}} = e^{i\frac{\pi}{4}\mathcal{O}_1} e^{i\alpha\mathcal{O}_2} e^{-i\frac{\pi}{4}\mathcal{O}_1} \\ \mathcal{O} = \frac{i}{2}[\mathcal{O}_1, \mathcal{O}_2] \\ \mathcal{O}^2 = \mathbb{1} \end{array}$

Graphical notation



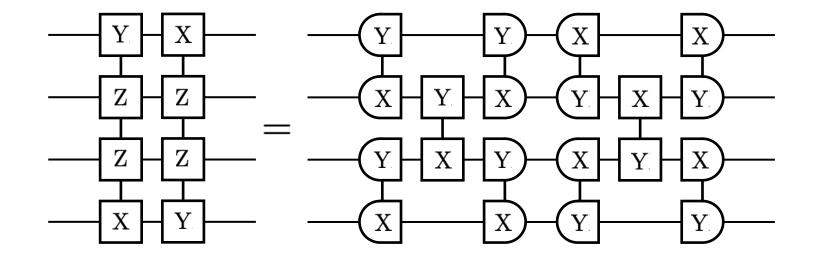
3. XYZ decomposition

$$e^{ilpha\mathcal{O}} = e^{irac{\pi}{4}\mathcal{O}_1}e^{ilpha\mathcal{O}_2}e^{-irac{\pi}{4}\mathcal{O}_1} \ \mathcal{O} = rac{i}{2}[\mathcal{O}_1,\mathcal{O}_2] \ \mathcal{O}^2 = \mathbb{1}$$



IQM

Hopping operators $c_j^{\dagger}c_k^{} + c_k^{\dagger}c_j^{}$



Remember we are using fSIM: $e^{i\frac{\theta}{2}(X_iX_j+Y_iY_j)+i\frac{\phi}{4}(Z_i+Z_j-Z_iZ_j)}$

QM

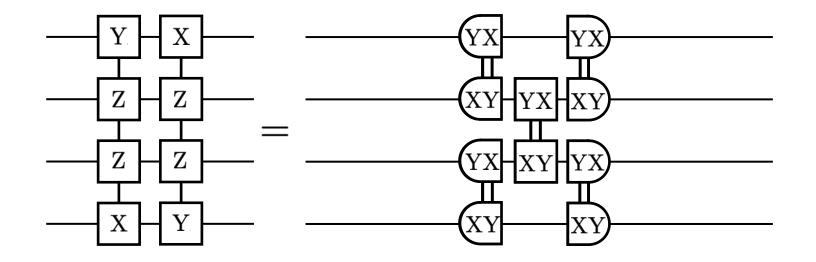
 $e^{i\alpha\mathcal{O}} = e^{i\frac{\pi}{4}\mathcal{O}_1}e^{i\alpha\mathcal{O}_2}e^{-i\frac{\pi}{4}\mathcal{O}_1}$

 $\mathcal{O} = \frac{i}{2}[\mathcal{O}_1, \mathcal{O}_2]$

 $\mathcal{O}^2 = 1$

$e^{ilpha\mathcal{O}} = e^{irac{\pi}{4}\mathcal{O}_1}e^{ilpha\mathcal{O}_2}e^{-irac{\pi}{4}\mathcal{O}_1} \ \mathcal{O} = rac{i}{2}[\mathcal{O}_1,\mathcal{O}_2] \ \mathcal{O}^2 = \mathbb{1}$

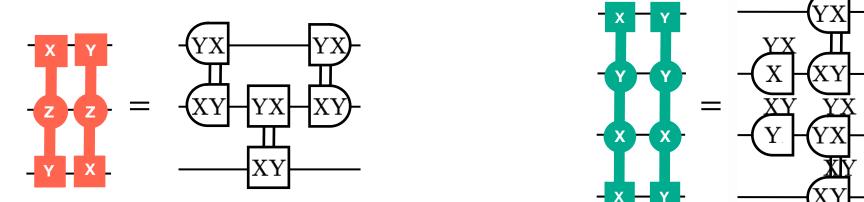
Hopping operators $c_j^{\dagger}c_k^{} + c_k^{\dagger}c_j^{}$



