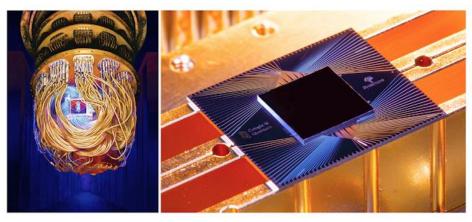
Electrical two-qubit gates within a pair of clock-qubit magnetic molecules

Dr. Aman Ullah

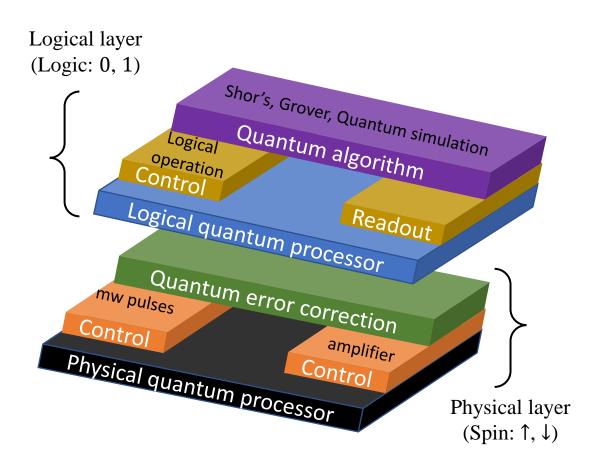
Institut de Ciència Molecular - ICMol (UVEG)

INSTITUTO DE CIENCIA MOLECULAR UNIVERSITAT DE VALÈNCIA


Outline

- 1. Introduction and objectives
- 2. Spin electric coupling (SEC) and coherent control over spins
- 3. Entangling two-qubit gates acting on molecular spin-qubits
- 4. Conclusions

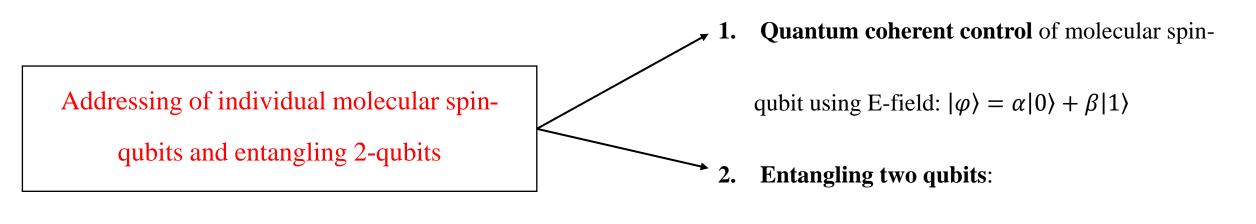
Introduction and objectives


 \checkmark A classical computer uses classical bits: either "0" or "1"

- ✓ A quantum computer uses quantum superpositions of "0" and "1", qubit: $|\varphi\rangle = \alpha |0\rangle + \beta |1\rangle$
- \checkmark Non-polynomial (NP) problems such as <u>prime-factorization</u> can be solved using quantum computers
- ✓ Superconducting qubits, nitrogen vacancies in diamond, semiconductor spin-qubits, molecular spin-qubits

Sycamore quantum processor mounted in the cryostat.

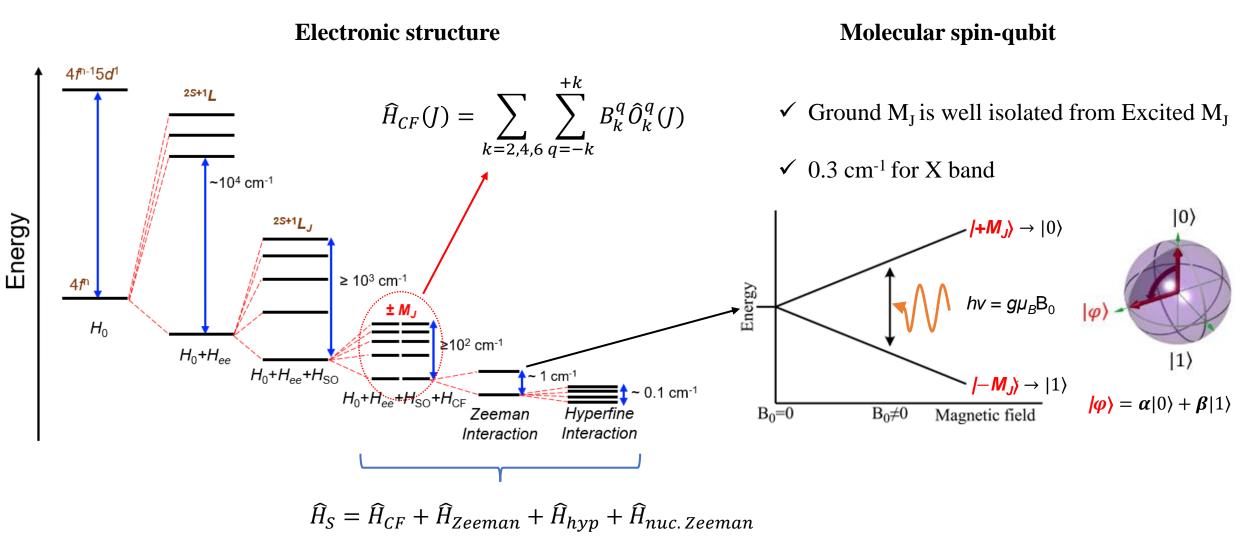
Molecular spin-qubit based quantum computing

