WE BUILD QUANTUM COMPUTERS

Low-depth simulations of fermionic systems on square-grid quantum hardware

Manuel Algaba,
P.V. Sriluckshmy, M. Leib, F. Šimkovic
arXiv:2302.01862 arXiv:2303.04498

Objective:

Simulate a single Trotter step of a fermionic system on a realistic quantum computer in minimal circuit depth.

$$
e^{-i t \mathcal{H}}=\left(\prod_{j} e^{-i \frac{i}{N} \mathcal{H}_{j}}\right)^{N}
$$

1. Fermionic Models

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{ES}}=\sum_{p q} h^{p q} c_{p}^{\dagger} c_{q}+\sum_{\text {pqrs }} h^{p q r s} c_{p}^{\dagger} c_{q}^{\dagger} c_{r} c_{s} \\
& \mathcal{H}_{\mathrm{FH}}=-\sum_{i, j, \sigma} t^{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow} \\
& \mathcal{H}_{\mathrm{TB}}=-\sum_{i, j} t^{i j} c_{i}^{\dagger} c_{j} \quad, \quad 1 \mathrm{DFHM}
\end{aligned}
$$

1. Fermionic Models

2. Fermion-to-qubit mappings

Tight Binding Hamiltonian:

2. Fermion-to-qubit mappings

$$
\mathcal{H}_{\mathrm{TB}}=\sum_{i, j} t^{i j} c_{i}^{\dagger} c_{j}
$$

$$
\begin{gathered}
\left\{c_{i}, c_{j}^{\dagger}\right\}=c_{i} c_{j}^{\dagger}+c_{j}^{\dagger} c_{i}=\delta_{i j} \\
\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=\left\{c_{i}, c_{j}\right\}=0
\end{gathered}
$$

Edge and vertex operators:

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0}
\end{gathered}
$$

Hopping operators:

$$
\underbrace{c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j}}_{\text {Fermions }} \rightarrow \underbrace{\frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}}_{\text {Qubits }}
$$

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0}
\end{gathered}
$$

$$
\mathcal{H}_{\mathrm{TB}}=\sum_{i, j} t^{i j} c_{i}^{\dagger} c_{j}
$$

Jordan-Wigner mapping

$$
\left\{c_{i}, c_{j}^{\dagger}\right\}=c_{i} c_{j}^{\dagger}+c_{j}^{\dagger} c_{i}=\delta_{i j}
$$

$$
\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=\left\{c_{i}, c_{j}\right\}=0
$$

$$
c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}=X_{i} Z_{i-1} \ldots Z_{j+1} Y_{j}+Y_{i} Z_{i-1} \ldots Z_{j+1} X_{j}
$$

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0}
\end{gathered}
$$

$$
\mathcal{H}_{\mathrm{TB}}=\sum_{i, j} t^{i j} c_{i}^{\dagger} c_{j}
$$

$$
\left\{c_{i}, c_{j}^{\dagger}\right\}=c_{i} c_{j}^{\dagger}+c_{j}^{\dagger} c_{i}=\delta_{i j}
$$

Black arrows

Jordan-Wigner mapping

$$
\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=\left\{c_{i}, c_{j}\right\}=0
$$

Local mappings

Bravyi-Kitaev mapping Verstraete-Cirac mapping

Derby-Klassen mapping
:

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

Local mappings

Bravyi-Kitaev mapping
Verstraete-Cirac mapping
Derby-Klassen mapping :

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

Local mappings

Bravyi-Kitaev mapping
Verstraete-Cirac mapping
Derby-Klassen mapping :

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

Local mappings

Bravyi-Kitaev mapping
Verstraete-Cirac mapping
Derby-Klassen mapping :

2. Fermion-to-qubit mappings

Why local mappings are better when no ATA couplings?

- Local fermionic operators \longrightarrow Local two-qubit gates
- Less depth
- Less number of gates
- Error correction/mitigation properties

2. Fermion-to-qubit mappings

Why local mappings are better when no ATA couplings?