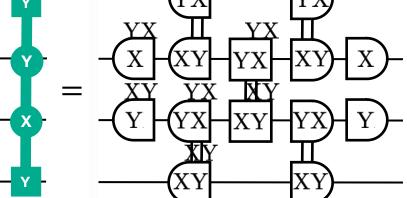
Remember we are using fSIM: $e^{i\frac{\theta}{2}(X_iX_j+Y_iY_j)+i\frac{\phi}{4}(Z_i+Z_j-Z_iZ_j)}$

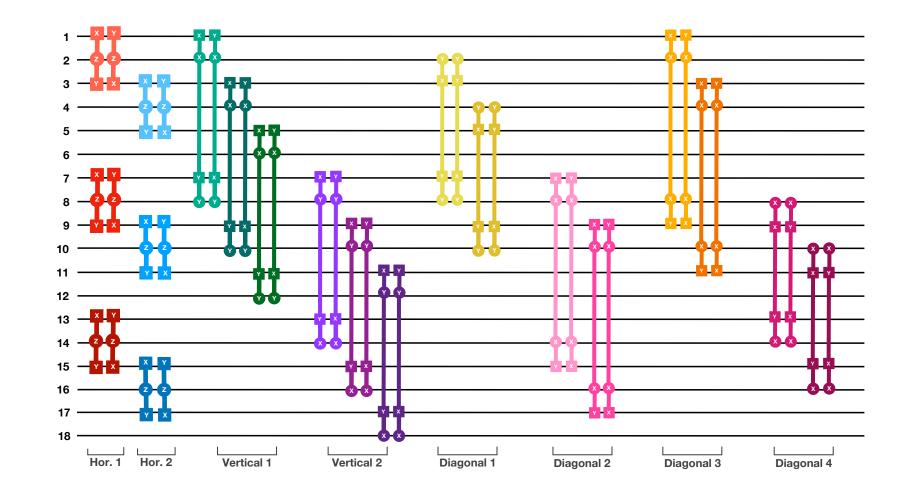
QM

Hopping operators $c_j^{\dagger}c_k + c_k^{\dagger}c_j$

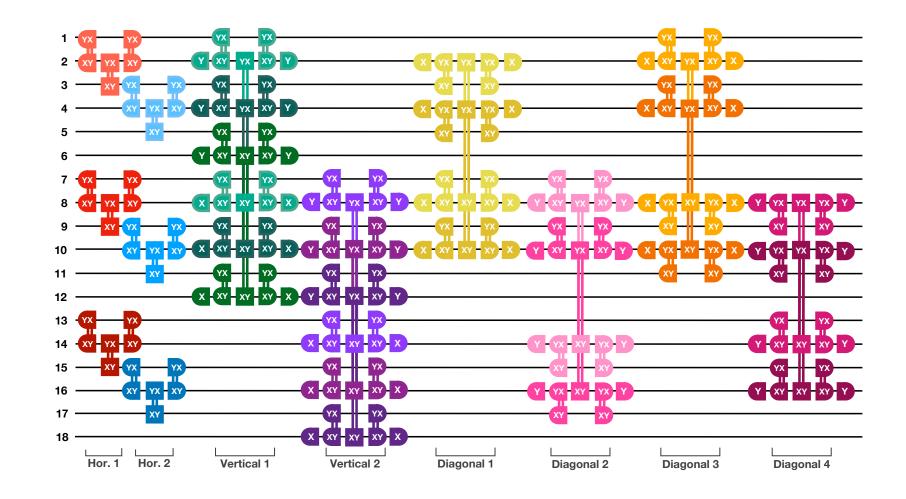


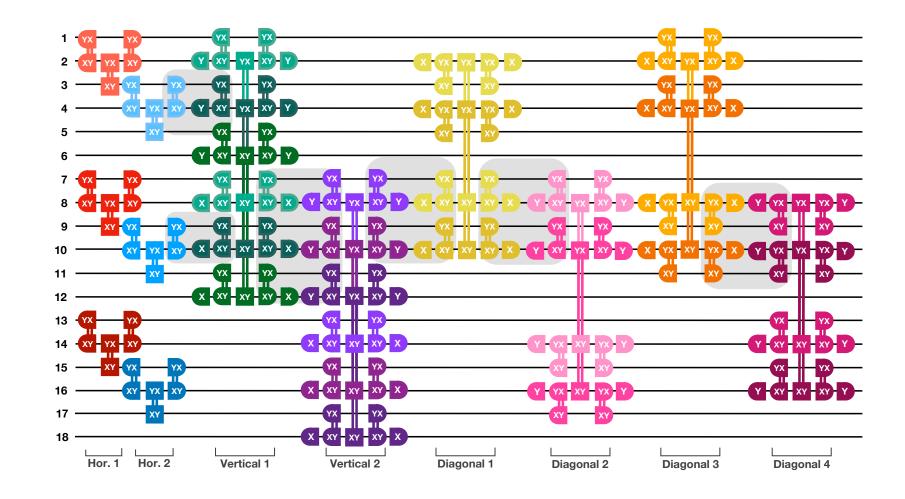
$$e^{ilpha\mathcal{O}}=e^{irac{\pi}{4}\mathcal{O}_{1}}e^{ilpha\mathcal{O}_{2}}e^{-irac{\pi}{4}\mathcal{O}_{1}} \ \mathcal{O}=rac{i}{2}[\mathcal{O}_{1},\mathcal{O}_{2}] \ \mathcal{O}^{2}=1$$

