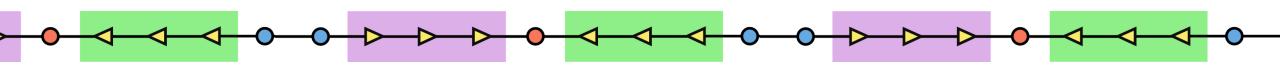


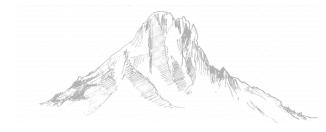
Dissipative Simulation of Quantum Dynamics with Tensor Networks

Carlos Ramos Marimón

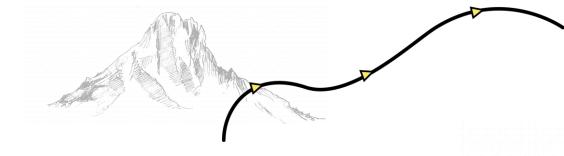
Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA



Roadmap



Roadmap

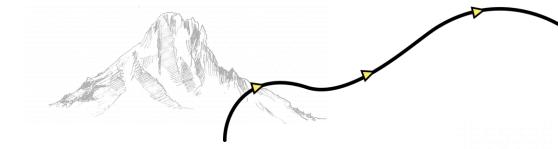


1. Quantum evolution

in tensor network language

2. Entanglement barrier

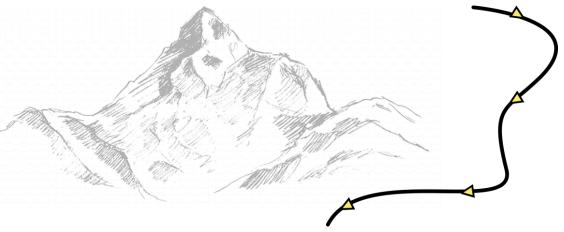
Roadmap



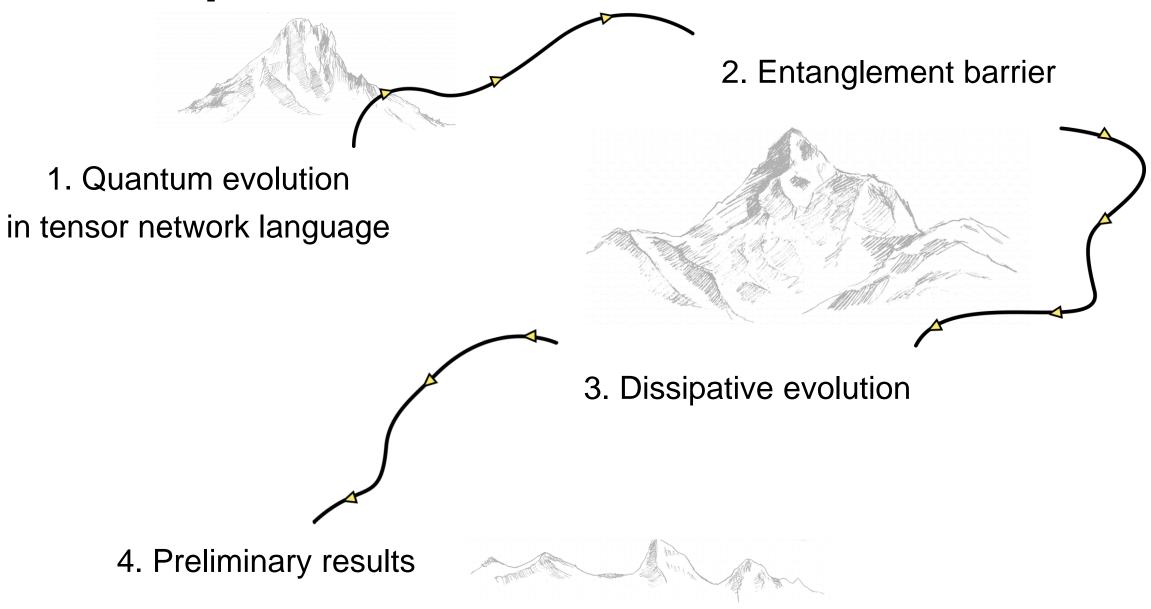
1. Quantum evolution

in tensor network language

2. Entanglement barrier



3. Dissipative evolution



Given an initial state/density matrix

Given an initial state/density matrix

the evolution is generated by

Given an initial state/density matrix

the evolution is generated by

The expectation value of the operator in the evolved state reads

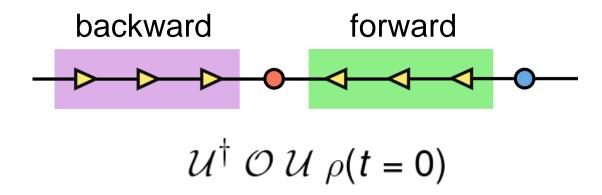
$$\mathcal{O}(t = T) = \operatorname{tr} \{ \mathcal{U} \ \rho(t = 0) \ \mathcal{U}^{\dagger} \ \mathcal{O} \}$$

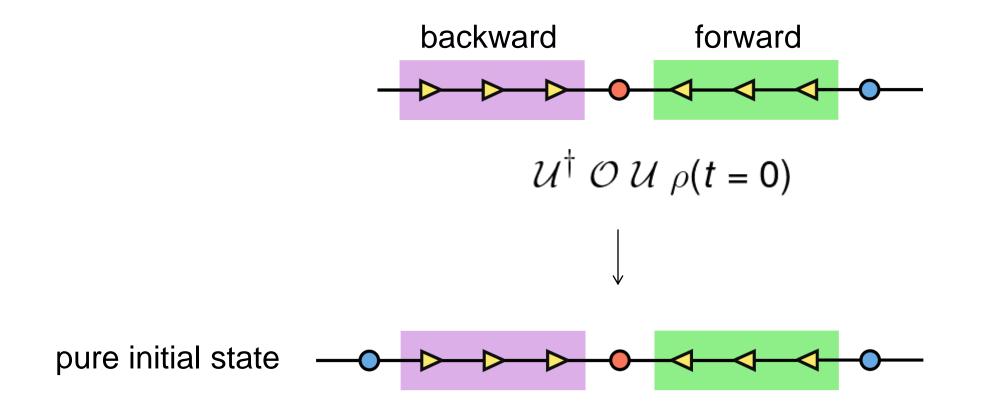
$$\mathcal{O}(t = T) = \operatorname{tr} \{ \mathcal{U} \ \rho(t = 0) \ \mathcal{U}^{\dagger} \ \mathcal{O} \}$$

$$\mathcal{O}(t=T) = \operatorname{tr} \{ \mathcal{U} \ \rho(t=0) \ \mathcal{U}^{\dagger} \ \mathcal{O} \}$$

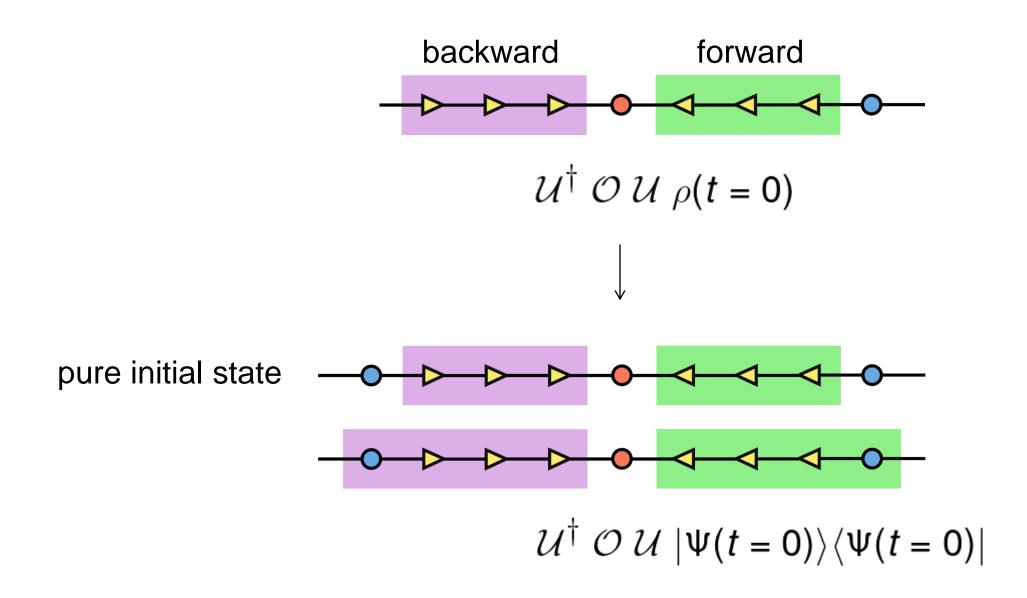
$$\mathcal{O}(t = T) = \operatorname{tr} \{ \mathcal{U} \ \rho(t = 0) \ \mathcal{U}^{\dagger} \ \mathcal{O} \}$$
forward
backward
$$\mathcal{O}(t = 0)$$