- Local fermionic operators \longrightarrow Local two-qubit gates
- Less depth
- Less number of gates
- Error correction/mitigation properties

But more ancillas? I prefer Jordan-Wigner

- Number of qubits are not the limiting step nowadays

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

MA et al. (2023), arXiv:2302.01862

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

MA et al. (2023), arXiv:2302.01862
$I Q M$

2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

MA et al. (2023), arXiv:2302.01862
$I Q M$

2. Fermion-to-qubit mappings

Edge operators

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

Vertex operators
2. Fermion-to-qubit mappings

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
\end{gathered}
$$

IQM

2. Fermion-to-qubit mappings

Edge operators

Vertex operators

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0} \\
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k} \\
\downarrow \\
\left(Z_{k}-Z_{j}\right) X_{k} Z_{a} X_{j} \\
\downarrow
\end{gathered}
$$

$$
Y_{k} Z_{a} X_{j}+X_{k} Z_{a} Y_{j}
$$

Hopping operators

2. Fermion-to-qubit mappings

$$
c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j} \rightarrow \frac{i}{2}\left(V_{k}-V_{j}\right) E_{j k}
$$

2. Fermion-to-qubit mappings

2. Fermion-to-qubit mappings

2. Fermion-to-qubit mappings

3. XYZ decomposition

Standard decomposition

3. XYZ decomposition

XYZ decomposition

$$
\begin{gathered}
e^{i \alpha \mathcal{O}}=e^{i \frac{\pi}{4} \mathcal{O}_{1}} e^{i \alpha \mathcal{O}_{2}} e^{-i \frac{\pi}{4} \mathcal{O}_{1}} \\
\mathcal{O}=\frac{i}{2}\left[\mathcal{O}_{1}, \mathcal{O}_{2}\right] \\
\mathcal{O}^{2}=\mathbb{1}
\end{gathered}
$$

Graphical notation

$$
\begin{aligned}
& -\sigma=e^{i \frac{\pi}{4} \sigma} \quad, \quad-\sigma \equiv e^{i \alpha \sigma} \quad,-\sigma=e^{-i \frac{\pi}{4} \sigma} \\
& \stackrel{-\sigma}{-\rho-} \equiv e^{i \frac{\pi}{4} \sigma_{1} \rho_{2}}, \stackrel{-\boxed{\sigma}}{\sqrt{\rho}} \equiv e^{i \alpha \sigma_{1} \rho_{2}}, \stackrel{-\sigma}{-\rho} \equiv e^{-i \frac{\pi}{4} \sigma_{1} \rho_{2}}
\end{aligned}
$$

3. XYZ decomposition

$$
\begin{array}{r}
e^{i \alpha \mathcal{O}}=e^{i \frac{\pi}{4} \mathcal{O}_{1}} e^{i \alpha \mathcal{O}_{2}} e^{-i \frac{\pi}{4} \mathcal{O}_{1}} \\
\mathcal{O}=\frac{i}{2}\left[\mathcal{O}_{1}, \mathcal{O}_{2}\right] \\
\mathcal{O}^{2}=\mathbb{1}
\end{array}
$$

4. Fermionic Simulation

$$
\begin{array}{r}
e^{i \alpha \mathcal{O}}=e^{i \frac{\pi}{4} \mathcal{O}_{1}} e^{i \alpha \mathcal{O}_{2}} e^{-i \frac{\pi}{4} \mathcal{O}_{1}} \\
\mathcal{O}=\frac{i}{2}\left[\mathcal{O}_{1}, \mathcal{O}_{2}\right] \\
\mathcal{O}^{2}=\mathbb{1}
\end{array}
$$ Hopping operators $c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j}$

Remember we are using fSIM: $e^{i \frac{\theta}{2}\left(X_{i} X_{j}+Y_{i} Y_{j}\right)+i \frac{\phi}{4}\left(Z_{i}+Z_{j}-Z_{i} Z_{j}\right)}$

4. Fermionic Simulation

$$
\begin{array}{r}
e^{i \alpha \mathcal{O}}=e^{i \frac{\pi}{4} \mathcal{O}_{1}} e^{i \alpha \mathcal{O}_{2}} e^{-i \frac{\pi}{4} \mathcal{O}_{1}} \\
\mathcal{O}=\frac{i}{2}\left[\mathcal{O}_{1}, \mathcal{O}_{2}\right] \\
\mathcal{O}^{2}=\mathbb{1}
\end{array}
$$ Hopping operators $c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j}$

Remember we are using fSIM: $e^{i \frac{\theta}{2}\left(X_{i} X_{j}+Y_{i} Y_{j}\right)+i \frac{\phi}{4}\left(Z_{i}+Z_{j}-Z_{i} Z_{j}\right)}$

4. Fermionic Simulation

$$
\begin{array}{r}
e^{i \alpha \mathcal{O}}=e^{i \frac{\pi}{4} \mathcal{O}_{1}} e^{i \alpha \mathcal{O}_{2}} e^{-i \frac{\pi}{4} \mathcal{O}_{1}} \\
\mathcal{O}=\frac{i}{2}\left[\mathcal{O}_{1}, \mathcal{O}_{2}\right] \\
\mathcal{O}^{2}=\mathbb{1}
\end{array}
$$ Hopping operators $c_{j}^{\dagger} c_{k}+c_{k}^{\dagger} c_{j}$