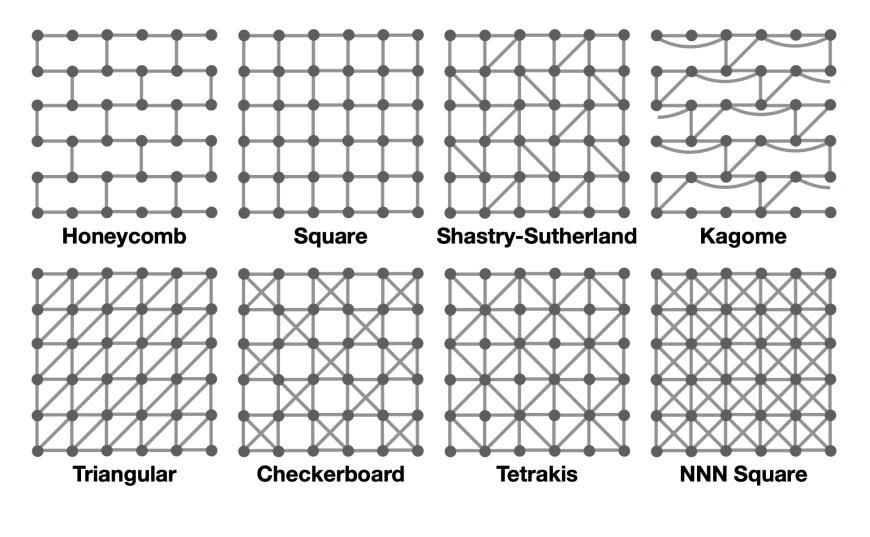




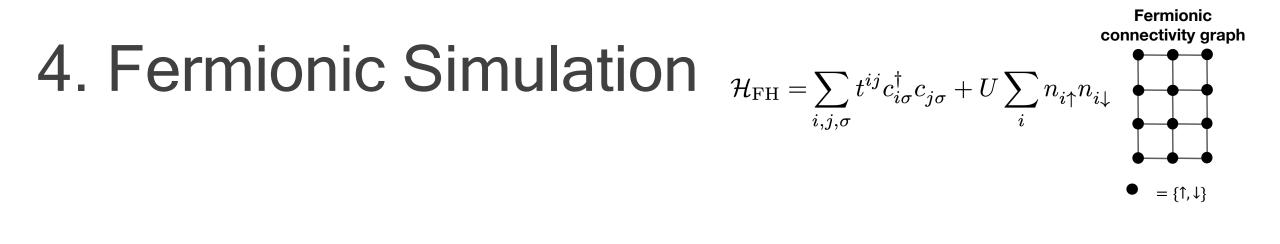
IQM

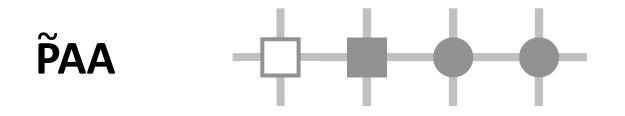






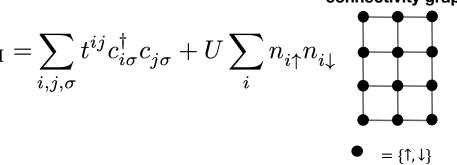
IQM



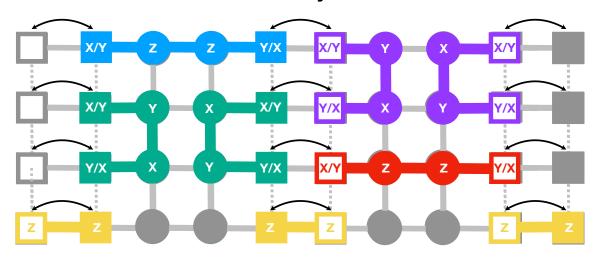


Fermionic connectivity graph

4. Fermionic Simulation $\mathcal{H}_{FH} = \sum_{i,j,\sigma} t^{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$

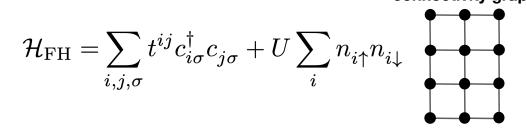


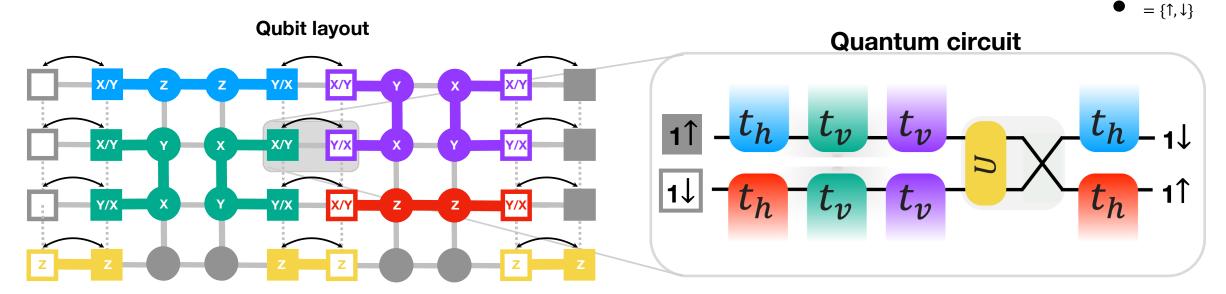
Qubit layout



Fermionic connectivity graph