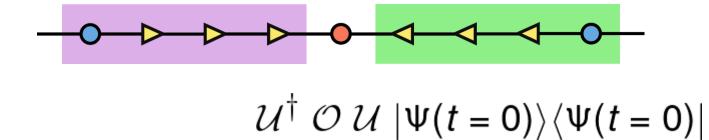
$$\Delta \mathcal{U} \ \rho(t = 0)$$
permute under trace
$$\mathcal{U}^{\dagger} \ \mathcal{O} \ \mathcal{U} \ \rho(t = 0)$$

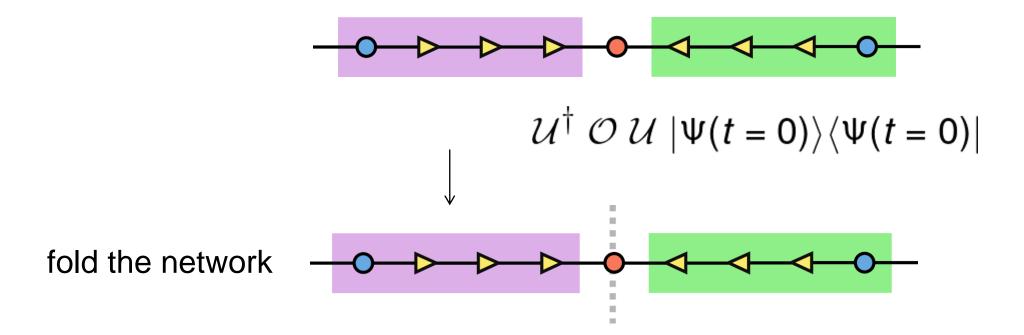


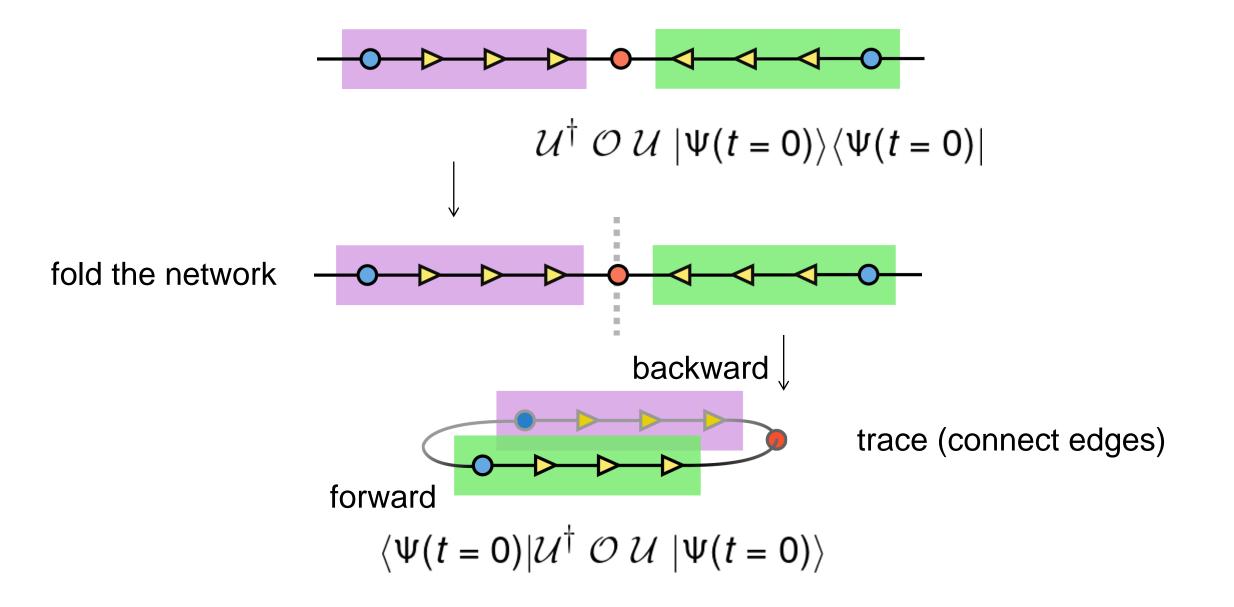


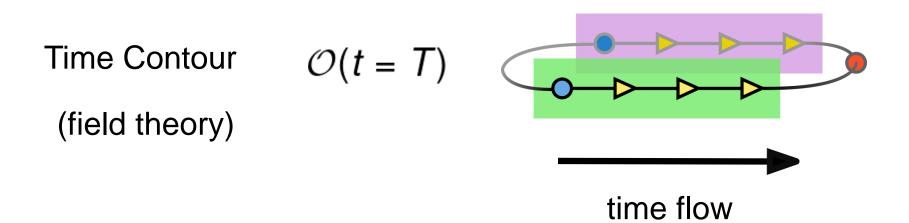
$$\mathcal{U}^{\dagger} \mathcal{O} \mathcal{U} |\Psi(t=0)\rangle \langle \Psi(t=0)|$$