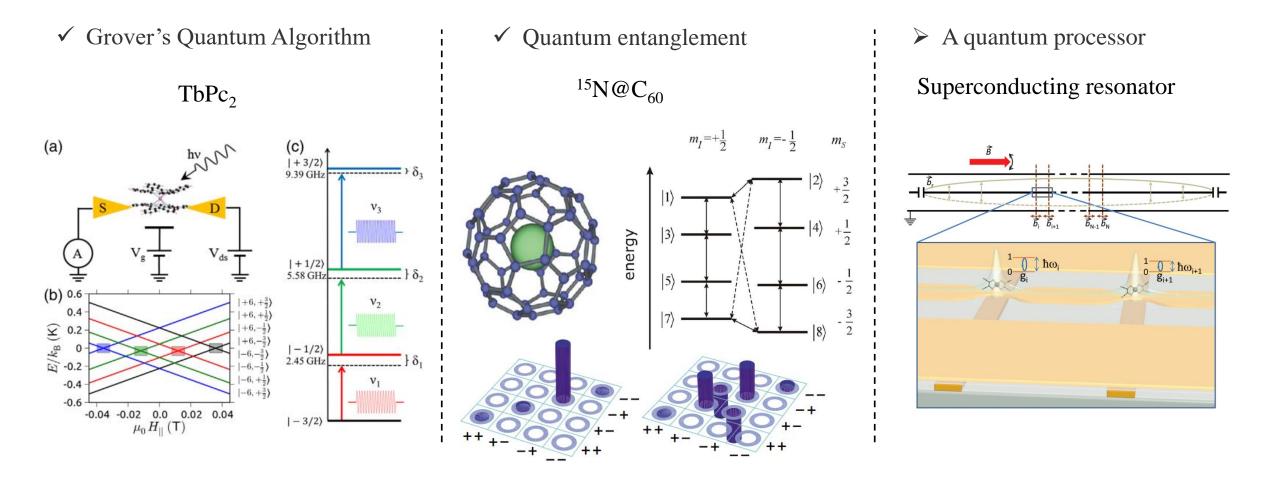

Advantages

- \checkmark Solid state approach, embodied on integrated chips
- ✓ Long coherence times (T_m) in ' μs ' to 'ms'
- ✓ Rich Hilbert space for molecular spin-qubits
- ✓ Tunable

Challenges

- A. Physical realization of qubit operations:
 - i. Addressing of individual molecular spin-qubits and entangling 2-qubits
 - ii. A path for scalability
- B. A precise control of molecular positioning and quantum circuits

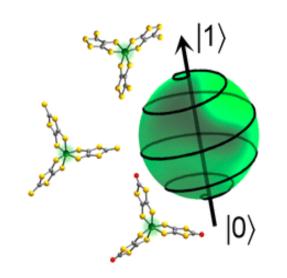

General objectives


$$|\varphi\rangle_1 = \alpha_1|0\rangle + \beta_1|1\rangle \& |\varphi\rangle_2 = \alpha_2|0\rangle + \beta_2|1\rangle,$$

Entangled state: $|\psi^{\pm}\rangle = \alpha_1 \alpha_2 |00\rangle \pm \beta_1 \beta_2 |11\rangle$

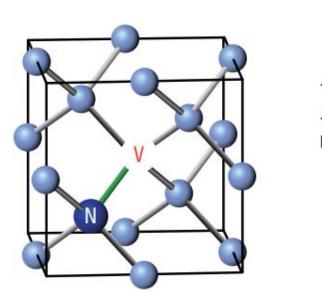
Molecular spin-qubit

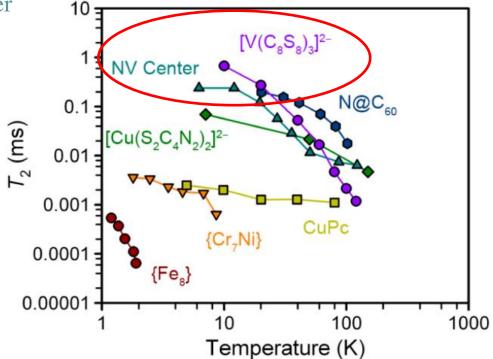
QIP using molecular spin-qubits


Godfrin, C., et al., Phy. Rev. Lett. 119.18 (2017): 187702.

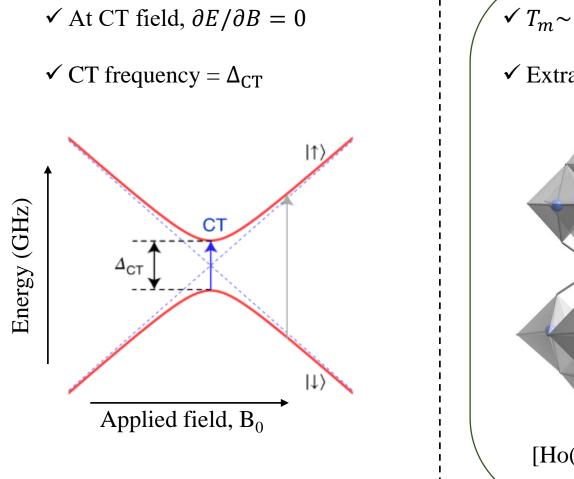
Mehring, M., et al., Phy. Rev. Lett. 93, 20 (2004): 206603.

