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Simulating many-body dynamics

U _ e—?ltH

H:Zhi

A(t) _ e—thAeth



Simulating many-body dynamics

* Time evolution operator: U = e_"'tH H = Z h;
* Observable: A(t) — e_thAeth coseeee ° o

* |nitial state: |<I>) — ® |¢Z> ; ; ; ! ; ; ;

* Goal:
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Computational problem

* Local Hamiltonian on N (DPIA(L)|P) — f(t)] <€
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Computational problem

* Local Hamiltonian on N ’<(I)|A(t)|q)> — f(t)’ S €

particles + few-body
observable
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guantum easy (BQP)
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How do we study this problem classically?

Exact diagonalization (small systems)
Tensor networks (short times, one dimension)

A(t) _ e—thAeth

Many other methods....(model-specific?)

This talk: cluster expansion < short times, but very accurate and analytically
tractable



Quantum dynamics: simple or not?

A HUGE matrix d\QN
you cannot U € (C )
diagonalize

U e—th

The exponential of

a “simple” local

operator




Taylor expansion and classical computation

F(t) = Fu(t)] < 7™

Ingredients:

Prove convergence of Taylor series for high enough
degree (analyticity).

Estimate cost of calculating Taylor coefficients.

Computed Taylor series gives approximation.




Cluster expansion: main idea

Statistical Mechanics

* Taylor series expansions for quantities defined on lattices.
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* Find efficient way of writing & computing the Taylor
moments in terms of clusters
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Types of clusters

* Connected * Disconnected * Connectedto A

W e g, Wel,\Gn
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Heisenberg time evolution

* Classical simulation of

* Taylor expansion in terms of connected clusters




Heisenberg time evolution

Classical simulation of

@le-ac ey = S U gy (1, A0

Count connected clusters: |G| < eO(m)
Weight of each cluster: m!2™|| Al

Taylor series (and algorithm) for short times
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Function is analytic on a strip, not just a disk.

Arbitrary times: analytic continuation

(e Ae™)| < || Al

Analytic continuation (Barvinok ‘16, Harrow et al. 1910.09071).

We can use Taylor series at the origin to calculate any later point, with

overhead.

Idea: use series of a function that maps disk to rectangle.
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Arbitrary times: main result

* Series converges, but much more slowly (exponentially badly in time)

« RESULT: for arbitrary times, there is a classical algorithm that outputs f(t)

(Dl Ae™| @) — f(t)] < €
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Arbitrary times: main result

Series converges, but much more slowly (exponentially badly in time)

RESULT: for arbitrary times, there is a classical algorithm that outputs f(t)

(Dl Ae™| @) — f(t)] < €

(eXp(O(m 1 ) exp(O(t)) o

€ | m—

With runtime

Remark: fort = (O(1), runtime is poly(e™)

Previously: Lieb-Robinson lightcone method has runtime t E
D D
€O(l )~ eO((vt-l—log(l/e)) )



Fidelity / Loschmidt echo

Statistical Mechanics
of Lattice Systems

10g<<13]6_itH|<I)> VS. log[Tre_BH]

KEY INSIGHT: with product states also only connected clusters

contribute SN
D) = |9)
Result: classical algorithm for Loschmidt echo : i
[log(®[e"!|) - Z DKa<e o t<t . -

M = O(log(N/e)) runtime = poly(N/e¢)




Some physical consequences:

Result: analyticity and efficient algorithm for Pt ~ AT 1)

b
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10g(<1>|e_itH]<I>> t <t =N

So it takes at least T to become orthogonal to initial state
Strengthening over previous Quantum Speed Limits (Mandeltam-Tamm, Margolus-Levitin)

tosr >t = 0(1) Vs. tosr = O(l/\/ﬁ)

Dynamical phase transitions (Heyl 1709.07461): ™ is a lower bound to how fast they occur.
(in analogy with thermal phase transitions)

BONUS: concentration bounds (Chernoff) for short-time evolved states.



Computational complexity of guantum dynamics

Evolution time < ¢t O(1) O(polylog(N))|  O(poly(N))
(A(t)) P P ?? BQP-complete

log(e™""") P #P-hard #P-hard #P-hard
G P ?? ? BQP-complete

» Complexity of simulating to small additive error € — 1/p01}7(N)

* #P hard -> Galanis et al 2005.01076
* BQP hardness: standard arguments + de las Cuevas (1104.2517)




Conclusions

* Cluster expansion: versatile and well-studied tool for partition Statistical Mechanics
. of Lattice Systems
fu n Ctl O n S + re I ate d p ro b I e m S . A Concrete Mathematical Introduction

Sacha Friedli and Yvan Velenik

-Shows convergence of Taylor approximation and yields efficient 4°¢ Rl

algorithms. K x AR

-Works for many different interaction graphs.
* Here: it also works for problems of quantum dynamics.

* Versatile technique for classical simulation of many quantum
problems.
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