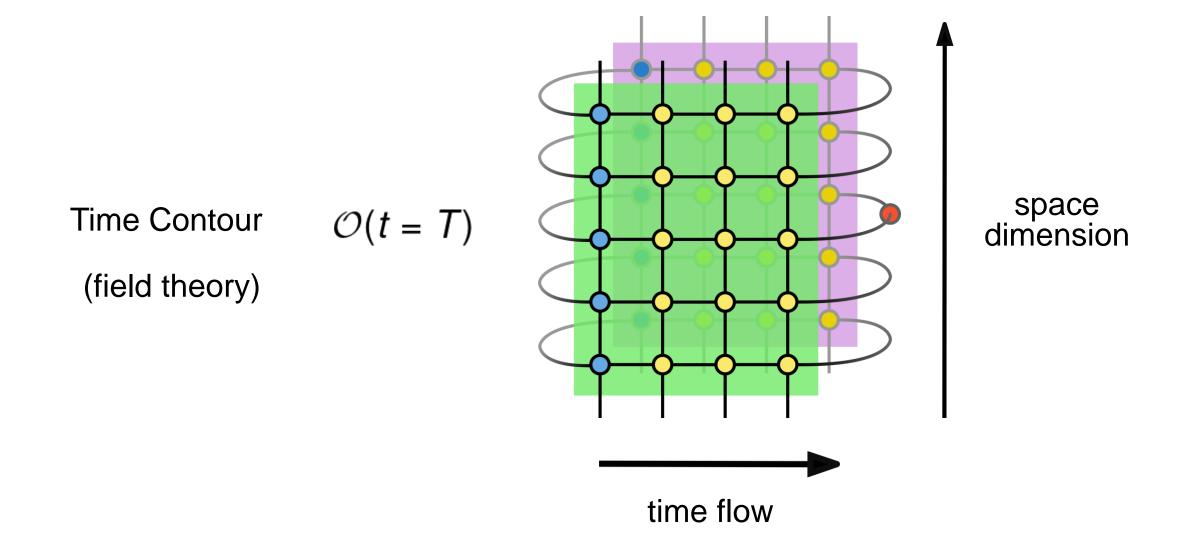


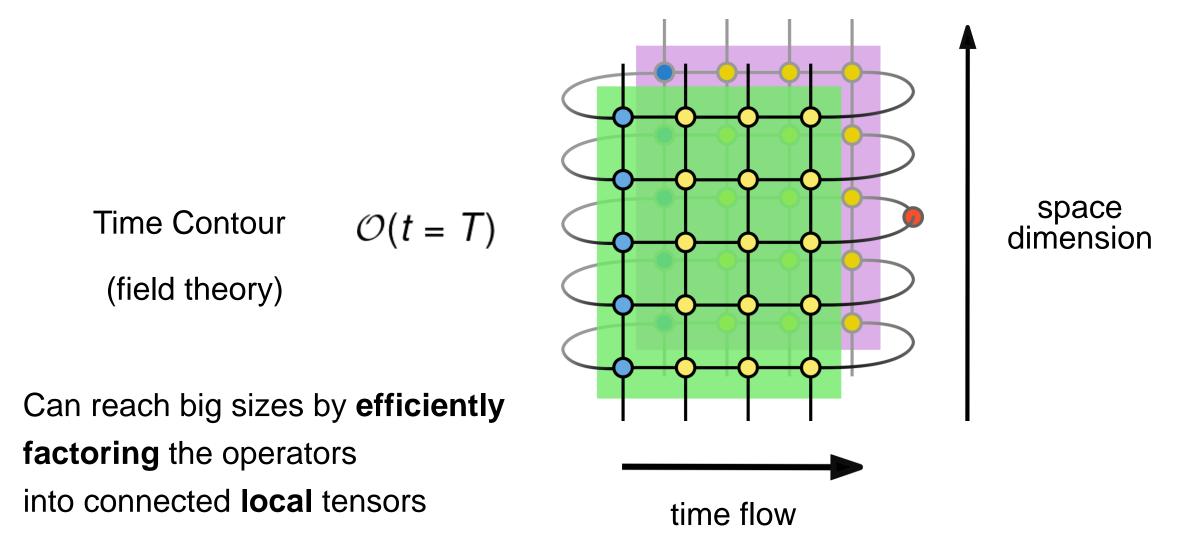






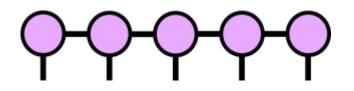






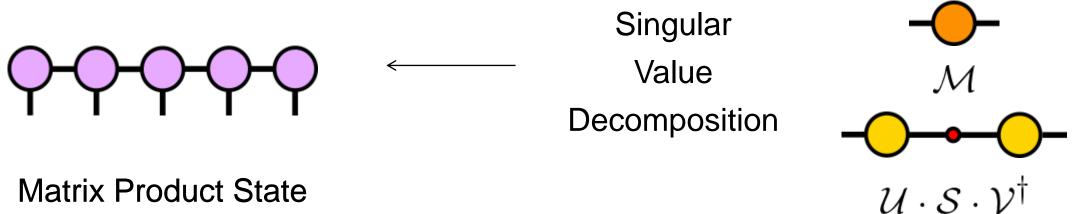
Swept under the carpet: TNs work while **spatial entanglement is low**

Swept under the carpet: TNs work while **spatial entanglement is low**



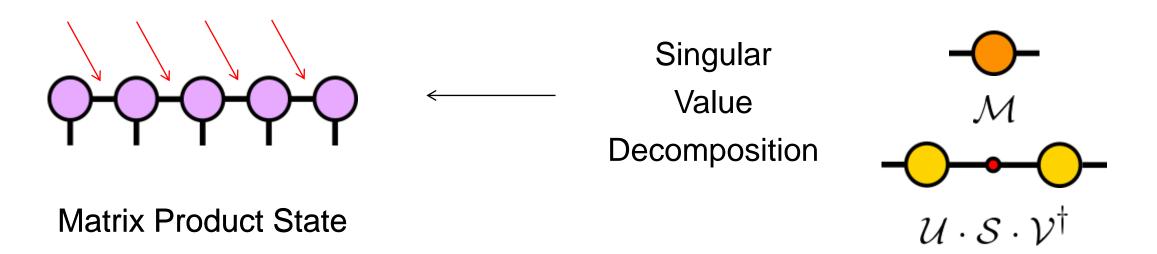
Matrix Product State

Swept under the carpet: TNs work while spatial entanglement is low



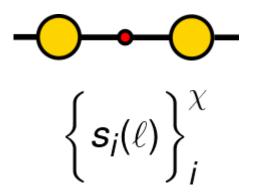
Matrix Product State

Swept under the carpet: TNs work while **spatial entanglement is low**



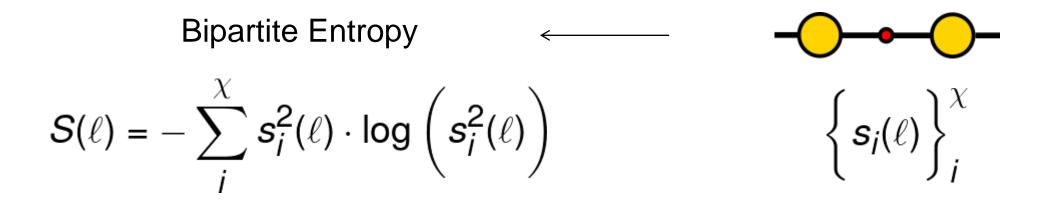
numerically: need **bounded number of singular values** per link

Swept under the carpet: TNs work while **spatial entanglement is low**



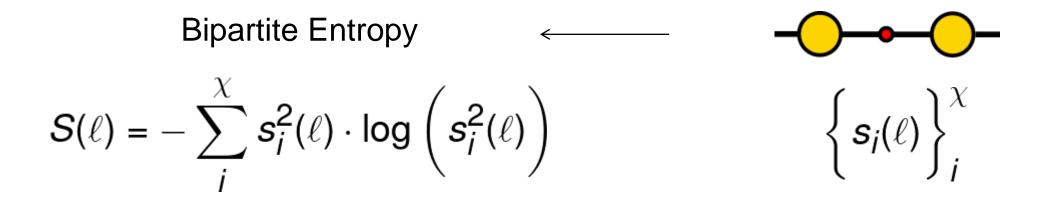
numerically: need **bounded number of singular values** per link

Swept under the carpet: TNs work while **spatial entanglement is low**



numerically: need bounded number of singular values per link

Swept under the carpet: TNs work while **spatial entanglement is low**



numerically: need **bounded number of singular values** per link physically: **subextensive entropy, no volume law**

Nevertheless, evolution generically entangles

i.e. the sum of singular values grows exponentially

arXiv:0903.2432

arXiv:0706.2480

ENTANGLEMENT BARRIER

Some works found that dissipation could lower entanglement

arXiv:2004.05177

Some works found that dissipation could lower entanglement

arXiv:2004.05177

Our proposal is based on decoherence

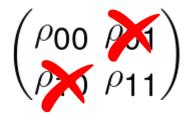
$$\begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix}$$

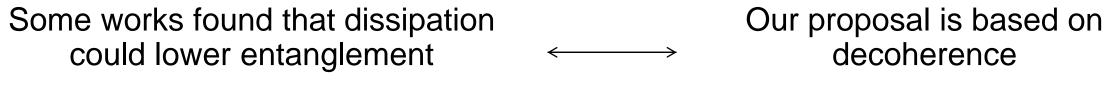
Some works found that dissipation could lower entanglement

arXiv:2004.05177

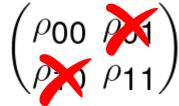
Our proposal is based on decoherence

 \rightarrow

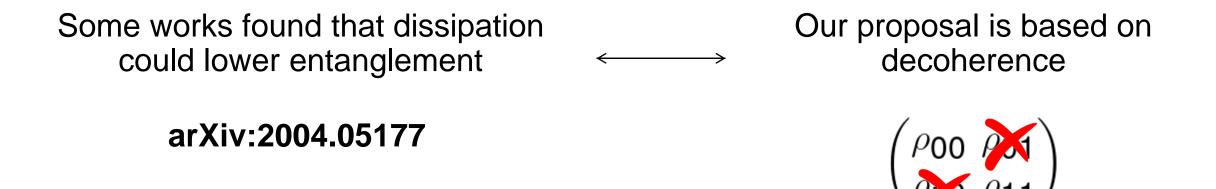




arXiv:2004.05177



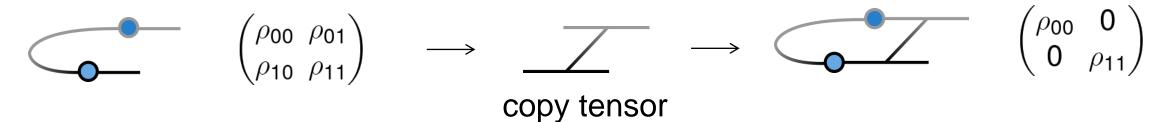
We introduce a quantum channel targetting **unnecessary coherence** for the description of **local observables**