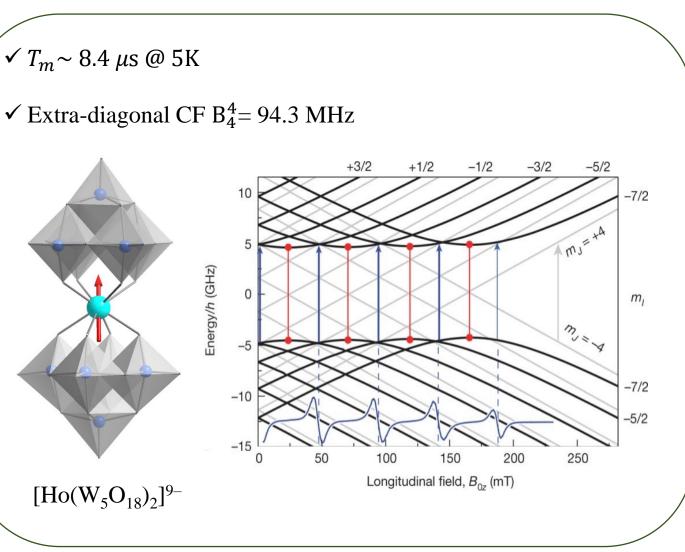
Gaita-Ariño, A., et al., Nat. Chem. 11.4 (2019): 301-309.


Quantum coherences in spin-qubits


- ✓ $T_m \sim 1 \text{ ms} @10 \text{K}$
- ✓ $(d_{20}$ -Ph₄P)₂[V(C₈S₈)₃]

Zadrozny, Joseph M., et al., ACS Cent. Sci. 1.9 (2015): 488-492.


- ✓ $T_m \sim 0.2 \text{ ms} @10 \text{K}$
- ✓ Nitrogen Vacancy (NV) center



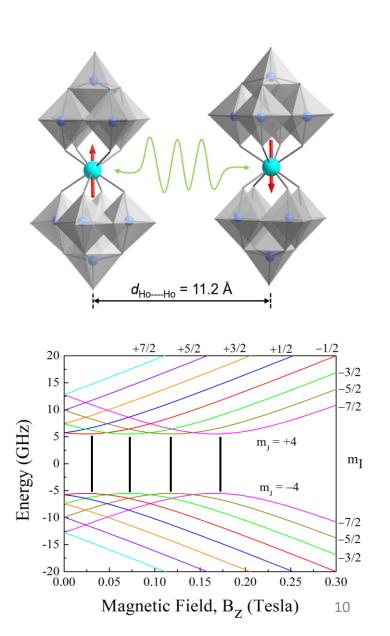
Takahashi, Susumu, et al. *Phy. Rev. Lett.* 101.4 (2008): 047601.

Molecular clock-transition (CT) spin-qubits

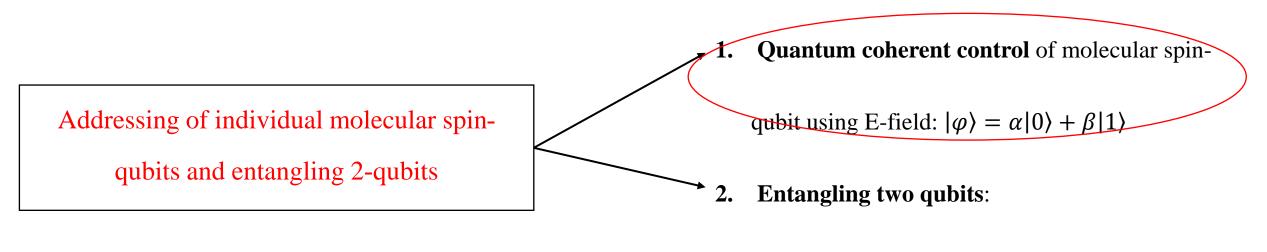
Shiddiq, Muhandis, et al., Nature 531.7594 (2016): 348-351.

Molecular clock-transition (CT) spin-qubits

✓ Ho³⁺ is a Lanthanide <u>non-Kramer</u> ion with J = 8 and I = 7/2


✓ A unit cell contains two inversion related $[Ho(W_5O_{18})_2]^{9-}$ (in short HoW_{10})

✓ Symmetry: near to D_{4d}


✓ Spin spectrum:

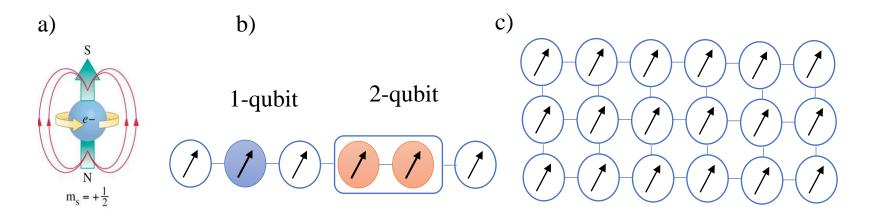
 $\widehat{H}_{S} = \widehat{H}_{CF} + \widehat{H}_{Zeeman} + \widehat{H}_{hyp} + \widehat{H}_{nuc. Zeeman}$

