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* Possible alternative in Neuromorphic Computing:
brain-inspired computing paradigm. Computation
and physical substrate go hand by hand

Characteristics:
* Energy efficient

* Co-locate processing and memory

 Parallel computing

Machine learning is already taking
advantage of this progress. Example:
Reservoir Computing
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What is Reservoir Computing?

Short answer: machine learning technique that exploits
dynamical systems

Target: Temporal tasks @ :
(working with temporal series . N
* Dynamical systems/b L
* Noisy processes P
* Input/output maps ‘

Applications: 5
» Biomedicine
* Engineering
* Financial

Time

e Communication... Gouhei Tanaka et al.
Neural Networks

2019
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Take a dynamical system
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Every time step k, introduce™ -~
the input Z« into the reservoir i

Reservoir yk — WT o xk

Natural dynamics process Extract the output information
the information (7T'=- Xk) from Xk: linear combination Yk

Supervised ML!

Train only the linear output Yx,

don’t need to tune the dynamical Ready to use!
system!!
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Why Reservoir Computing? T
« Fast training (linear regression is enough!) Yk = W * Xk
* Multitasking (don’t need to tune the dynamical system!!)
* Implementable in hardware

But what about quantum systems? o0
-~
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What is Quantum Reservoir Computing?

ADVANCED

QUANTUM
TECHNOLOGIES
www.advquantumtech.com

PERSPECTIVE

Opportunities in Quantum Reservoir Computing and
Extreme Learning Machines 20211

Pere Mujal, Rodrigo Martinez-Pefia, Johannes Nokkala, Jorge Garcia-Beni,
Gian Luca Giorgi, Miguel C. Soriano, and Roberta Zambrini*

Reservoir Network
Use a quantum System as the

dynamical system (reservoir) |nput # ‘;é Output
P’ 20— A,

Use the observables for the
output! Zk (O)y

T(Pk—lz Zk)
Why quantum?
* Number of degrees of freedom increases exponentially
In few body systems
* Accessible on noisy quantum devices
e Extension to process quantum data
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Roberta Zambrini® '™

 What we did: find necessary and sufficient conditions of useful
reservoir systems.

 Why it is important: universal approximation property and
connection with experimental design.
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Result 1

Result 2
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There are two “scales” of convergence:

Result 1

* At each time step: convergence of the guantum channel towards

its fixed point

* Over time steps: fading memory property

* Fading Memory Property (FMP): memory of past inputs.

time

Reservoir dynamics
forgets the initial
conditions and
dissipates past
Inputs
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* Result 1: merging the two scales of convergence. A
guantum reservoir has the fading memory property if and only
If the dynamics of channel is contracted in some norm at each

time step.
Example of p=>x=(1, (0),(07),{0%))
one qubit: {Bi} _ {I/ Gx, Gy, O.Z}

Wikipedia

Quantum — —
channelin X ; = (T(Zk)|?{0)i,]’xk—l,]’ + T(Zk)o]' Ho = {o",07,07)
observables

form: input - 1
T(zy)ij = Etr(BiT(B i ZK))
Al - | Ax]| — D. J. Hartfiel,
o« onnomogeneous
[IAlll := sup induced norm [[|T(z)lg¢|I| < 1 | non
|Ix||#0 | |X| | matrix products,
2002

There is an equivalent condition in density matrix form
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* Result 2: a quantum reservoir becomes input-dependent
(useful in the long-term) if and only if the quantum
channel have a unique input-dependent fixed point.

tum channel * |
mmaurorm: L"), ze) = p(z) T

ixed point

* Intuition: convergence makes the system approach an
attractor. To drive a system over time steps you need
attractors that depends on the input.
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Is example 1 a useful quantum reservoir?

Example 1: p =—ilH,p] + VLPLJF - Z{UL, P}

2
h
(;k)az L=0o

H =




Solution 1:

Does this system fading
memory property?

Solution 1
o =—ilH, p] + prL"L — %{L‘LL, 0}
H = h(;k)az L=0"



Solution 1:

Does this system fading
memory property?

Bloch vector representation:

Solution 1
p = ~ilH, pl + yLpL' = Z{L'L, p)
H="07  L=o
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Solution 1: p = —i[H, p] + yLpL" - g{L‘LL, o}
Does this system fading H = h(zk)gz =0
memory property? 2

Bloch vector representation:

(1Y (1 0 0 0 \( 1 )
| 0 o7 cos(hiAt) o7 sin(lAt) 0O (0% k-1
(| 0 —e sin(hAt) e cos(Ar) 0 []€0)k
(o) (erat -1 0 0 e 7 )\ (01,

Xp i = (Tf(Zk)H{O)i,]‘xk—l,]’ + T(2x)oj
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Solution 1: p = —i[H, p] + yLpL" - %{L‘LL, o}
Does this system fading H = h(zk)gz =0
memory property? 2

Bloch vector representation:

(1Y (1 0 0 0 Y/ 1 )
| 0 o7 cos(hiAt) o7 sin(lAt) 0O (0% k-1

CR% 0 —e sin(fAt) e cos(A) 0 || €02k

\<(72>k} \e_VAt —1 0 0 e~ VAL \<(72>k—1)