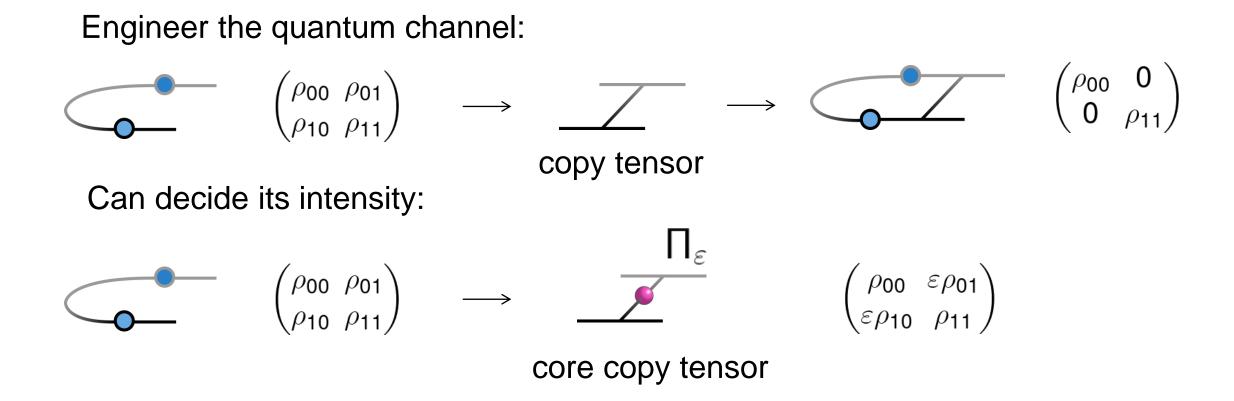


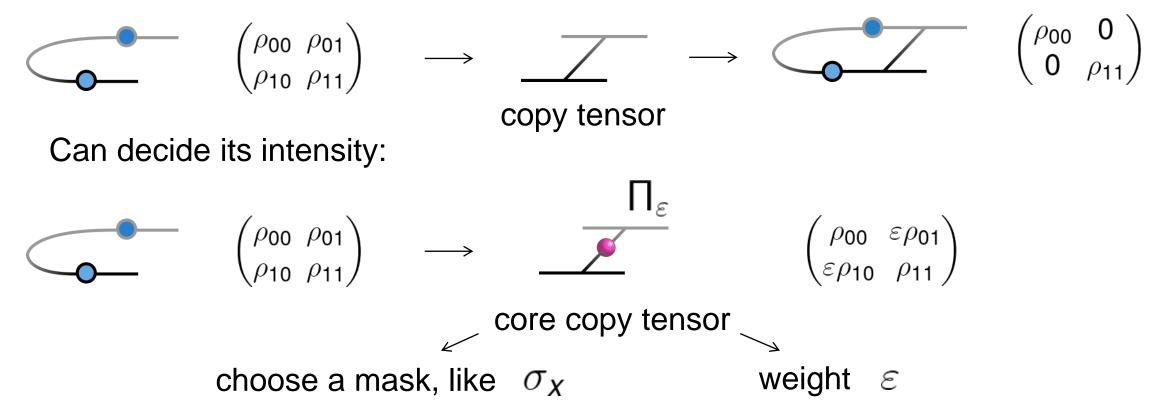
We introduce a quantum channel targetting **unnecessary coherence** for the description of **local observables**

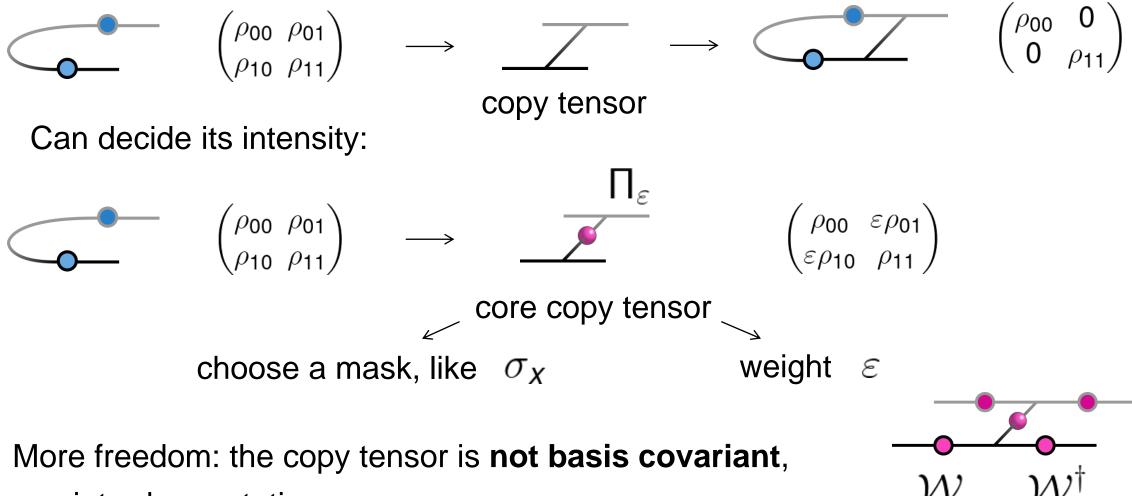
Connection to thermalization: reduced system is expected to decohere

Engineer the quantum channel:



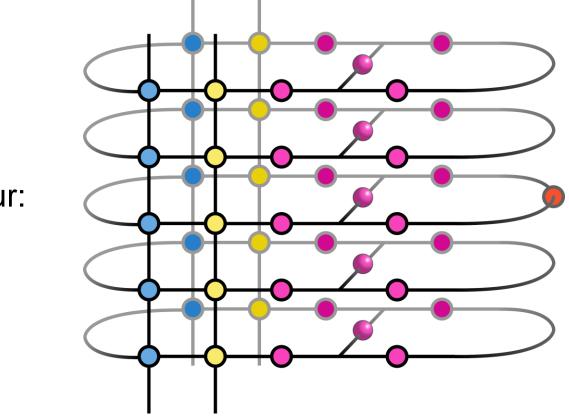






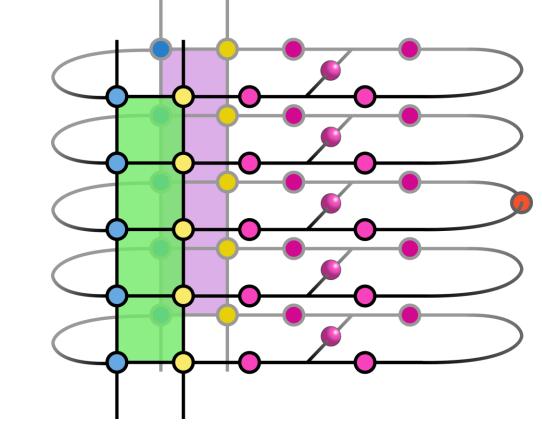
can introduce rotations

Design an auxiliary evolution expected to retrieve the right local observables:



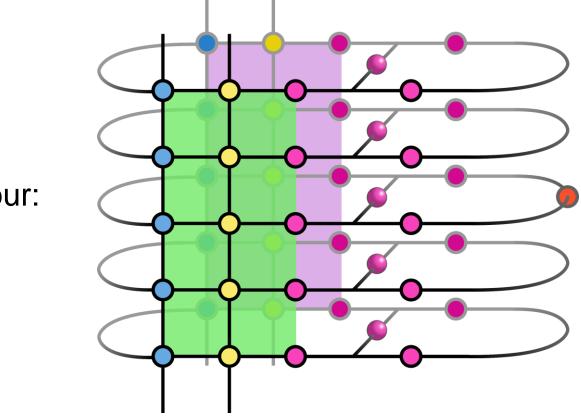
 $|\Psi(t=0)\rangle$

Design an auxiliary evolution expected to retrieve the right local observables:



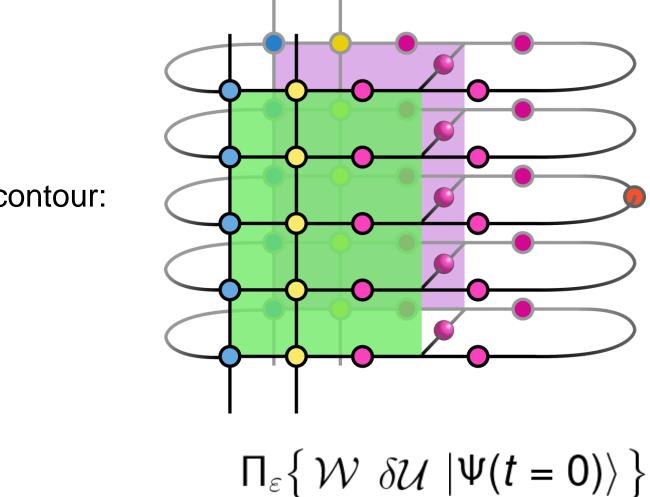
 $\delta \mathcal{U} |\Psi(t=0)\rangle$

Design an auxiliary evolution expected to retrieve the right local observables:

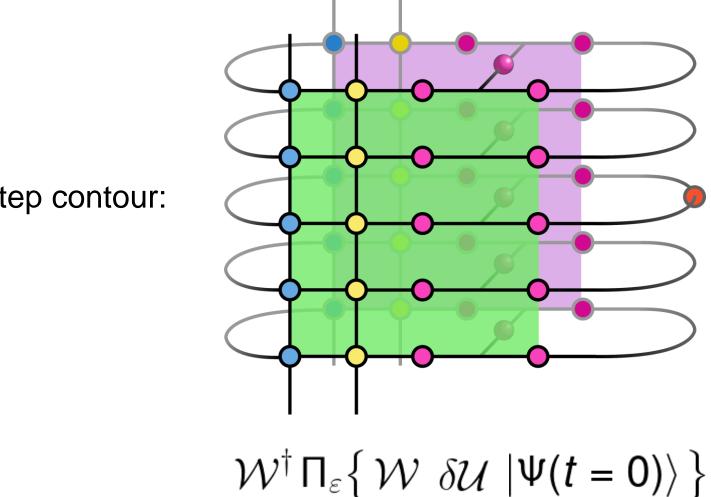


 $\mathcal{W} \ \delta \mathcal{U} \ |\Psi(t=0)\rangle$

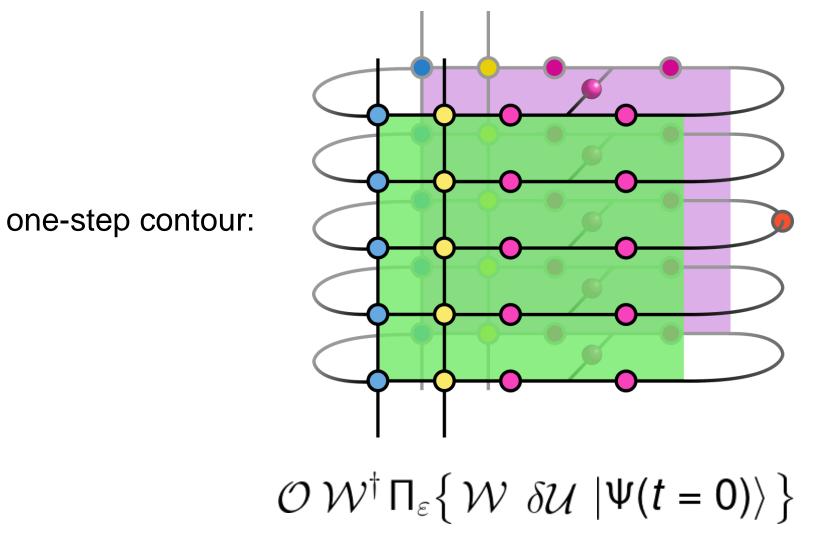
Design an auxiliary evolution expected to retrieve the right local observables:



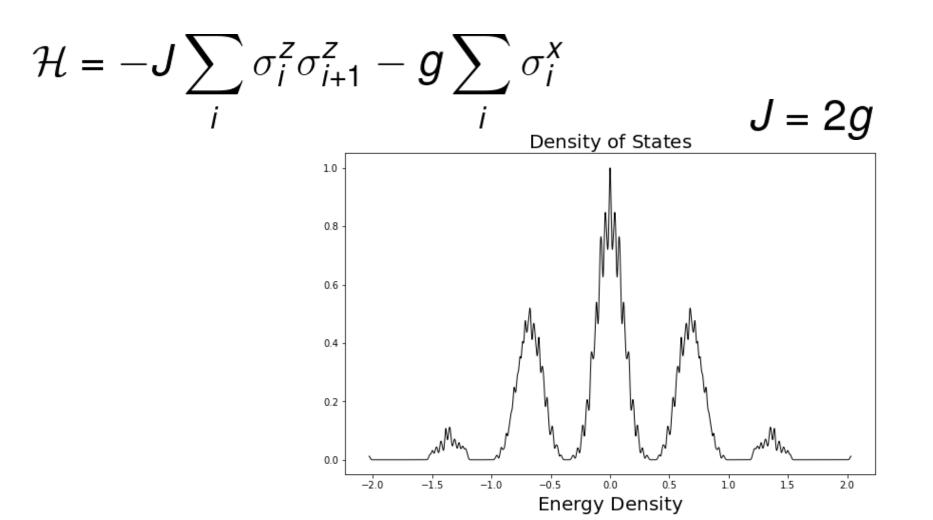
Design an auxiliary evolution expected to retrieve the right local observables:



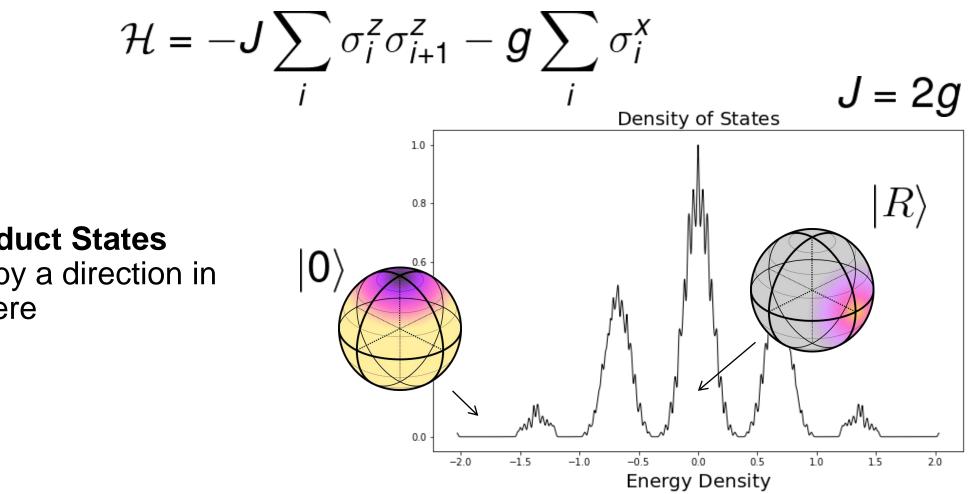
Design an auxiliary evolution expected to retrieve the right local observables:



Currently exploring small systems $L \leq 12$ for the lsing model

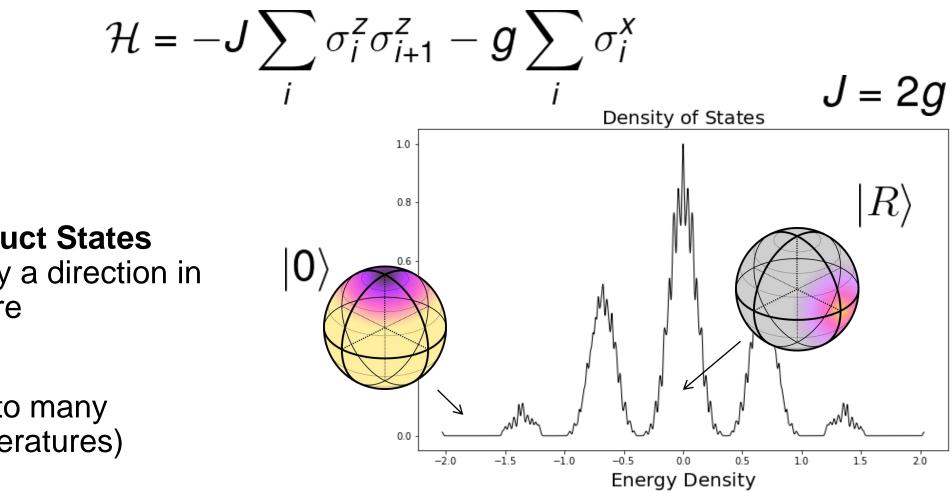


Currently exploring small systems L < 12 for the lsing model



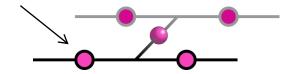
and initial **Product States** parametrized by a direction in the Bloch sphere

Currently exploring small systems $L \leq 12$ for the lsing model

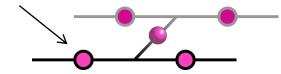


and initial **Product States** parametrized by a direction in the Bloch sphere

corresponding to many energies (temperatures)



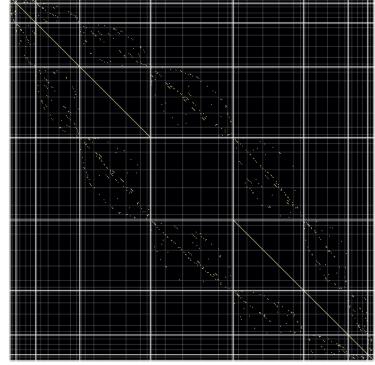
Basis election: parallel magnetization $\mathbb{M}^{||} = \sum \sigma_i^{||}$



Basis election: parallel magnetization

$$\mathbb{M}^{||} = \sum_{i} \sigma_{i}^{||} \quad (1) \text{ readily diagona}$$

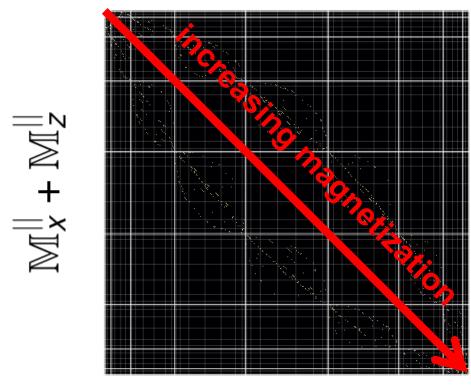
(2) magnetization sectors: **tidy and target** particular coherences



Basis election: parallel magnetization

$$\mathbb{M}^{||} = \sum_{i} \sigma_{i}^{||} \quad (1) \text{ readily diagonal}$$