4. Fermionic Simulation





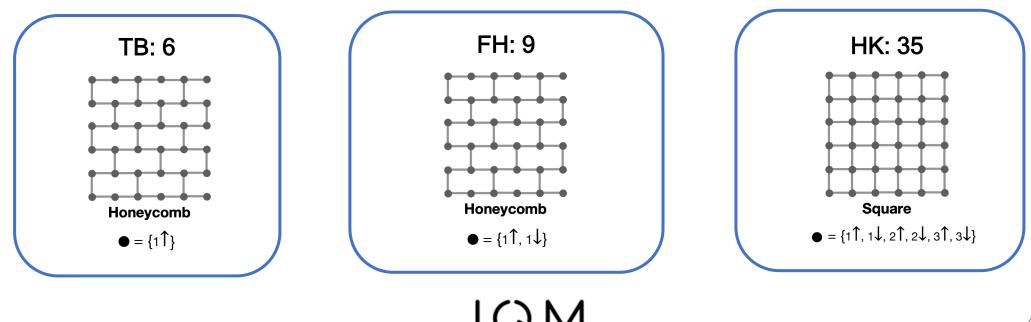
$$= \underbrace{ \begin{bmatrix} z & yx \\ y \\ z & xy \end{bmatrix}}_{\text{(z)}} = \text{fSWAP}_{ij}$$

 $-\frac{z}{z}$

|QM

So, what's the improvement?

- Least number of TQGs with DK + XYZ decomposition
- Up to 72% depth reduction (3.2x).
- Shallowest single-Trotter-step circuits for these condensed matter Hamiltonians in literature:



Thank you for your attention!

manuel.algaba@meetiqm.com

Backup I

But, where is the advantage coming from?