?
T (z) |4, ||| < 1

Xk, = (T(Zk)m)i,jxk—l,j + T(zx)o;
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(1Y (1 0 0 0 Y/ 1 )
| 0 e cos(hiAt) e sin(lAt) 0O R
CR% 0 e sin(hAt) e cos(At) 0 ||[<07)k=1

\<(72>k} \e_VAt —1 0 0 e_VAt \<(72>k—1}

?
T (zi )| |l] <1
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(1Y (1 0 0 0 Y/ 1 )
| 0 o7 cos(hiAt) o7 sin(lAt) 0O (0% k-1
CR% 0 —e sin(fAt) e cos(A) 0 || €02k

\<(72>k} \e_VAt —1 0 0 e~ VAL \<(72>k—1}

?
T (zi )| |l] <1

Induced Frobenius norm:
maximum singular value

”ITl?{o”lF — Smax(Tlﬂo)
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Bloch vector representation:

(1Y (1 0 0 0 Y/ 1 )
| 0 o7 cos(hiAt) o7 sin(lAt) 0O (0% k-1
(| 0 —e sin(fAt) e cos(A) 0 || €02k
\<(72>k} \e—VAf_l 0 0 e~ VAL \<(72>k—1 )
1Tzl < 1

Induced Frobenius norm:

maximum singular value —yAt

o N s1=e <1
”ITl?{o”lF — Smax(Tlﬂo) Sp = S3 = B_yAt/Z <1



9 e |
IFISC ¢ 4. Solution 1

Bloch vector representation:

(1Y (1 0 0 0 Y/ 1 )
| 0 e cos(hiAt) o5 sin(lpAt) 0 ||| (0" -1
(o) 0 —e™T sin(hAt) e cos(At) 0 ||| €07k
\<(72>k} \e_VAt —1 0 0 e_VAt \<(72>k—1)
?
11T (z) g, ] < 1
Induced Frobenius norm:
maximum singular value 5, = e VA <
”ITl?{o”lF — Smax(Tlﬂo) 52 =53 = e—)/At/Z <1
This system has fading memory [ © ©
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Bloch vector representation:

(1Y (1 0 0 0 Y/ 1 )
| 0 o7 cos(hiAt) o7 sin(lAt) 0O (0% k-1
(| 0 —e sin(fAt) e cos(A) 0 || €02k
\<(72>k ) \e—VAf —1 0 0 e~ VAL \<(72>k—1 )
1T (zi)lgglll < 1
Induced Frobenius norm:
maximum singular value 5, = e VA <
”ITl?{o”lF — Smax(Tlﬂo) 52 = 53 = e—)/At/Z <1

This system has fading memory o 0
But...
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Solution 1:

Input-independent fixed
point: * 00 < -
P =101

AR,

o =—ilH, p] + )/LpL"L —
o h(;k)gz -

Solution 1

2

P(LTL, p)

o
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Solution 1:

Input-independent fixed

point:
p* — 00 [ I )
01 -

 \a

H =

0.0 -

—0.2 -

__—0.4-
N
L)

—0.6 A

—0.8 -

This is
supposed to be
a driven system!

o

—1.0 -

5

10 15 20
Jst

Solution 1

6 = —i[H, p] + yLpL" = L{L'L, p)

2

o° [L=0"

h(zy)
2

Result 2 says that this
system is useless for
long-input sequences (or
not that long...)
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6 = —i[H, p] + yLpL" = L{L'L, p)

Solution 1: 5
Input-independent fixed ~ h(zi) [
point: H = 0 =0
(00 %% :
P =101 -
0.0 A ]
s N Result 2 says that this
| ;:"S S ot e system is useless for
N R adpr?ven system! long-input sequences (or
~ 0.6 not that long...)
~0.81 //
—1.0 1 | . . . .
0 5 10 15 20

Jst

Conclusion: fading memory is important, but the design is
very important as well!
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D
Is example 2 a useful quantum reservoir?

Example2:  p = —ilH, pl + yLpL' — S{L'L, o}




Solution 2:

Does this system have fading H =

memory property?

Solution 2
p = ~ilH, pl + yLpL' = Z{L'L, p)
h(;k)ax L=0o



Solution 2:

Does this system have fading H =

memory property?

Bloch vector representation:

Solution 2
p = ~ilH, pl + yLpL' = Z{L'L, p)
h(;k)cfx L=0o
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Solution 2: p = —i[H, p] + yLpL" - Z{L*L, o0}

2
Does this system have fading H = h(zk)ax L =0
memory property? 2

Bloch vector representation:

1)y (1 0 0 0 1 )
(0| _| 0 Tx 00 H{o"
(0?)k T31 0 T33 T34 (07 )k-1
\<Oz>k} \T‘H 0 T43 T44} \<Uz>k_1}

= (T(z)lp,)i, k-1, + T(zx)o;
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Solution 2: p = —i[H, p] + yLpL" - L, Pl

2
Does this system have fading H = h(zk)ox L =0
memory property? 2

Bloch vector representation:

(1) (100 03 1 )
(0| _| 0 T 0 O <o
(0¥ )k I3 O T33 T34 (07 )k-1
\<Oz>k} \T41 0 T43 T44 \<Oz>k 1)

T Tl o1

= (T(Zk)l?{o)z jXk=1,j T T(Zk 0j
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(1 )

(0" )k
(07 )k

\<Oz>k}

—_—

T3 =

(1 O 0 0) (1
0 T22 0 0 [[{(c")%
T31 0 T33 T34 <Gy>k

Ts1 0 Tys Taa )\

242h7

3y At

—_— _ 7/ _oyAt
T41—y2+—2hi{—y+e T (ycos

y2 Vi { 1+e #(COSh(

-y

At \/7/

= _ YAt
Ty =e 2
Ta3 = ¢ 1 \cosh 7Y 16hk) +—= — sinh
Yoo
= L ( At 2 2\ . 0% .
Ty = e 3 \cosh 7Y 16hk/ — smh\
Yo Lo
3yAt
= _ dye 12 At 2
Ty = ;2_16}1% sinh (Z \/)/2 16hk)

Solution 2
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Bloch vector representation:

(1 )
(07" )k
(0%)k

\<Uz>k}

(1
0
231

L4

Solution 2
00 0) 1 )
I22 0 O <0% )1
0 Tsz T34l (0" k-1
0 T43 T44 \<Uz>k—U "

Tzl < 1



Bloch vector representation:

(1 )
(07" )k
(0%)k

\(Uz>k}

(1
0
231

L4

Induced Frobenius norm:
maximum singular value

I Tl2lllF = Smax(Tl#4,)

Solution 2
0 0 03 1
Tx 0 00" )1
0 T33 T34 (07 k-1
0 T43 T44 \<Uz>k—U "

Tzl < 1
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Bloch vector representation:

(1 )
(07" )k
(0%)k
\(Uz>k}

(1
0
231

L4

Induced Frobenius norm:
maximum singular value

I Tl2lllF = Smax(Tl#4,)

51 =2¢€

—VAt/2 <1

Solution 2
0 0 03 1
Tx 0 00" )1
0 T33 T34 (07 k-1
0 T43 T44 \<Uz>k—U "

Tzl < 1
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Bloch vector representation:

(1) (100 03 1 )
(0" )k 0 | T2 0 00" )1
(0¥)x T511 O T33 T34 (0¥ )1
\<Uz>k} \T‘ﬂ 0 T43 T44 \<Uz>k_1} "

Induced Frobenius norm: |||/f(zk)|7{ Il < 1
maximum singular value !
T4, l1lF = Smax(Tle,) - . "

51 =

]
)

1.0
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Bloch vector representation:

(1) (100 03 1 )
(0" )k 0 | T2 0 00" )1
(0¥)x T511 O T33 T34 (0¥ )1
\<Uz>k} \T41 0 T43 T44 \<Uz>k_U "

Induced Frobenius norm: |||/f(zk)|7{ Il < 1
maximum singular value !

I Tl26lllF = Smax(Tlg)

]
)

o 0.8

S1 = ~YAL2 <1
This system
has fading [ © @  f
memory!! A !
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Solution 2: p = —i[H, p] + yLpL" - %{UL, Pl
Input-dependent fixed o= h(zk)gx [ =5
point: | 2

‘. _ 1 hz Z)/hk p |
P Y2 + 20> —zyhky +h] [e e
N
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EEEEEEEE

Solution 2: p = —i[H, p] + yLpL" - %{UL, Pl
Input-dependent fixed o= h(zk)gx [ =5
point: 2

. _ 1 hi i)/hk
P y2 + 212 \ =iy hi y:+h| [fe e

N\’
0.0 o
T ,\ Result 2 states that this
& —0.4 system will be always
~0.61 iInput-dependent!
—0.8 A

0 5 10 15 20
It
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Solution 2: p = —i[H, p] + yLpL" - %{UL, Pl
Input-dependent fixed o= h(zk)gx [ =5
point: 2

¢ _ 1 hi i)/hk |
P y2 + 212 \ =iy hi y* + I © o

-
0.0
T !\ Result 2 states that this
& —0.4 system will be always
~0.61 iInput-dependent!
—0.8 A
0 5 10 15 20

It

Conclusion: we don’t know how good the reservoir is for
specific tasks, but it works!
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Input Reservoir layer Output

(Quantum) Reservoir Computing might
be a good alternative to conventional
computers to process temporal data
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be a good alternative to conventional
computers to process temporal data

Different representations of quantum
systems can provide a better insight
of reservoir computing properties
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[FISC MARIA® Conclusions

Input Reservoir layer Output

(Quantum) Reservoir Computing might
be a good alternative to conventional
computers to process temporal data

Different representations of quantum
systems can provide a better insight
of reservoir computing properties

A quantum reservoir is useful if and
only if the dynamics converges
towards input-dependent fixed points
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Studying infinite dimensional
systems

Extending the theory to non-
Ideal situations: finite number
of measurements, POVMSs...

Finding the most general
conditions for universal
approximation property

IFISC
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