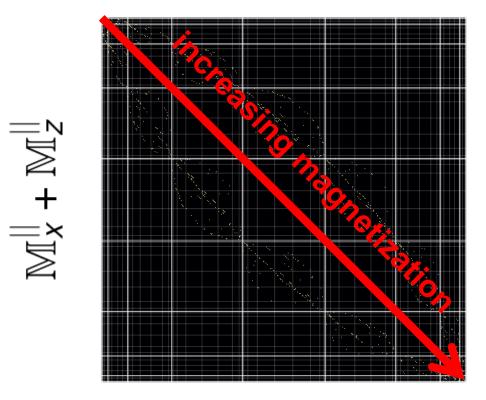
(2) magnetization sectors: **tidy and target** particular coherences



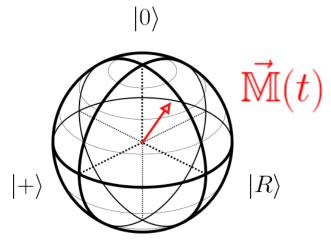
Basis election: parallel magnetization

$$\mathbb{M}^{||} = \sum_{i} \sigma_{i}^{||} \quad (1) \text{ readily diagonal}$$

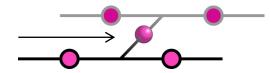
(2) magnetization sectors: **tidy and target** particular coherences



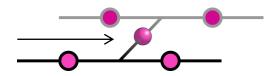
(3) expect strong overlap with instantaneous state for short times



0-th order approximation, **system entangles**

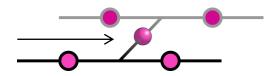


Core election: action on magnetization eigenstate $|\Psi_i\rangle$

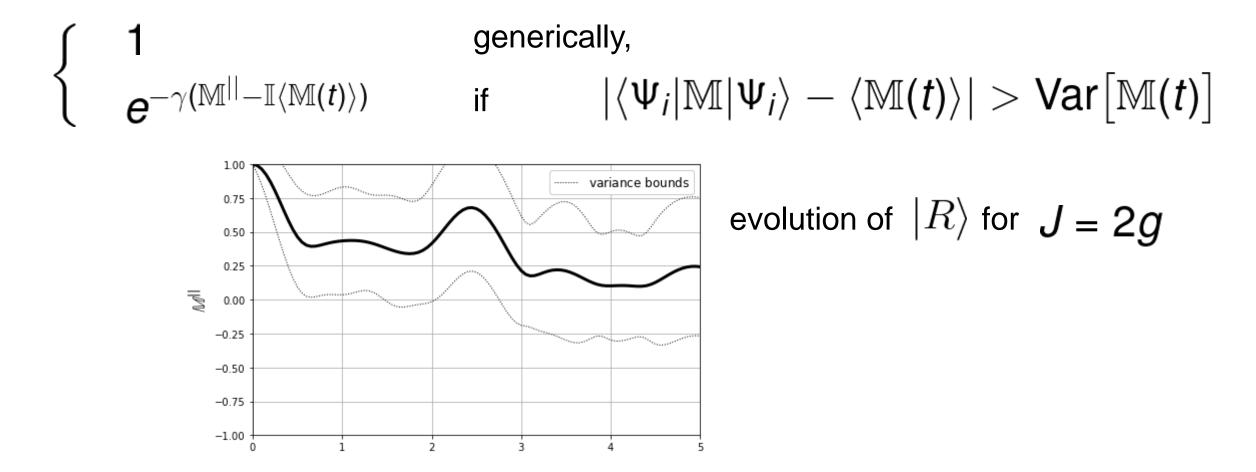


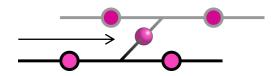
Core election: action on magnetization eigenstate $|\Psi_i\rangle$

 $\begin{cases} 1 & \text{generically,} \\ e^{-\gamma(\mathbb{M}^{||} - \mathbb{I}\langle \mathbb{M}(t) \rangle)} & \text{if} & |\langle \Psi_i | \mathbb{M} | \Psi_i \rangle - \langle \mathbb{M}(t) \rangle| > \mathsf{Var}[\mathbb{M}(t)] \end{cases}$

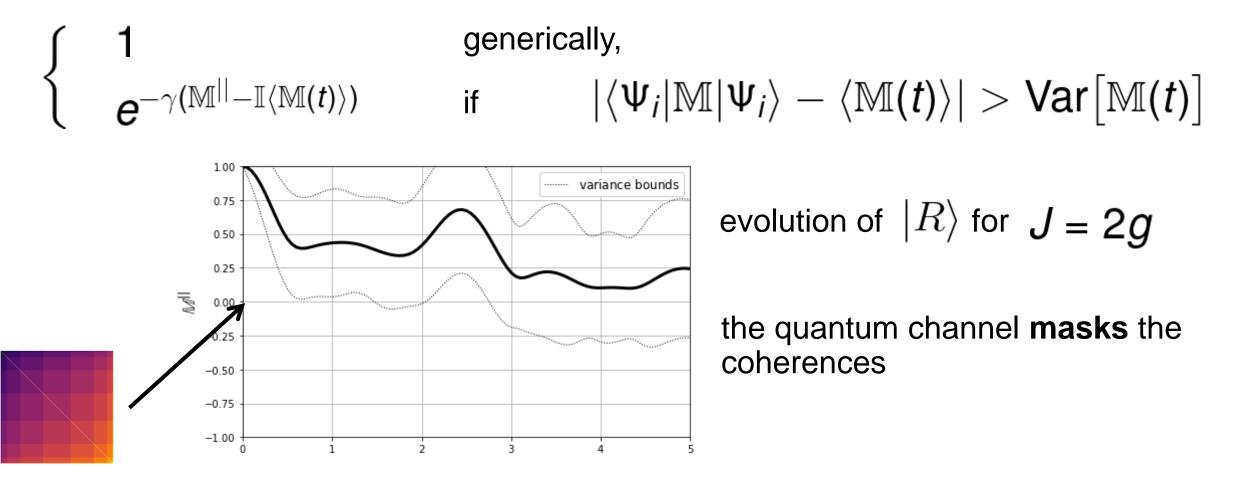


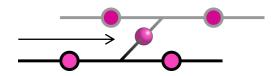
Core election: action on magnetization eigenstate $|\Psi_i\rangle$



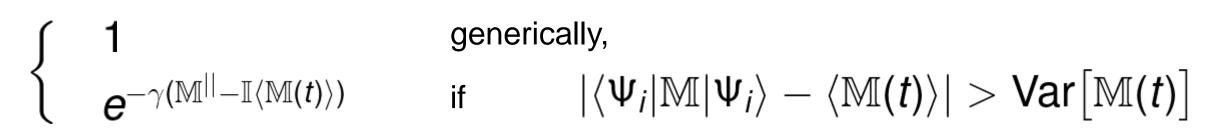


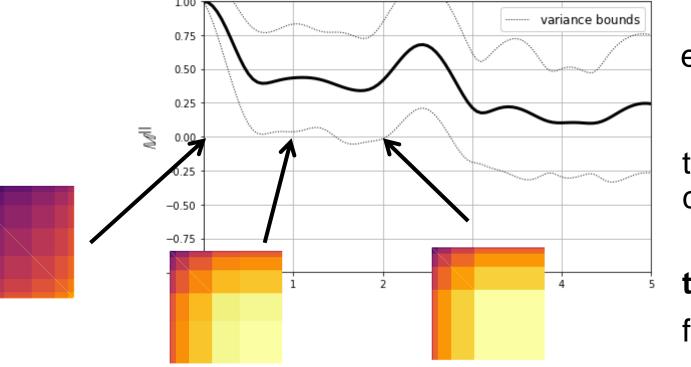
Core election: action on magnetization eigenstate $|\Psi_i\rangle$





