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(working with temporal series) 

● Dynamical systems
● Noisy processes
● Input/output maps 

Short answer: machine learning technique that exploits 
dynamical systems

 What is Reservoir Computing?

Applications: 
● Biomedicine 
● Engineering 
● Financial
● Communication... Gouhei Tanaka et al.

Neural Networks
 2019
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Reservoir Computing

Take a dynamical system 
(reservoir)

Train only the linear output yk, 
don’t need to tune the dynamical 
system!!

Natural dynamics process 
the information T ( ⇒ Xk)

Ready to use!

Extract the output information 
from Xk: linear combination yk 

How does it work?

Supervised ML!

Every time step k, introduce 
the input Zk into the reservoir 
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Why Reservoir Computing?
● Fast training (linear regression is enough!)
● Multitasking (don’t need to tune the dynamical system!!) 
● Implementable in hardware  

But what about quantum systems?
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Quantum Reservoir Computing

Use a quantum system as the 
dynamical system (reservoir)

Why quantum?
● Number of degrees of freedom increases exponentially 

in few body systems
● Accessible on noisy quantum devices 
● Extension to process quantum data

What is Quantum Reservoir Computing?

Use the observables for the 
output! 

2021!
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● Why it is important: universal approximation property and 
connection with experimental design.

● What we did: find necessary and sufficient conditions of useful 
reservoir systems. 

● Context: only a few theoretical results in the field. Mainly sufficient 
conditions for useful reservoir systems.  

Communication 
Physics, 2021

● Useful reservoirs: those that ensure a minimum level of 
performance.

ArXiv: 2212.12078
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Result 1

● Result 1: merging the two scales of convergence. A 
quantum reservoir has the fading memory property if and only 
if the dynamics of channel is contracted in some norm at each 
time step.

Example of 
one qubit:

Wikipedia

Quantum 
channel in 
observables 
form:

Induced norm

There is an equivalent condition in density matrix form

input

 D. J. Hartfiel, 
Nonhomogeneous 
matrix products,
2002 
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● Result 2: a quantum reservoir becomes input-dependent 
(useful in the long-term) if and only if the quantum 
channel have a unique input-dependent fixed point.

● Intuition:  convergence makes the system approach an 
attractor. To drive a system over time steps you need 
attractors that depends on the input.

Quantum channel 
in matrix form:

input

fixed point
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Solution 1: 

Input-independent fixed 
point:

Result 2 says that this 
system is useless for 
long-input sequences (or 
not that long...)

This is 
supposed to be 
a driven system!

Conclusion: fading memory is important, but the design is 
very important as well! 
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Solution 2: 

Input-dependent fixed 
point:

Result 2 states that this 
system will be always 
input-dependent!

Conclusion: we don’t know how good the reservoir is for 
specific tasks, but it works!  
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Conclusions

Different representations of quantum 
systems can provide a better insight 
of reservoir computing properties 

A quantum reservoir is useful if and 
only if the dynamics converges 

towards input-dependent fixed points 

(Quantum) Reservoir Computing might 
be a good alternative to conventional 
computers to process temporal data
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Studying infinite dimensional 
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Extending the theory to non-
ideal situations: finite number 
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Finding the most general 
conditions for universal 
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