✓ Spin-qubit: $|\varphi\rangle = (\alpha | \pm 4 \rangle \pm \beta | \mp 4 \rangle) |-1/2\rangle$

General objectives

$$|\varphi\rangle_1 = \alpha_1|0\rangle + \beta_1|1\rangle \& |\varphi\rangle_2 = \alpha_2|0\rangle + \beta_2|1\rangle,$$

Entangled state: $|\psi^{\pm}\rangle = \alpha_1 \alpha_2 |00\rangle \pm \beta_1 \beta_2 |11\rangle$


✓ Maxwell's equations:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \qquad (1) \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial \mathbf{t}} \qquad (3)$$
$$\nabla \cdot \mathbf{B} = 0 \qquad (2) \qquad \nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial \mathbf{t}} \qquad (4)$$

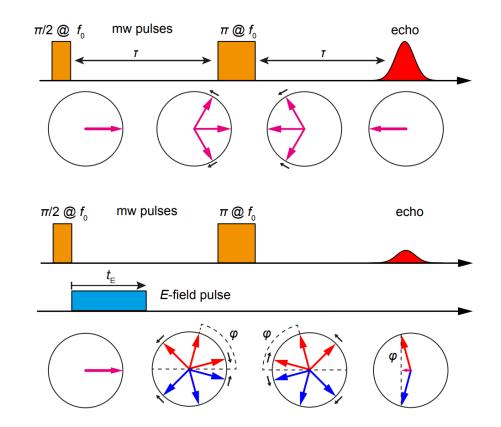
 \checkmark We can generate a directional or controlled **E**-field but we do not have magnetic monopoles (eq. 1 and 2)

✓ We have more freedom in designing the geometry of quantum device using E-Field rather than B-Field

 \checkmark For scalable quantum computing we need coherent control over spins (Objective)

<u>Requirement</u> Presence of strong spinelectric couplings (SECs).

Experimental configuration

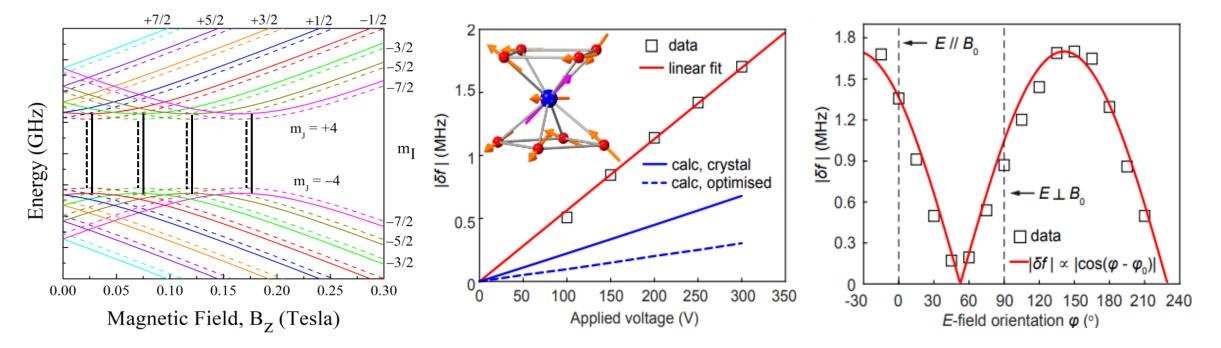

nature physics LETTERS https://doi.org/10.1038/s41567-021-01355-4

Check for updates

Quantum coherent spin-electric control in a molecular nanomagnet at clock transitions

Junjie Liu[®]¹[⊠], Jakub Mrozek¹, Aman Ullah[®]², Yan Duan[®]², José J. Baldoví[®]², Eugenio Coronado[®]², Alejandro Gaita-Ariño[®]²[∞] and Arzhang Ardavan[®]¹[∞]

Microwave Pulse sequence in EPR


Experiment: Arzhang Ardavan, Junjie Liu at CAESR,

Department of Physics, University of Oxford

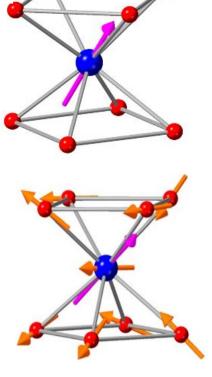
✓ Applied Voltage(V) = $\mathbf{E} \cdot \mathbf{d}$, where `d' (=2mm) is the distance between two-plates

 \checkmark A linear SECs is observed, SECs of order 11.4 ± 0.3 Hz/Vm⁻¹

 \checkmark Linear response is further confirmed through rotating E-field in y-z plane

Liu, J., Mrozek, J., <u>Ullah, A.</u>, et al., *Nat. Physics*, 17.11 (2021): 1205-1209.