Decomp.		TB NNN	FH NNN	FH NNN	HK NN
	TQGs	PA	PAA	DK	PAA
XYZ	fSIM	18	30	74	55
Standard	fSIM	31	68	97	84
XYZ	CNOT	31	53	125	100
Standard	CNOT	47	93	130	132

QM

Backup II

$$\mathcal{H}_{\rm TB} = \sum_{i,j} t^{ij} c_i^{\dagger} c_j$$

$$\begin{aligned} \overline{\{c_i, c_j^{\dagger}\} = c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}} \\ \{c_i^{\dagger}, c_j^{\dagger}\} = \{c_i, c_j\} = 0 \end{aligned}$$

Edge and vertex operators:

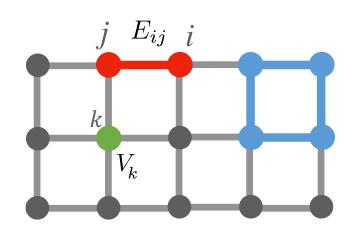
$$\{E_{ij}, V_i\} = \{E_{ij}, E_{jk}\} = 0$$
$$[E_{ij}, E_{kl}] = [E_{ij}, V_k] = [V_i, V_j] = 0$$



IQM

$$i^{(|p|-1)} \prod_{j}^{|p|-1} E_{p_j,p_{j+1}} = \mathbb{1}$$

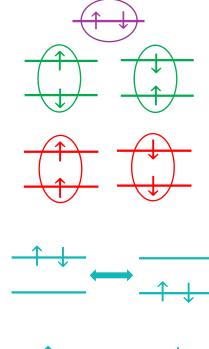
S. B. Bravyi and A. Y. Kitaev, Ann. Phys. 298, 210 (2002)



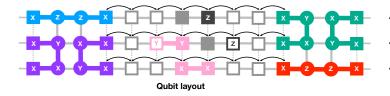
Backup III

Hubbard-Kanamori Hamiltonian:

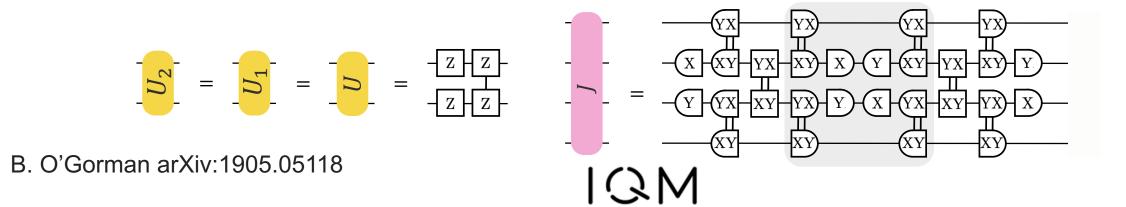
$$\begin{split} \mathcal{H}_{\mathrm{HK}} &= \sum_{i,j,m,\sigma} t^{ijm\sigma} c^{\dagger}_{im\sigma} c_{jm\sigma} + \sum_{i,m} U^{im} n_{im\uparrow} n_{im\downarrow} \\ &+ \sum_{i,m < \bar{m}} U_{1}^{im\bar{m}} \left(n_{im\uparrow} n_{i\bar{m}\downarrow} + n_{im\downarrow} n_{i\bar{m}\uparrow} \right) \\ &+ \sum_{i,m < \bar{m}} U_{2}^{im\bar{m}} \left(n_{im\uparrow} n_{i\bar{m}\uparrow} + n_{im\downarrow} n_{i\bar{m}\downarrow} \right) \\ &+ \sum_{i,m < \bar{m}} J^{im\bar{m}} \left(c^{\dagger}_{im\uparrow} c^{\dagger}_{im\downarrow} c_{i\bar{m}\downarrow} c_{i\bar{m}\uparrow} + c^{\dagger}_{i\bar{m}\uparrow} c^{\dagger}_{i\bar{m}\downarrow} c_{im\downarrow} c_{im\uparrow} \right) \\ &+ c^{\dagger}_{im\uparrow} c^{\dagger}_{i\bar{m}\downarrow} c_{im\downarrow} c_{i\bar{m}\uparrow} + c^{\dagger}_{i\bar{m}\uparrow} c^{\dagger}_{i\bar{m}\downarrow} c_{i\bar{m}\downarrow} c_{$$



Backup IV



Quantum circuit t_h t_h $1\uparrow t_h t_v t_v$ t_h t_v t_h t_h . l_v l_v τ_{v} $t_h \cdot t_v$ 1↓ 2↓ 3↑ 21 3↓ U2 U_2 1 41 $t_h t_v t_v$ t_h $t_v t_v$ t_v $t_v t_v$ t_v t_h t_h t_h t_h t_h t_h



2↓

2Î

11

4↓

41

31

3↓