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Simulate a single Trotter step of a fermionic 
system on a realistic quantum computer in 
minimal circuit depth.

Objective:
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2. Fermion-to-qubit mappings
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fermionic lattice. The resulting Hamiltonian has the
form:

HFH = �
X

i,j,�

t
ij
c
†

i�
c
j�

+ U

X

i

n
i"
n
i#

(14)

Note, that in what follows we omit any chemical poten-
tial terms (µ� = t

iim�) of the Fermi-Hubbard Hamilto-
nian for simplicity reasons. Such terms could be trivially
added to the Hamiltonian without requiring any changes
to our approach. The FH model is extremely challenging
to classical computational methods and, with the excep-
tion of some specific regimes, remains largely unsolved.

If we further allow for only one spin type, and conse-
quently also set U = 0, we recover the one-spin tight-
binding model Hamiltonian (TB):

HTB = �
X

i,j

t
ij
c
†

i
c
j

(15)

This model is relatively trivial to solve, but is neverthe-
less useful to investigate it for demonstration purposes,
as will be done in section VA.

In principle, one can define all of the aforemen-
tioned models on any fermionic connectivity graph, but
here we only focus on regular, two-dimensional lat-
tices. The most common choice is the square lattice
with nearest-neighbor (NN) and optionally next-nearest-
neighbor (NNN) connectivity. However, other geome-
tries have also been extensively studied in literature, no-
tably the triangular [56, 57], honeycomb [58, 59] and
Kagome [60] lattices. In this paper, we consider eight
di↵erent geometries as shown in Fig. 1. Rather than in-
vestigating optimal mappings for each of these lattices
individually, we embed each of them into a square lattice
layout whilst allowing for higher-neighbor connectivity
(and the corresponding inter-site hopping terms). This
way it is su�cient to only consider strategies of mapping
a square fermionic lattice to a square qubit layout. We
do not consider one- or three-dimensional fermionic mod-
els here, as for one-dimensional systems the the Jordan-
Wigner mapping is already optimal and in the case of
three-dimensional systems one faces the additional di�-
culty of accommodating the third dimension on a two-
dimensional lattice. The best approach in this case is to
treat it on equal footing with orbital degrees of freedom
[32], as we will show in detail in further sections.

IV. LOCAL FERMION-TO-QUBIT MAPPINGS
FOR SQUARE QUBIT LAYOUTS

In this section we will investigate how to e�ciently
transform fermionic Hamiltonians into spin Hamiltonians
containing operators that act on a set of qubits Q which
can be implemented on a quantum device:

HQ =
X

i

ai

O

j2Q

�̃
j

i
, (16)
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FIG. 1. Di↵erent fermionic lattices embedded into a square
lattice geometry by allowing for higher-neighbour connectiv-
ity. Nodes represent fermionic lattice sites and links indicate
the existence of hopping terms between two sites.

where, ai are constants and �̃
j

i
2 {I,X, Y, Z}. The anti-

symmetric nature of fermionic systems is encoded in the
state wavefunction when working in first quantization.
In second quantization this is already included in the
fermionic operators used to describe the Hamiltonian of
the system. This poses a challenge for transforming the
antisymmetric operators of fermionic Hamiltonians into
Pauli qubit operators that have no native antisymmetry.
This transformation should preserve the locality of the
fermionic interactions to avoid increases in the scaling of
the number of gates or the circuit depth.
The most convenient approach for creating local

fermion-to-qubit mappings (i.e. those where the oper-
ator weight is constant with respect to the system size)
consists of defining the vertex Vi and edge Eij opera-
tors for every fermionic mode i and pair of modes (i, j),
provided an ordering i < j. To facilitate the conversion
between the two types of operators, we can additionally
introduce the Majorana fermionic operators �i = c

i
+ c

†

i

and �̄i =
1

i
(c

i
� c

†

i
) [35]. This allows us to compose the

edge and vertex operators as Eij = �i�i�j ,Vi = �i�i�̄i.
In order to be compatible with the fermionic anticom-
mutation relations, the edge and vertex operators must
themselves satisfy the following relations:

{Eij , Vi} = {Eij , Ejk} = 0 (17)