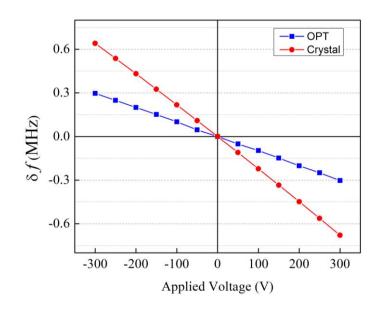
✓ **E-Field** will modify the spin-Hamiltonian, $\widehat{H}_{CF}(J, \vec{R}) \rightarrow \widehat{H}_{CF}(J, \vec{R}(E))$


$$\widehat{H}_{eff}\left(J, \overrightarrow{\mathbf{R}}(\mathbf{E})\right) = \sum_{k} \sum_{k=-q}^{+q} B_{k}^{q}(\mathbf{E}) \widehat{O}_{k}^{q}(J)$$

✓ **E-Field** will modify the electronic dipole-moment (δp)

 $\checkmark \vec{R}(E)$ can be modeled by decomposing the δp into <u>vibrational basis (orthonormal basis</u>)

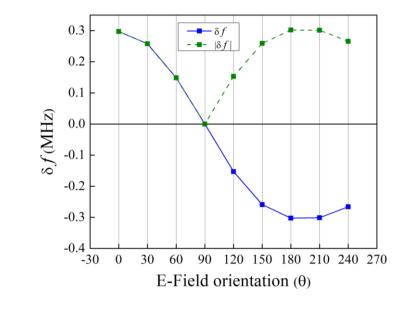
✓ From linear combination we can obtain $\vec{R}(E) = \sum_{i=1}^{3N-6} r_i$ and compute $\hat{H}_{CF}(J, \vec{R}(E))$


✓ δp is determined for each normal mode at DFT level and $\hat{H}_{CF}(J, \vec{R}(E))$ is determined at *ab initio* level (CASSCF-SO)

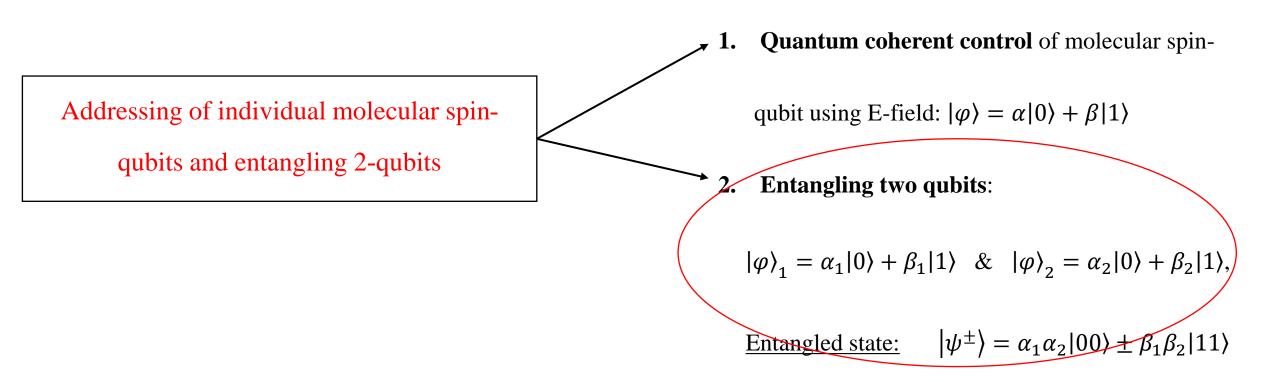
✓ Spin-Hamiltonian,

$$\widehat{H}_{eff}\left(J,\vec{R}(E)\right) = \sum_{k} \sum_{k=-q}^{+q} B_{k}^{q}(E) \widehat{O}_{k}^{q}(J)$$

- ✓ Theory: SECs of order 4.7 Hz/Vm⁻¹.
- ✓ Experimental value: 11.4 ± 0.3 Hz/Vm⁻¹.

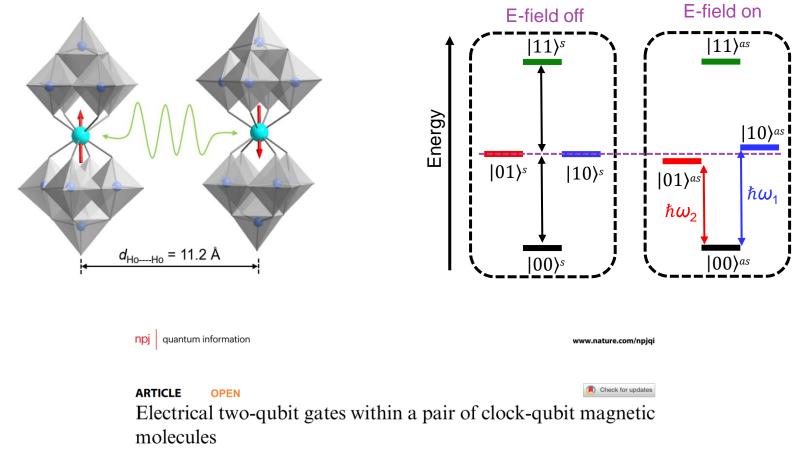


Angular Dependency


$$U_{i} = U_{E} = -\delta p E \cos(\theta)$$

$$\vec{R}(E,\theta) = \sum_{i=1}^{3N-6} r_{i}(E(\theta))$$

$$\widehat{H}_{CF} \left(J, \vec{R}(E,\theta) \right) = \sum_{k} \sum_{k=-q}^{+q} B_{k}^{q}(E,\theta) \widehat{O}_{k}^{q}(J)$$



General objectives

Entangling two-qubit gates within a pair of clock-qubit

magnetic molecules

Aman Ullah^{1,2}, Ziqi Hu^{1,2}, Jesús Cerdá¹, Juan Aragó¹ and Alejandro Gaita-Ariño¹