4. Fermionic Simulation

4. Fermionic Simulation

4. Fermionic Simulation

4. Fermionic Simulation

Triangular

Square

Checkerboard

Tetrakis

NNN Square
4. Fermionic Simulation

$$
\mathcal{H}_{\mathrm{FH}}=\sum_{i, j, \sigma} t^{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

P̃AA

4. Fermionic Simulation

$$
\mathcal{H}_{\mathrm{FH}}=\sum_{i, j, \sigma} t^{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

Qubit layout

Qubit layout

$$
X=\text { 気蜀 }=\mathrm{IswAP}_{i j}
$$

E = = 吗回

4. Fermionic Simulation

So, what's the improvement?

- Least number of TQGs with DK + XYZ decomposition
- Up to 72% depth reduction (3.2x).
- Shallowest single-Trotter-step circuits for these condensed matter Hamiltonians in literature:

Thank you for your attention!

manuel.algaba@meetiqm.com
y @ManuQPhys

Backup I

But, where is the advantage coming from?

Decomp.	Native TQGs	TB NNN	FH NNN		
	PH NNN	HK NN			
PAA	DK	PAA			
XYZ	fSIM	18	$\boxed{ } 18$	74	55
Standard	fSIM	31	68	97	84
XYZ	CNOT	31	53	125	100
Standard	CNOT	47	93	130	132

Backup II

$$
\mathcal{H}_{\mathrm{TB}}=\sum_{i, j} t^{i j} c_{i}^{\dagger} c_{j}
$$

$$
\begin{gathered}
\left\{c_{i}, c_{j}^{\dagger}\right\}=c_{i} c_{j}^{\dagger}+c_{j}^{\dagger} c_{i}=\delta_{i j} \\
\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=\left\{c_{i}, c_{j}\right\}=0
\end{gathered}
$$

Edge and vertex operators:

$$
\begin{gathered}
\left\{E_{i j}, V_{i}\right\}=\left\{E_{i j}, E_{j k}\right\}=0 \\
{\left[E_{i j}, E_{k l}\right]=\left[E_{i j}, V_{k}\right]=\left[V_{i}, V_{j}\right]=0}
\end{gathered}
$$

Eigenspace condition:

$$
i^{(|p|-1)} \prod_{j}^{|p|-1} E_{p_{j}, p_{j+1}}=\mathbb{1}
$$

Backup III

Hubbard-Kanamori Hamiltonian:

$$
\begin{aligned}
\mathcal{H}_{\mathrm{HK}} & =\sum_{i, j, m, \sigma} t^{i j m \sigma} c_{i m \sigma}^{\dagger} c_{j m \sigma}+\sum_{i, m} U^{i m} n_{i m \uparrow} n_{i m \downarrow} \\
& +\sum_{i, m<\bar{m}} U_{1}^{i m \bar{m}}\left(n_{i m \uparrow} n_{i \bar{m} \downarrow}+n_{i m \downarrow} n_{i \bar{m} \uparrow}\right) \\
& +\sum_{i, m<\bar{m}} U_{2}^{i m \bar{m}}\left(n_{i m \uparrow} n_{i \bar{m} \uparrow}+n_{i m \downarrow} n_{i \bar{m} \downarrow}\right) \\
& +\sum_{i, m<\bar{m}} J^{i m \bar{m}}\left(c_{i m \uparrow}^{\dagger} c_{i m \downarrow}^{\dagger} c_{i \bar{m} \downarrow} c_{i \bar{m} \uparrow}+c_{i \bar{m} \uparrow}^{\dagger} c_{i \bar{m} \downarrow}^{\dagger} c_{i m \downarrow} c_{i m \uparrow}\right. \\
& \left.+c_{i m \uparrow}^{\dagger} c_{i \bar{m} \downarrow}^{\dagger} c_{i m \downarrow} c_{i \bar{m} \uparrow}+c_{i \bar{m} \uparrow}^{\dagger} c_{i m \downarrow}^{\dagger} c_{i \bar{m} \downarrow} c_{i m \uparrow}\right)
\end{aligned}
$$

Backup IV

Quantum circuit

$$
\stackrel{N}{ }_{-}^{-}=D^{-}=D^{-}=\begin{array}{|}
\square \\
\mathrm{Z} \\
\mathrm{Z} \sqrt{\mathrm{Z}}
\end{array}
$$

B. O'Gorman arXiv:1905.05118

$I Q M$