Core election: action on magnetization eigenstate $|\Psi_i\rangle$



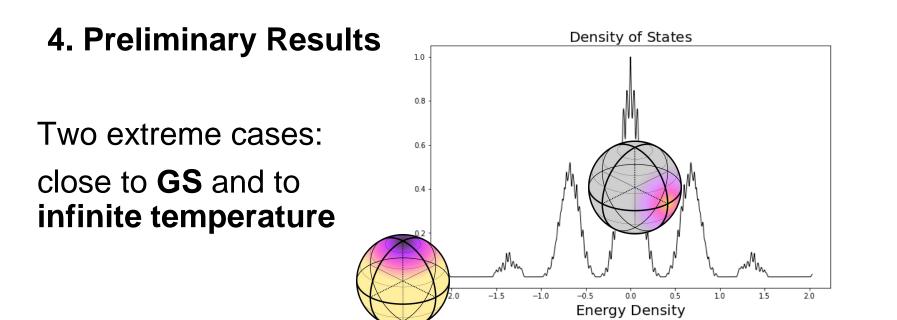


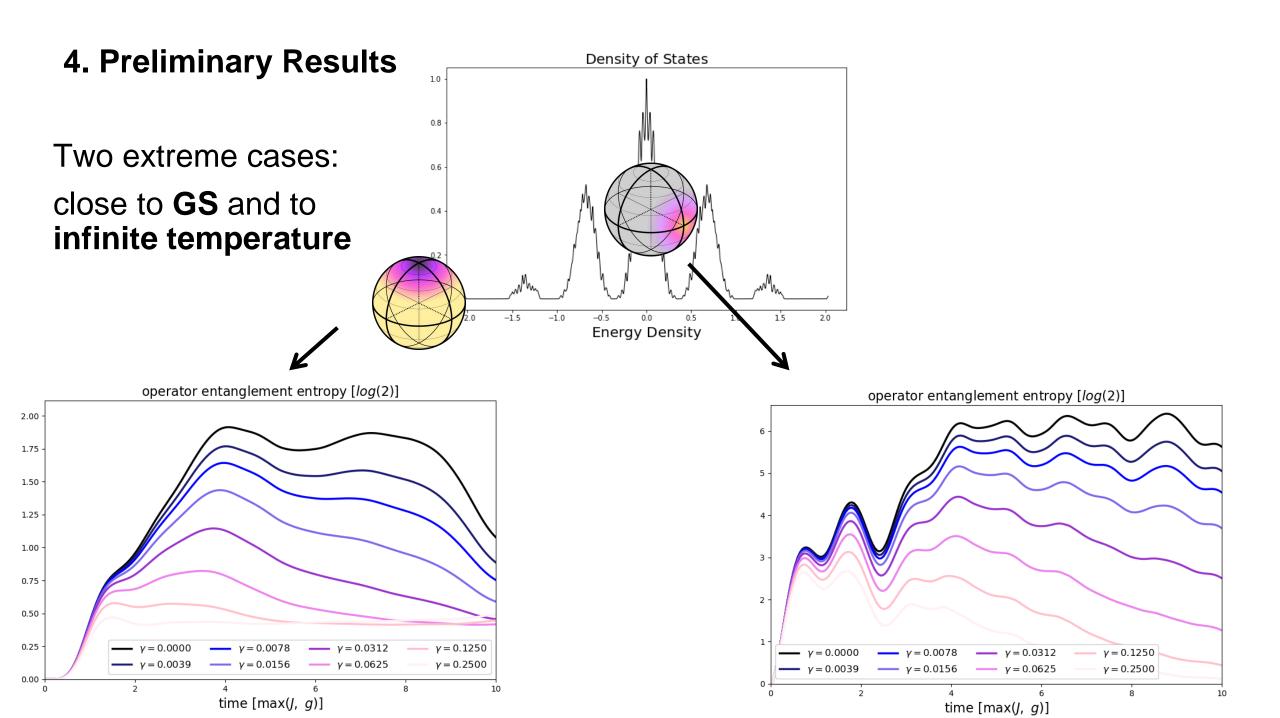
evolution of $|R\rangle$ for J = 2g

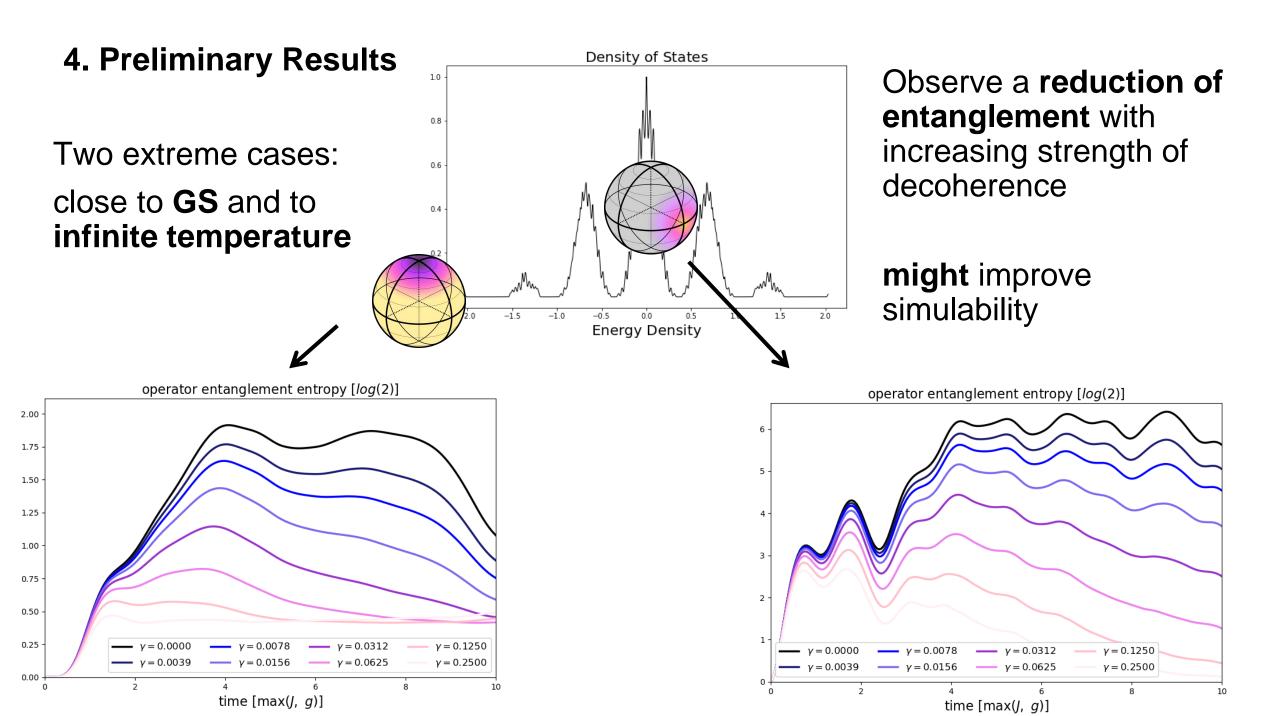
the quantum channel **masks** the coherences

time dependent!