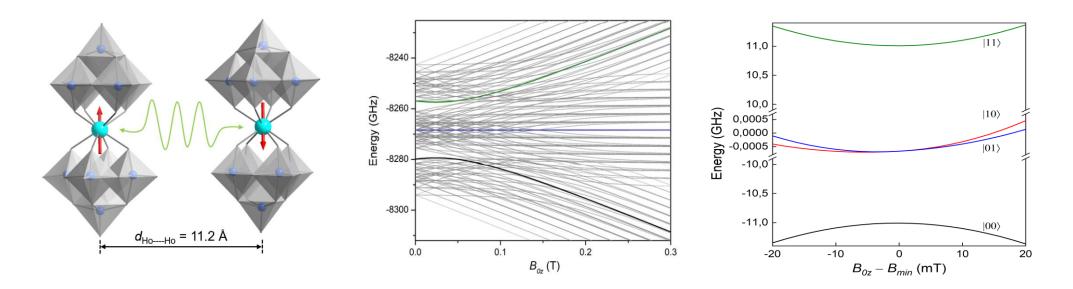
QIP using molecular spin-qubit: Requirements

- 1. Well defined <u>Hilbert space</u>, physical qubit to logical qubit mapping: $\{00, 01, 10, 11\} \rightarrow \{E_1, E_2, E_3, E_4\}$
- 2. <u>Enabled interaction</u>, <u>differentiable transitions</u> & <u>coherent control</u>
- 3. <u>Coherence times ($T_1 \& T_2$) in the presence of control fields, i.e., **E**-field and **B**-Field.</u>
- 4. <u>Physical implementation</u>, a) initialization, b) preparation & c) readout

Single-qubit, $|\varphi\rangle_1 = \alpha_1 |0\rangle \pm \beta_1 |1\rangle \rightarrow \{E_1, E_2\}$ & $|\varphi\rangle_2 = \alpha_2 |0\rangle \pm \beta_2 |1\rangle \rightarrow \{E_3, E_4\}$ Entangled states, $|\psi^{\pm}\rangle = \alpha_1 \alpha_2 |00\rangle \pm \beta_1 \beta_2 |11\rangle$ & $|\varphi^{\pm}\rangle = \alpha_1 \beta_2 |01\rangle \pm \beta_1 \alpha_2 |10\rangle$

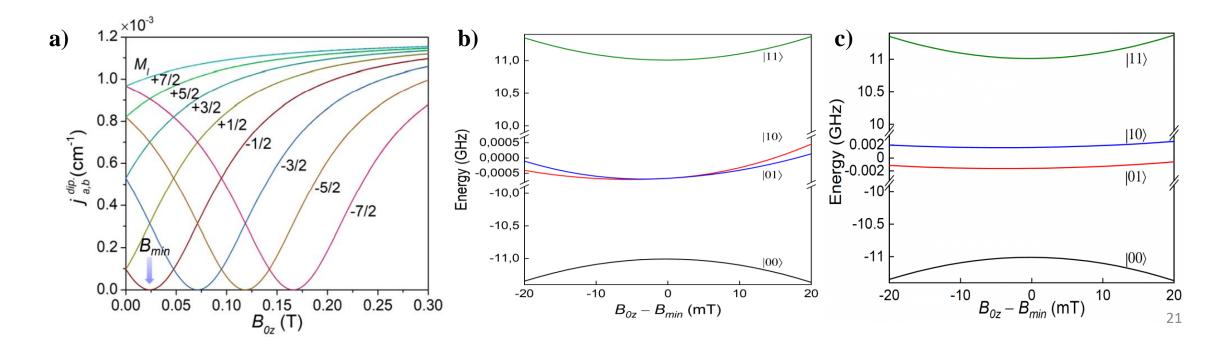
1- <u>Two-qubit Hilbert space</u>

✓ Spin spectrum for the dipolar coupled HoW₁₀ dimers:


$$\widehat{H}_{S}^{tot} = \widehat{H}_{S}^{a} + \widehat{H}_{S}^{b} + \widehat{H}_{a,b}^{ex} = \widehat{H}_{S}^{a} \otimes \mathbb{I}_{b} + \mathbb{I}_{a} \otimes \widehat{H}_{S}^{b} + j_{a,b}^{dip} J_{a} \otimes J_{b}$$

✓ Electro-nuclear spin levels: $M_I = \pm 4$ and I = 7/2:

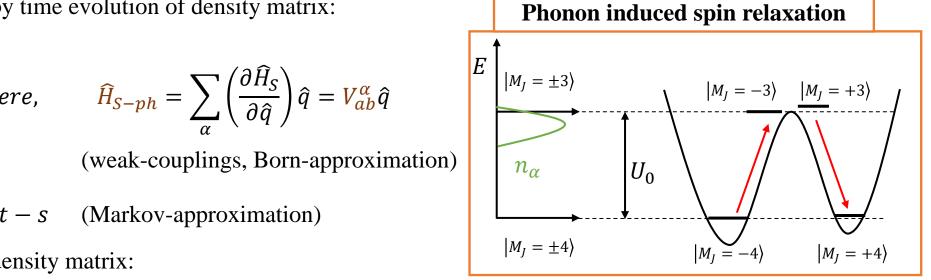
$$|\pm 4, \pm 7/2\rangle^a \otimes |\pm 4, \pm 7/2\rangle^b = 256.$$