[Eij , Ekl] = [Eij , Vk] = [Vi, Vj ] = 0

for indices i 6= j 6= k 6= l. This means that edges must
anticommute with vertices which they are incident on,
two edges must anticommute if they share a vertex, and
all other combinations of two operators must commute.
Additionally, the following relation must be fulfilled for
any closed loop of edges:

i
(|p|�1)

|p|�1Y

j

Epj ,pj+1 = 1 (18)

where p = {p1, p2, ...} forms a closed path. The condition
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the number of gates or the circuit depth.
The most convenient approach for creating local

fermion-to-qubit mappings (i.e. those where the oper-
ator weight is constant with respect to the system size)
consists of defining the vertex Vi and edge Eij opera-
tors for every fermionic mode i and pair of modes (i, j),
provided an ordering i < j. To facilitate the conversion
between the two types of operators, we can additionally
introduce the Majorana fermionic operators �i = c

i
+ c

†

i

and �̄i =
1

i
(c

i
� c

†

i
) [35]. This allows us to compose the

edge and vertex operators as Eij = �i�i�j ,Vi = �i�i�̄i.
In order to be compatible with the fermionic anticom-
mutation relations, the edge and vertex operators must
themselves satisfy the following relations:

{Eij , Vi} = {Eij , Ejk} = 0 (17)

[Eij , Ekl] = [Eij , Vk] = [Vi, Vj ] = 0

for indices i 6= j 6= k 6= l. This means that edges must
anticommute with vertices which they are incident on,
two edges must anticommute if they share a vertex, and
all other combinations of two operators must commute.
Additionally, the following relation must be fulfilled for
any closed loop of edges:

i
(|p|�1)

|p|�1Y

j

Epj ,pj+1 = 1 (18)

where p = {p1, p2, ...} forms a closed path. The condition
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Note, that in what follows we omit any chemical poten-
tial terms (µ� = t

iim�) of the Fermi-Hubbard Hamilto-
nian for simplicity reasons. Such terms could be trivially
added to the Hamiltonian without requiring any changes
to our approach. The FH model is extremely challenging
to classical computational methods and, with the excep-
tion of some specific regimes, remains largely unsolved.

If we further allow for only one spin type, and conse-
quently also set U = 0, we recover the one-spin tight-
binding model Hamiltonian (TB):

HTB = �
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t
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i
c
j

(15)

This model is relatively trivial to solve, but is neverthe-
less useful to investigate it for demonstration purposes,
as will be done in section VA.

In principle, one can define all of the aforemen-
tioned models on any fermionic connectivity graph, but
here we only focus on regular, two-dimensional lat-
tices. The most common choice is the square lattice
with nearest-neighbor (NN) and optionally next-nearest-
neighbor (NNN) connectivity. However, other geome-
tries have also been extensively studied in literature, no-
tably the triangular [56, 57], honeycomb [58, 59] and
Kagome [60] lattices. In this paper, we consider eight
di↵erent geometries as shown in Fig. 1. Rather than in-
vestigating optimal mappings for each of these lattices
individually, we embed each of them into a square lattice
layout whilst allowing for higher-neighbor connectivity
(and the corresponding inter-site hopping terms). This
way it is su�cient to only consider strategies of mapping
a square fermionic lattice to a square qubit layout. We
do not consider one- or three-dimensional fermionic mod-
els here, as for one-dimensional systems the the Jordan-
Wigner mapping is already optimal and in the case of
three-dimensional systems one faces the additional di�-
culty of accommodating the third dimension on a two-
dimensional lattice. The best approach in this case is to
treat it on equal footing with orbital degrees of freedom
[32], as we will show in detail in further sections.

IV. LOCAL FERMION-TO-QUBIT MAPPINGS
FOR SQUARE QUBIT LAYOUTS

In this section we will investigate how to e�ciently
transform fermionic Hamiltonians into spin Hamiltonians
containing operators that act on a set of qubits Q which
can be implemented on a quantum device:

HQ =
X

i

ai

O

j2Q

�̃
j

i
, (16)
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FIG. 1. Di↵erent fermionic lattices embedded into a square
lattice geometry by allowing for higher-neighbour connectiv-
ity. Nodes represent fermionic lattice sites and links indicate
the existence of hopping terms between two sites.