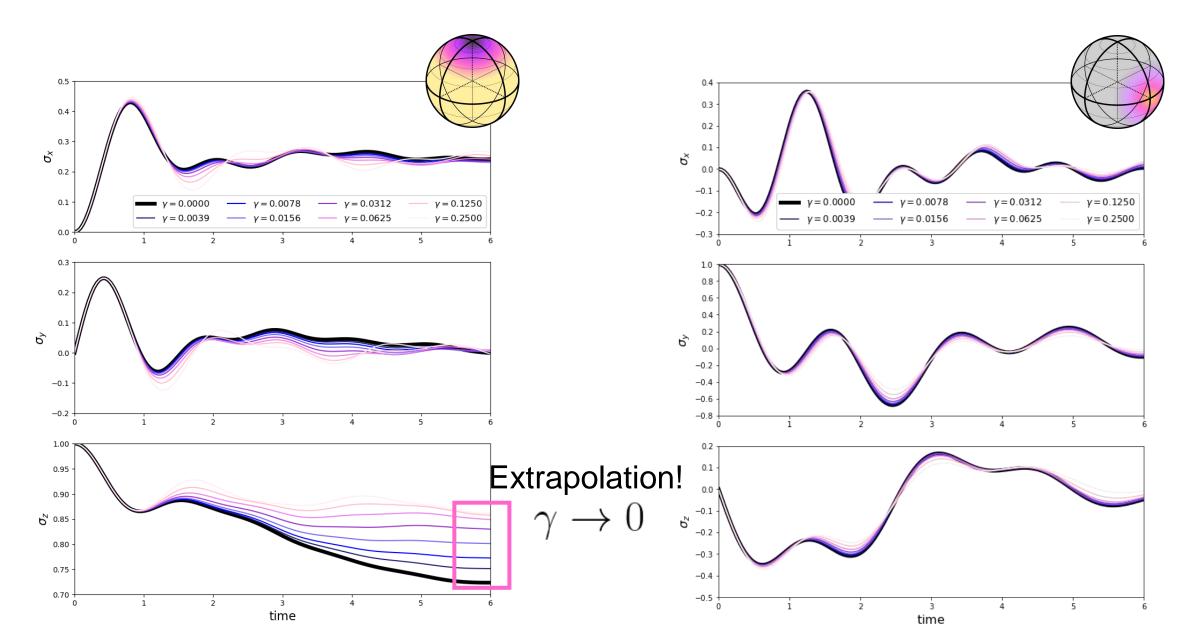
follow the change in variance



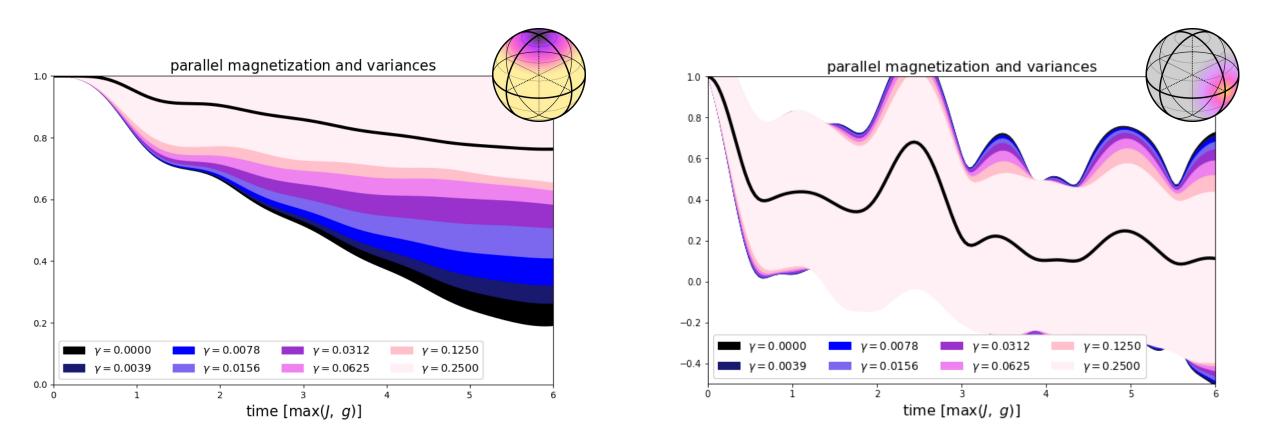




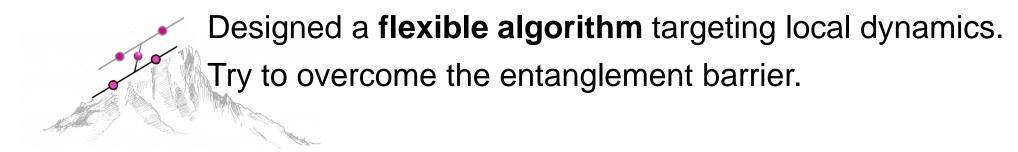
'Good performance'



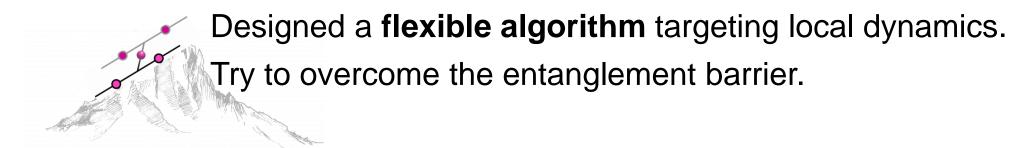
Physically: filtering with operator having a small variance on the current state



Designed a **flexible algorithm** targeting local dynamics. Try to overcome the entanglement barrier.

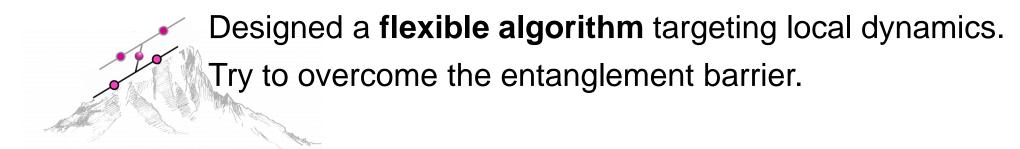


Not all coherence would be necessary to predict local observables.



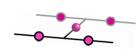
Not all coherence would be necessary to predict local observables.

⁶ The use of dissipative coupling can decrease the operator entanglement (range of applicability to be determined)

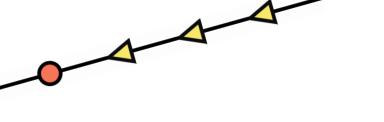


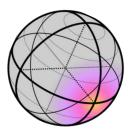
Not all coherence would be necessary to predict local observables.

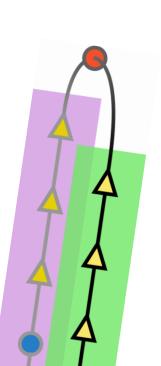
⁶ The use of dissipative coupling can decrease the operator entanglement (range of applicability to be determined)

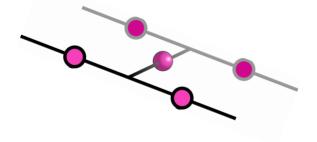


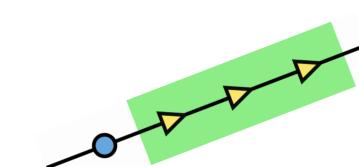
In case of proven efficiency: clear **extensions** to **non-local** observables (yet to come)



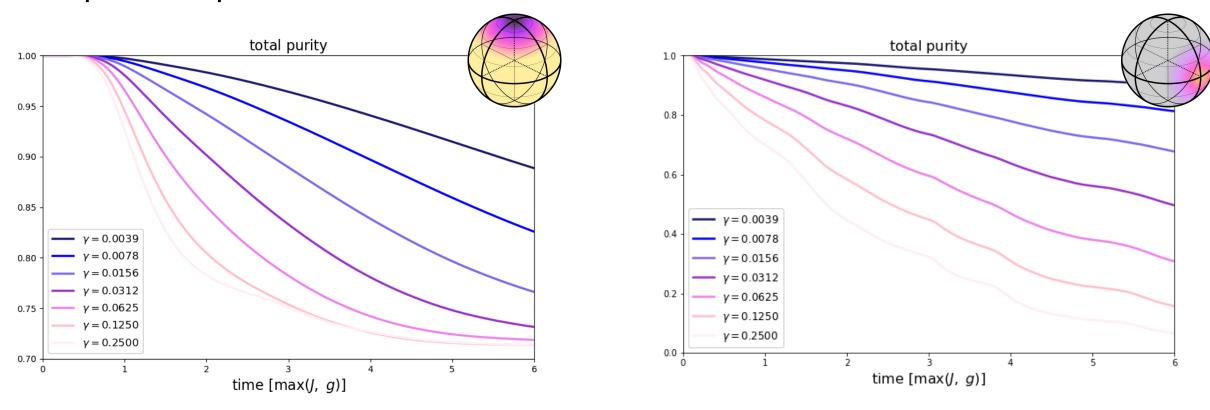








5. Backup: depurification



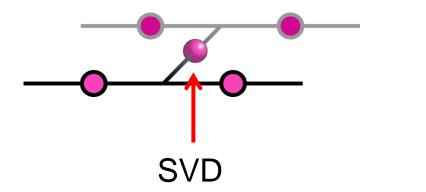
Dissipation depurifies total state...

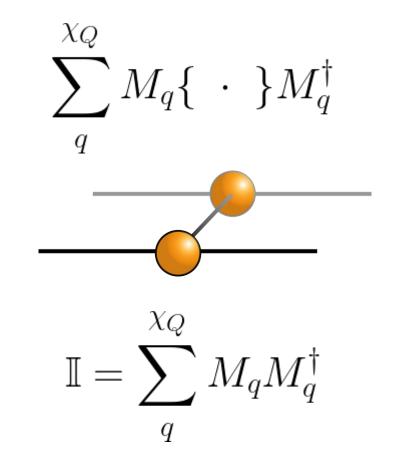
...this hinders the simulability in case of excessive loss of purity.

This bounds dissipation intensity from above (while memory does it from below).

5. Backup: connection to measurement

Reshaping the core copy tensor:





if weak: could think on thermalization by connection to a reservoir

 \leftarrow

generalized quantum measurement

5. Backup: fine decoherence

$$\begin{split} \mathbb{M}_{(1)}^{||} &= \sum_{i} \sigma_{i}^{||} & \text{generate extensive set of commuting operators in which we can decohere} \\ \mathbb{M}_{(2)}^{||} &= \sum_{i} \sigma_{i}^{||} \sigma_{i+1}^{||} \\ \mathbb{M}_{(3)}^{||} &= \sum_{i} \sigma_{i-1}^{||} \sigma_{i}^{||} \sigma_{i+1}^{||} \\ \end{split}$$

rates ~ Lagrange multipliers ~ temperatures

numerically: allow for **multidimensional extrapolation** $\lambda_i \rightarrow 0$ physically: generalized thermalization?

5. Backup: variational formulation

Generic formulation of the algorithm:

(1) find local operators whose variance is minimal at instantaneous state

$$\mathcal{C}(\{\theta_i\}) = \operatorname{tr}\left\{\rho^{\dagger}(t)Q^{2}(\{\theta_i\})\right\} - \operatorname{tr}^{2}\left\{\rho^{\dagger}(t)Q(\{\theta_i\})\right\}$$

written as MPO

(2) filter in the operator eigenbasis

generate mixture of similar operators with the proper local information frustration free operator!

$$\mathbb{M}_{(1)}^{||} = \sum_{i} \sigma_{i}^{||}$$