✓ Near first CT-field (B_{min}):

$$|\pm 4, -1/2\rangle^a \otimes |\pm 4, -1/2\rangle^b = |00\rangle, |01\rangle, |10\rangle, |11\rangle.$$

2-Enabled interaction, differentiable transitions & coherent control

- ✓ **Enabled interaction**: moving away from B_{min} will enable interaction between qubit states
- ✓ **Differentiable transitions:** @12 mT away from B_{\min} , $\delta f = |10\rangle |01\rangle$
- ✓ <u>Coherent control</u> : an E-field of 300 V/2mm is enough to coherently control the qubit states


3- <u>Coherence times (T₁ & T₂), Redfield theory</u>

- \checkmark Dynamics of entire system by time evolution of density matrix:
- $\dot{\hat{\rho}} = -\frac{i}{\hbar} \left[\hat{H}_{S-ph}, \hat{\rho}(t) \right], \quad \text{where,} \quad \hat{H}_{S-ph} = \sum_{i} \left(\frac{\partial \hat{H}_{S}}{\partial \hat{q}} \right) \hat{q} = V_{ab}^{\alpha} \hat{q}$

1. $\hat{\rho}(t) \approx \hat{\rho}^s(t) \otimes \hat{\rho}^{ph}$

 $d\hat{\rho}_{s}^{s}(t)$

- 2. $\hat{\rho}^{s}(s) \rightarrow \hat{\rho}^{s}(t), t' = t s$ (Markov-approximation)
- \checkmark Time-evolution of reduced density matrix:

$$\frac{dr \mu_{ab}(c)}{dt} = i\omega_{ab}\hat{\rho}_{ab}^{s} - \sum_{c,d} R_{ab,cd}\hat{\rho}_{cd}^{s}(t), \quad \text{where,} \quad R_{ab,cd} = \delta_{bd}\sum_{j}\Gamma_{aj,jc} - \Gamma_{db,ac} - \Gamma_{ca,bd}^{*} + \delta_{ca}\sum_{j}\Gamma_{bj,jd}^{*}$$
Where, $R_{ab,cd}$ is tetradic Redfield relaxation operation with $\Gamma_{db,ac}$ are the rate constants:

$$\Gamma_{db,ac} = \sum_{\alpha} V_{db}^{\alpha} V_{ac}^{\alpha} G(\omega_{db}, \omega_{\alpha}), \qquad G(\omega_{ij}, \omega_{\alpha}) = \delta(\omega_{ij} - \omega_{\alpha})\bar{n}_{\alpha} + \delta(\omega_{ij} + \omega_{\alpha})(\bar{n}_{\alpha} + 1)$$

Here, V_{db}^{α} are spin-phonon couplings and $G(\omega_{db}, \omega_{\alpha})$ is a spectral function.

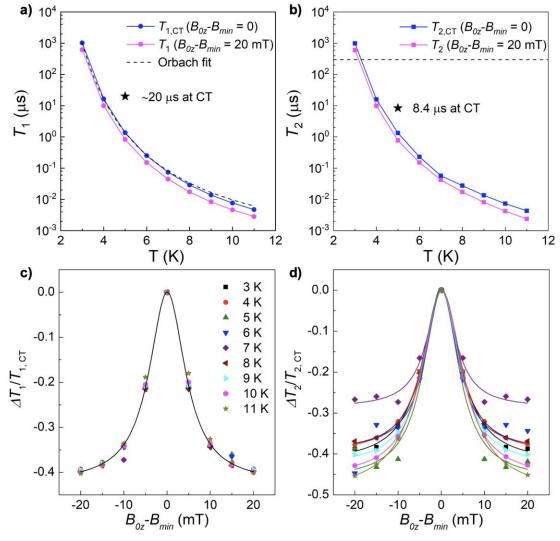
3- Coherence times
$$(T_1 \& T_2)$$

✓ Eigenstate decay profile in terms of magnetization expectation value:

$$\langle \vec{M}(t) \rangle = \sum_{a} \langle a | \hat{\rho}^{s}(t) \vec{M} | a \rangle$$

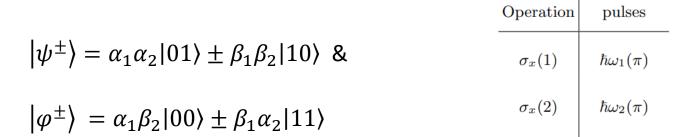
✓ Longitudinal relaxation time, T_1 , (**Fig. a**):

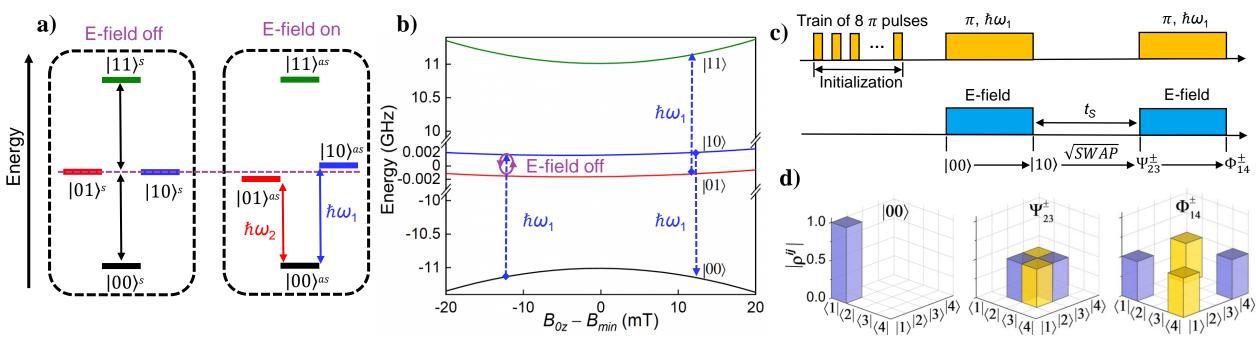
$$\hat{\rho}^{s}(t=0) = |0\rangle\langle 0|$$
$$M_{z}(t) = (M_{z}(0) - M_{z}(\infty))e^{-t/\tau} + M_{z}(\infty)$$


