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Quantum computing

d-level system — Qudit!
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« Coupling molecules to superconducting
circuits: Lumped Element Resonators
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Tunable resonant
frequency to match spin
levels
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« Coupling via microwave electromagnetic
fields
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Motivation: supervised learning tasks
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TensorFlow Keras

O PyTorch

 Digital paradigm

- Usual neural network
models, random
forests, Xgboost...

 Digital-analog
perspective

—> Ising machines,
reservoir computing,
etc

L. G. Wright et al. Nature 601, 549-555 (2022)
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Motivation: supervised learning tasks
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Motivation: supervised learning tasks

»(Generalization to more than two levels?
Any advantage? Any new paradigm?

»What is the model really “learning”?
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Variational algorithms

» Hybrid guantum-classical algorithm:
classical optimizer + quantum
processor

> Finding ground states, dynamical
simulations, error correction, machine
learning...

A. Peruzzo et al. Nat Comm 5, 4213 (2074)

A. Kandala et al. Nature 549, 242-246 (2017)

A. Chiesa et al. Nat Phys 15, 455-459 (2019)

M. Cerezo et al. Nat. Rev. Phys. 3, 625-644 (2027)
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Variational algorithms: ansatz

Our ansatz: monochromatic RF pulses - Rotations in the XY-plane of the two levels involved

Ha = —gus cos(wt + ¢)bye - S

Control

Read-out

A. Castro et al. Phys. Rev. Applied 17, 064028 (2022)
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Variational algorithms: ansatz

Our ansatz: monochromatic RF pulses - Rotations in the XY-plane of the two levels involved

Ha = —gus cos(wt + ¢)grf .G — R;1(0,¢0) = gjk(0,0) @ I=%

Control

cos(6/2) —isin(0/2)e'?
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Read-out
0 = gus|M; it
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A. Castro et al. Phys. Rev. Applied 17, 064028 (2022)
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Encoding strategy

Our ansatz: monochromatic RF pulses - Rotations in the XY-plane of the two levels involved

Ha = —gus cos(wt + ¢)grf .G — R;1(0,¢0) = gjk(0,0) @ I=%

We have 2(d-1) parameters to tune in a qudit > data of dimension 2(d-1)

However, we can encode higher dimensional data by dividing each point into n
vectors of dimension 2(d-1):

n d—2
L - — —
() =] ] Brrs1( 0,07 (0,9) = f(7.0)
17=1 k=0

A. Pérez-Salinas et al. Quantum 4, 226 (2020)
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Encoding strategy
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some metric.

We do so in QM! = Our data-points are mapped into the Hilbert space of our qudit.
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Metric learning: implicit vs explicit
In supervised learning, one of the most powerful approaches is Metric Learning.

We want to map our data to a feature space where points belonging to the same class are near

to each other while being as far as possible from points belonging to other classes: learning
some metric.

We do so in QM! = Our data-points are mapped into the Hilbert space of our qudit.

We seek to map points belonging to the same class to a quantum state that is close to the
reference state defined for that class and as far as possible (maximally orthogonal) to the other
reference states.

V. Havlicek et al. Nature 567, 209-212 (2019)
M. Schuld & N. Killoran Phys. Rev. Lett. 122, 040504 (2019)
S. LLoyd et al. Arxiv:2001.03622v2 (2022)

Implicit: you fix the reference states
Explicit: you include these states as parameters to be found in the optimization process
N. A. Nghiem et al. Phys. Rev. Res. 3, 033056 (2027)
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Maximally orthogonal states: More classes than levels?

Genetic algorithm for finding maximally orthogonal states for any configuration (d, N)

10)

d=14
0.7 pov ¥}
pocee
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. W
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51 pe
/ —— Welch bound

—— Levenstein bound
——— Orthoplex bound
—— Bukh-Cox bound
--+- genetic algo

4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
A. Pérez-Salinas et al. Quantum 4, 226 (2020) N
S. Smale. The mathematical intelligencer 20.2 pp. 7-15 (1998)

J. R. Morris et al. Phys. Rev. B 53, R1740(R) (1996)
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Metric learning: implicit vs explicit
/ i 2
L'=1-=) Flompm)  Flo,p)=IVoyll
F(om, pm) > (1 —¢€) |om — pml| < 2Ve
om = o[l < Alom — oml| + ||pmr — o || + [|lom: — o]

Hpm _pm’H < 4\/E‘|' ||0m’ _U’mH

To maximize the distance between data-points ensembles we have to obtain the furthest possible centres:
Maximally orthogonal states!

M. M. Wilde. Cambridge University Press (2013)
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o Iris dataset: 4 features & 3 classes

» One of the simplest
datasets that we can use
to benchmark our model

» Data dimension and
number of classes low

y 20 | Setosa | Virginica



Test accuracy

Results

o Implicit vs explicit in Iris dataset

Iris

35.83

38.33

45.00 L 4417
41.67

31.67

40.00

34.17

3 4
Qudit dimension

% Quantum
SPAIN

» The system is able to find better
solutions by itself in some cases:
higher accuracies for the implicit
method

> Test accuracy saturates atd = 3

Implicit
Explicit
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o Implicit vs explicit in Iris dataset 0

Overlap

Eexphclt =1 + Zk T"“(,OkUk)

1
Eimplicit =1- E zk: TT(IOQ)

y
+ =D Tr(prpr)

k<l
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o Breastcancer Wisconsin dataset: 10 features & 2 classes

Benign samples

Malignant samples

https://medium.com/analytics-vidhya/breast-cancer-diagnostic-dataset-eda-fa0de80f15bd

» More sophisticated
problem in terms of
number of points and
features



Test accuracy

Results

o Implicit vs explicit in Breast Cancer dataset
Breast Cancer Wisconsin

96.07
93121

96.07 96.25 96.25 9589 9589

Implicit
Explicit

9054

88|21

2

3 4
Qudit dimension

% Quantum
SPAIN

» Lower accuracies than for the Iris
dataset

» Both methods offer similar
performance

» Qudit dimension does not play a
crucial role
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o Comparison with best classical models

Breast Cancer Wisconsin Iris

SVM

®

Rahdom Forest

NN

Architecture

Logjistic Regressi?on : : : : ; : :
5 5 I —e { | ; —e 5 I

Single qudit
I S S | [ S R

88 92 96 100 84 88 92 96 1 OO
Test Accuracy Test accuracy

https://archive-beta.ics.uci.edu/datasets
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»What happens when the data dimension is
much higher than the qudit dimension?

Dim(x) >> d
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Results

o Dim(x) >>d

o Image classification: MNIST digits 28x28 features and 10 classes
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Results

o Hybrid Convolutional Network
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o Hybrid Convolutional Network
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H Increasing the number of levels offers advantages in terms of information
management and processing.

 we have developed tools to deal with any kind of dataset (hnumber of levels
and data dimension) in supervised learning tasks with a single unit of
information.

L These tools are hardware efficient: it can be easily implemented in any
experimental architecture.

H Moreover, we can extract a geometrical interpretation of what does it mean to
learn for this particular kind of model and strategy.
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