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Quantum Simulation Quantum MetrologyQuantum Information Processing

Essential: Preparation, control and manipulation of quantum states with high-fidelity and in a fast and robust way
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Shortcuts To Adiabaticity

(a) Inverse engineering  
(b) Transitionless quantum driving (counter-diabatic protocols)
(c) Fast-forward scaling approach
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First principle:  Berry’s ‘ Transitionless quantum driving’

CD term

Adiabatic gauge potential
Responsible for transition

Limitations :  priori knowledge of the system’s eigen state; hard to implement in the lab. 

Consider approximate gauge potential 𝐴!
∗

Minimizing the action : 

where

Consider approximate gauge potential as

First order nested commutator :

PNAS 114, E3909 (2017) PRL 123, 090602 (2019)

Counter-diabatic Driving

J. Phys. A 42 365303 (2009); PRL 105, 123003 (2010)
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quantum annealing of the p-spin model

LHZ model

transverse-field Ising model

quantum alternating operator ansatz (QAOA)
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Adiabatic Quantum Computation

Adiabatic quantum computation (AQC) is a form of quantum computing which relies on 

the adiabatic theorem to do calculations and is closely related to quantum annealing

Rev. Mod. Phys. 90, 015002 (2018)
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• In principle any computational problem can be encoded in this way.

• The total run time depends on the minimum spectral gap (𝛥#$% ) of H(t).
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The circuit model can efficiently simulate the adiabatic quantum computing by using the digitization

• Flexibility to construct arbitrary interactions using single and two qubit gates.
• Consistent with error correction. 

Nature 534, 222 (2016)

The time evolution operator: 

digitization

Trotterization -- >
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How the CD driving assist the digitalized adiabatic quantum computing? 



Single Spin System
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Preparing GHZ State - Nested Commutator Non-Integrable Ising Model - Local CD driving 

Phys. Rev. Appl. 15, 024038 (2021)
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GHZ:

STA in Digitized AQC



Phil. Trans. R. Soc. A 380: 20210282 (2022)

SPSA Algorithm and Optimization

Nearest-neighbour Ising model and GHZ state preparation



Noisy Intermediate-Scale Quantum (NISQ)

NISQ era NISQ devices

• No fault-tolerant quantum error correction

• Noise-mitigation techniques

• Circuit depth determined by gate fidelity  

NISQ algorithms

• Performance analyzed mostly heuristically 

• Quantum-classical feedback loops

• Paradigm: prepare, reset, repeat

13Digitalized Counter-Diabatic Quantum Computing（DCQC）-> Quantum Advantage 



Factorization

PRA 104, L050403 (2021)

QAOA

PRR 4, 013141 (2022) PRR 4, 043204 (2022) PRR 4, L042030 (2022)

Portfolio

Non-stoquastic Catalyst
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Applications & Extensions

QUBO



Adiabatic Quantum Factorization

Let N be the number we want to factorize, p and q are the prime factors satisfying the equation N-pq = 0. 

Then, we can define the cost function as,

It’s possible to encode the solution of a minimization problem in the ground state of a Hamiltonian,

where and . This Hamiltonian can be written as,
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Multiplication Table Method - Factoring 2479

By squaring and summing all the equations, we get the cost function as

Factorization equations after classical 
pre-processing
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Factoring 2479 using approximate CD driving
By mapping the binary variables to the qubit operator, the final Hamiltonian corresponding to 

factoring 2479 is obtained

The approximate CD term calculated from 1st order nested-commutator ansatz takes the form, 

where , calculated using the variational method.
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Using Approximate CD driving

The CD terms are chosen from the operator

pool, restricted to only one and two spin terms.

The success probability of obtaining the ground state |0100〉for the Hamiltonian

corresponding to the factorization of 2479 as a function of total evolution time is shown.

The performance of different CD terms chosen from the operator pool is compared.

PRA 104, L050403 (2021)
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(b)(a) Factoring 35 Factoring 235

Factoring 35 & 235 experimentally: Using 1st order NC method in IBMQ 

Target ground state  → !
"

10 + 01 ) Target ground state  → |0101 ⟩
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Circuit implementation for the time evolution of the Hamiltonian to factorize 

35 = 7 × 5 using CD driving (two trotter steps). 19

prelim
inary results



DC-QAOA
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p

Compute
<C>

Classical Optimizer
Update

The expectation value is calculated by repeated measurements in the computational basis

The optimal parameters (α,β,γ) are found by using the classic computer. 

Variational wavefunction, generalized by 3p parameters

20



Ising Spin Models

(b) (c)(a)

PR Research 4, 013141 (2022); Phys. Rev. X 11, 031070 (2021)
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Classical Optimization Problems
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Sherrington-Kirkpatrick (SK)



Comparing Powell and Adagrad Optimizers

Intel Core i5-7200 U 2.50 GHz

Meta-Learning
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Protein Folding



Quantinuum Trapped-ions



Google QVMIBM Superconducting chip



Quantum Chemistry 
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Bravyi-Kitaev transformation
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See Poster by Julian and Inaki

preliminary results



v Digitized-adiabatic Quantum Computation:

Ø Flexibility to introduce arbitrary interactions: Non-stoquastic Hamiltonian’s can be easily implemented.

Any k-local Hamiltonian can be easily encoded without reducing it to QUBO form.

Ø Consistent with error correction. Error mitigation techniques are being developed for NISQ devices

v Shortcuts to adiabaticity for AQC:

Ø Substantial improvement in the fidelities in a very short time: Achieving the desired computation

results within the coherence time of the device. Reduced gate counts on a circuit model.

Ø Approximate CD term calculation does not require knowledge of the spectrum of the Hamiltonian.

Both variational and algebraic methods have been developed for the efficient calculation of the CD

coefficient.

v Digitized-Counterdiabatic QAOA & VQE:

Ø Counterdiabatic driving term to design a better ansatz for fast convergence.

Conclusion
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v Scalability

v Complexity

v Cost of STA

v Trotter Error

Outlook
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Extend the results to higher qubits \ Optimial Compliation (two-body intetaction)

Different optimizers \ Trotter error & adiabatic error \Barren plateau

prelim
inary re

sults
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