✓ Transverse relaxation time, T_2 , (**Fig. b**):

 $\hat{\rho}^{s}(t=0) = |0\rangle\langle 1|$

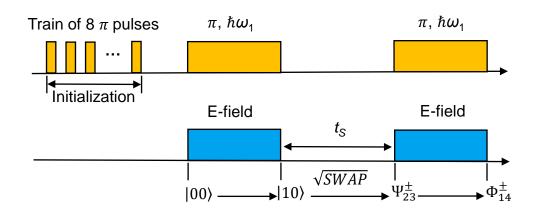
$$M_{x,y}(t) = \left(M_{x,y}(0) - M_{x,y}(\infty) \right) e^{-t/\tau} + M_{x,y}(\infty)$$


✓ $T_1 \& T_2$ divergence around CT B-field, (**Fig. c, d**):


$$\frac{\Delta T_{1\&2}}{T_{1\&2,CT}} = \frac{T_{1\&2,Bz\neq0} - T_{1\&2,Bz=CT}}{T_{1\&2,Bz=CT}}$$

4- Physical Implementation

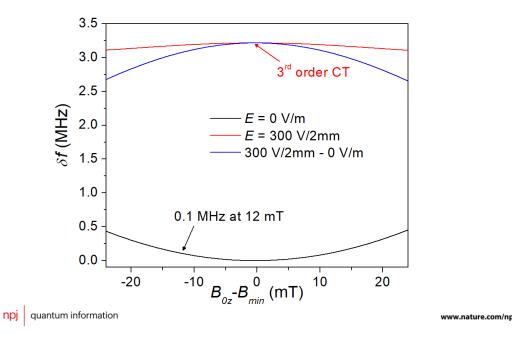
- ✓ E-field will modify the qubit states from symmetric to asymmetric state. (Op. conditions: B=12 mT & E=300 V/2mm)
 - 1. We initialize the system at $|00\rangle$,
 - 2. E-field is turned on,
 - 3. A π -pulse is applied,
 - 4. E-field is turned off.



SWAP

E-Field (τ)

4- Physical Implementation & gating time

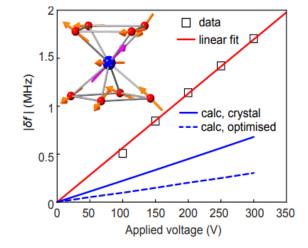

✓ Entangled-state generation time or gating time: $t_{gating} \propto \frac{1}{\delta f}$

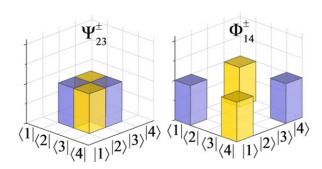
Initialization, 8π pulses			0.3 µs
Preparation, for π -pulse ($\hbar\omega$)			0.8 µs
Creation of Entanglement, for SWAP gate			5.0 µs
Creation, for π -pulse ($\hbar\omega$)			0.8 µs
Total			7.0 µs
Phase memory time	5 K @ 12 mT	4 K	@ 12 mT
T_2	2 µs		10 µs

- ✓ Presence of highly protected qubit (3^{rd} order CT)
- ✓ Flip-flop qubit:

 $\varphi = |10\rangle \pm |01\rangle$

ARTICLE OPEN


Electrical two-qubit gates within a pair of clock-qubit magnetic molecules


Aman Ullah^{1,2}, Ziqi Hu^{1,2}, Jesús Cerdá[®], Juan Aragó^{®™} and Alejandro Gaita-Ariño^{®™}

Check for updates

Conclusions & outlook

- 1- Enhancing spin sensitivity to the E-Field for coherent manipulation of spin information:
 - i) Large unquenched angular momentum (\hat{L})
 - ii) Broken symmetry
 - iii) Polarizable environment (ligands)
 - iv) Spin-sensitivity to molecular distortion
- **2-** These findings demonstrate a relation between:
 - i) <u>Spin states</u>, <u>lattice coordinate (optical or acoustic phonons) & electric charge</u>
- **3-** Entanglement generation within pair of HoW_{10} --Ho W_{10} :
 - i) Coherent manipulation of each qubit due to the presence of strong E-field effect
 - ii) One-to-one correspondence between physical and logical qubits.

<u>Acknowledgement</u>

✓ From ICMol, Valencia, Spain

Alejandro Gaita-Ariño, Juan Aragó and Eugenio Coronado

Group members: Ziqi Hu, Jesús Cerdá

✓ CAESR, Department of Physics, University of Oxford.

Arzhang Ardavan, Junjie Liu et al. for Coherent control over spin-qubit and SECs.

Thank you for your time.