where, ai are constants and �̃
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symmetric nature of fermionic systems is encoded in the
state wavefunction when working in first quantization.
In second quantization this is already included in the
fermionic operators used to describe the Hamiltonian of
the system. This poses a challenge for transforming the
antisymmetric operators of fermionic Hamiltonians into
Pauli qubit operators that have no native antisymmetry.
This transformation should preserve the locality of the
fermionic interactions to avoid increases in the scaling of
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The most convenient approach for creating local
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ator weight is constant with respect to the system size)
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Additionally, the following relation must be fulfilled for
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symmetric nature of fermionic systems is encoded in the
state wavefunction when working in first quantization.
In second quantization this is already included in the
fermionic operators used to describe the Hamiltonian of
the system. This poses a challenge for transforming the
antisymmetric operators of fermionic Hamiltonians into
Pauli qubit operators that have no native antisymmetry.
This transformation should preserve the locality of the
fermionic interactions to avoid increases in the scaling of
the number of gates or the circuit depth.
The most convenient approach for creating local

fermion-to-qubit mappings (i.e. those where the oper-
ator weight is constant with respect to the system size)
consists of defining the vertex Vi and edge Eij opera-
tors for every fermionic mode i and pair of modes (i, j),
provided an ordering i < j. To facilitate the conversion
between the two types of operators, we can additionally
introduce the Majorana fermionic operators �i = c
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) [35]. This allows us to compose the

edge and vertex operators as Eij = �i�i�j ,Vi = �i�i�̄i.
In order to be compatible with the fermionic anticom-
mutation relations, the edge and vertex operators must
themselves satisfy the following relations:

{Eij , Vi} = {Eij , Ejk} = 0 (17)

[Eij , Ekl] = [Eij , Vk] = [Vi, Vj ] = 0

for indices i 6= j 6= k 6= l. This means that edges must
anticommute with vertices which they are incident on,
two edges must anticommute if they share a vertex, and
all other combinations of two operators must commute.
Additionally, the following relation must be fulfilled for
any closed loop of edges:
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2. Fermion-to-qubit mappings
Why local mappings are better when no ATA couplings?

• Local fermionic operators           Local two-qubit gates
• Less depth
• Less number of gates
• Error correction/mitigation properties

I. D. Kivlichan et al. PRL (2018)
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2. Fermion-to-qubit mappings
Why local mappings are better when no ATA couplings?

• Local fermionic operators           Local two-qubit gates
• Less depth
• Less number of gates
• Error correction/mitigation properties

But more ancillas? I prefer Jordan-Wigner

• Number of qubits are not the limiting step nowadays
I. D. Kivlichan et al. PRL (2018)
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Y
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X
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X

X

X

X
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Y
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X
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Y
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X

X

X

X

Y

X
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Y/X

X

X/Y

X

Y/X

X

X/Y

X

Y/X

X

X/Y

X

Y/X

X

Y

Y

X

Y

X

Y

Y

Y

Y

Y

X

Y

X

Y

Y

Y

Y

X

X

X

X

X

Y

X

Y
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X
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X

X

Y
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Y

Y
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Y

Y

Y

X

X

Y

1

2

3

4

5

6

7

8

9
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Hor. 1 Hor. 2 Vertical 1 Vertical 2 Diagonal 1 Diagonal 2 Diagonal 3 Diagonal 4
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Y
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Y/X
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X/Y

X/Y
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X/Y
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X

X

X/Y

Diagonal 2 Diagonal 3

Y

Y/XY

X/Y

Y/X

Y

Y

X/Y
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X/Y

Y/X

X

Y

X/Y
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Y
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Y/XX

X/Y

Y/X

X

X

X/Y
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Y

Y
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7
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15
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Hor. 1 Hor. 2 Vertical 1 Vertical 2 Diagonal 1 Diagonal 2 Diagonal 3 Diagonal 4
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Diagonal 1

X/Y

Y/X

Y

Y

X/Y

Y/X

Y/X

Y/X

Z

Z

Z

X/Y

X/Y

X/Y
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3. XYZ decomposition

Standard decomposition
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XYZ decomposition

Graphical notation

3. XYZ decomposition
P. V. Sriluckshmy, MA et al. (2023) arXiv:2303.04498
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3. XYZ decomposition

… …

… … …

…

… …
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Remember we are using fSIM:

4. Fermionic Simulation
Hopping operators
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4. Fermionic Simulation

Remember we are using fSIM:

Hopping operators
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4. Fermionic Simulation

=

Y/X
Z

X/YX

Y

Z

Y/X
Z

X/YY

X

Z ! ! ==

X

Y

X

X

Y

Y

Y

X

Hopping operators
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4. Fermionic Simulation
1
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4. Fermionic Simulation

• Least number of TQGs with DK + XYZ decomposition
• Up to 72% depth reduction (3.2x).
• Shallowest single-Trotter-step circuits for these condensed matter Hamiltonians in literature:

= {1↑, 1↓, 2↑, 2↓, 3↑, 3↓}= {1↑, 1↓, 2↑, 2↓, 3↑, 3↓}

HK: 35TB: 6

= {1↑, 1↓}= {1↑, 1↓} = {1↑, 1↓}

FH: 9

So, what’s the improvement?
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But, where is the advantage coming from?

Backup I
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5

fermionic lattice. The resulting Hamiltonian has the
form:

HFH = �
X

i,j,�

t
ij
c
†

i�
c
j�

+ U

X

i

n
i"
n
i#

(14)

Note, that in what follows we omit any chemical poten-
tial terms (µ� = t

iim�) of the Fermi-Hubbard Hamilto-
nian for simplicity reasons. Such terms could be trivially
added to the Hamiltonian without requiring any changes
to our approach. The FH model is extremely challenging
to classical computational methods and, with the excep-
tion of some specific regimes, remains largely unsolved.

If we further allow for only one spin type, and conse-
quently also set U = 0, we recover the one-spin tight-
binding model Hamiltonian (TB):

HTB = �
X

i,j

t
ij
c
†

i
c
j

(15)

This model is relatively trivial to solve, but is neverthe-
less useful to investigate it for demonstration purposes,
as will be done in section VA.

In principle, one can define all of the aforemen-
tioned models on any fermionic connectivity graph, but
here we only focus on regular, two-dimensional lat-
tices. The most common choice is the square lattice
with nearest-neighbor (NN) and optionally next-nearest-
neighbor (NNN) connectivity. However, other geome-
tries have also been extensively studied in literature, no-
tably the triangular [56, 57], honeycomb [58, 59] and
Kagome [60] lattices. In this paper, we consider eight
di↵erent geometries as shown in Fig. 1. Rather than in-
vestigating optimal mappings for each of these lattices
individually, we embed each of them into a square lattice
layout whilst allowing for higher-neighbor connectivity
(and the corresponding inter-site hopping terms). This
way it is su�cient to only consider strategies of mapping
a square fermionic lattice to a square qubit layout. We
do not consider one- or three-dimensional fermionic mod-
els here, as for one-dimensional systems the the Jordan-
Wigner mapping is already optimal and in the case of
three-dimensional systems one faces the additional di�-
culty of accommodating the third dimension on a two-
dimensional lattice. The best approach in this case is to
treat it on equal footing with orbital degrees of freedom
[32], as we will show in detail in further sections.

IV. LOCAL FERMION-TO-QUBIT MAPPINGS
FOR SQUARE QUBIT LAYOUTS

In this section we will investigate how to e�ciently
transform fermionic Hamiltonians into spin Hamiltonians
containing operators that act on a set of qubits Q which
can be implemented on a quantum device:

HQ =
X

i

ai

O

j2Q

�̃
j

i
, (16)

Checkerboard Tetrakis

Honeycomb

Triangular NNN Square

Square Shastry-Sutherland Kagome

FIG. 1. Di↵erent fermionic lattices embedded into a square
lattice geometry by allowing for higher-neighbour connectiv-
ity. Nodes represent fermionic lattice sites and links indicate
the existence of hopping terms between two sites.

where, ai are constants and �̃
j

i
2 {I,X, Y, Z}. The anti-

symmetric nature of fermionic systems is encoded in the
state wavefunction when working in first quantization.
In second quantization this is already included in the
fermionic operators used to describe the Hamiltonian of
the system. This poses a challenge for transforming the
antisymmetric operators of fermionic Hamiltonians into
Pauli qubit operators that have no native antisymmetry.
This transformation should preserve the locality of the
fermionic interactions to avoid increases in the scaling of
the number of gates or the circuit depth.
The most convenient approach for creating local

fermion-to-qubit mappings (i.e. those where the oper-
ator weight is constant with respect to the system size)
consists of defining the vertex Vi and edge Eij opera-
tors for every fermionic mode i and pair of modes (i, j),
provided an ordering i < j. To facilitate the conversion
between the two types of operators, we can additionally
introduce the Majorana fermionic operators �i = c

i
+ c

†

i

and �̄i =
1

i
(c

i
� c

†

i
) [35]. This allows us to compose the

edge and vertex operators as Eij = �i�i�j ,Vi = �i�i�̄i.
In order to be compatible with the fermionic anticom-
mutation relations, the edge and vertex operators must
themselves satisfy the following relations:

{Eij , Vi} = {Eij , Ejk} = 0 (17)

[Eij , Ekl] = [Eij , Vk] = [Vi, Vj ] = 0

for indices i 6= j 6= k 6= l. This means that edges must
anticommute with vertices which they are incident on,
two edges must anticommute if they share a vertex, and
all other combinations of two operators must commute.
Additionally, the following relation must be fulfilled for
any closed loop of edges:

i
(|p|�1)

|p|�1Y

j

Epj ,pj+1 = 1 (18)

where p = {p1, p2, ...} forms a closed path. The condition
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tices. The most common choice is the square lattice
with nearest-neighbor (NN) and optionally next-nearest-
neighbor (NNN) connectivity. However, other geome-
tries have also been extensively studied in literature, no-
tably the triangular [56, 57], honeycomb [58, 59] and
Kagome [60] lattices. In this paper, we consider eight
di↵erent geometries as shown in Fig. 1. Rather than in-
vestigating optimal mappings for each of these lattices
individually, we embed each of them into a square lattice
layout whilst allowing for higher-neighbor connectivity
(and the corresponding inter-site hopping terms). This
way it is su�cient to only consider strategies of mapping
a square fermionic lattice to a square qubit layout. We
do not consider one- or three-dimensional fermionic mod-
els here, as for one-dimensional systems the the Jordan-
Wigner mapping is already optimal and in the case of
three-dimensional systems one faces the additional di�-
culty of accommodating the third dimension on a two-
dimensional lattice. The best approach in this case is to
treat it on equal footing with orbital degrees of freedom
[32], as we will show in detail in further sections.

IV. LOCAL FERMION-TO-QUBIT MAPPINGS
FOR SQUARE QUBIT LAYOUTS

In this section we will investigate how to e�ciently
transform fermionic Hamiltonians into spin Hamiltonians
containing operators that act on a set of qubits Q which
can be implemented on a quantum device:

HQ =
X

i

ai

O

j2Q

�̃
j

i
, (16)

Checkerboard Tetrakis

Honeycomb

Triangular NNN Square

Square Shastry-Sutherland Kagome

FIG. 1. Di↵erent fermionic lattices embedded into a square
lattice geometry by allowing for higher-neighbour connectiv-
ity. Nodes represent fermionic lattice sites and links indicate
the existence of hopping terms between two sites.

where, ai are constants and �̃
j

i
2 {I,X, Y, Z}. The anti-

symmetric nature of fermionic systems is encoded in the
state wavefunction when working in first quantization.
In second quantization this is already included in the
fermionic operators used to describe the Hamiltonian of
the system. This poses a challenge for transforming the
antisymmetric operators of fermionic Hamiltonians into
Pauli qubit operators that have no native antisymmetry.
This transformation should preserve the locality of the
fermionic interactions to avoid increases in the scaling of
the number of gates or the circuit depth.
The most convenient approach for creating local

fermion-to-qubit mappings (i.e. those where the oper-
ator weight is constant with respect to the system size)
consists of defining the vertex Vi and edge Eij opera-
tors for every fermionic mode i and pair of modes (i, j),
provided an ordering i < j. To facilitate the conversion
between the two types of operators, we can additionally
introduce the Majorana fermionic operators �i = c

i
+ c

†

i

and �̄i =
1

i
(c

i
� c

†

i
) [35]. This allows us to compose the

edge and vertex operators as Eij = �i�i�j ,Vi = �i�i�̄i.
In order to be compatible with the fermionic anticom-
mutation relations, the edge and vertex operators must
themselves satisfy the following relations:

{Eij , Vi} = {Eij , Ejk} = 0 (17)

[Eij , Ekl] = [Eij , Vk] = [Vi, Vj ] = 0

for indices i 6= j 6= k 6= l. This means that edges must
anticommute with vertices which they are incident on,
two edges must anticommute if they share a vertex, and
all other combinations of two operators must commute.
Additionally, the following relation must be fulfilled for
any closed loop of edges:

i
(|p|�1)

|p|�1Y

j

Epj ,pj+1 = 1 (18)

where p = {p1, p2, ...} forms a closed path. The condition

Backup II

Edge and vertex operators:

𝑘

S. B. Bravyi and A. Y. Kitaev, Ann. Phys. 298, 210 (2002)

Eigenspace condition:
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Backup III
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Qubit layout 
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