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Sycamore quantum processor mounted in the cryostat. 

Introduction and objectives

✓A classical computer uses classical bits: either “0” or “1”

✓A quantum computer uses quantum superpositions of “0” and “1”, qubit: ȁ ۧ𝜑 = 𝛼ȁ ۧ0 + 𝛽ȁ ۧ1

✓Non-polynomial (NP) problems such as prime-factorization can be solved using quantum computers

✓ Superconducting qubits, nitrogen vacancies in diamond, semiconductor spin-qubits, molecular spin-qubits
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Physical layer

(Spin: ↑, ↓)

Logical layer

(Logic: 0, 1)

Molecular spin-qubit based quantum computing

Advantages

✓ Solid state approach, embodied on integrated chips

✓ Long coherence times (𝑇𝑚) in ‘𝜇𝑠’ to ‘ms’

✓ Rich Hilbert space for molecular spin-qubits

✓ Tunable

Challenges

A. Physical realization of qubit operations:

i. Addressing of individual molecular spin-qubits and 

entangling 2-qubits 

ii. A path for scalability

B. A precise control of molecular positioning and quantum circuits
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General objectives

Addressing of individual molecular spin-

qubits and entangling 2-qubits

1. Quantum coherent control of molecular spin-

qubit using E-field: ȁ ۧ𝜑 = 𝛼ȁ ۧ0 + 𝛽ȁ ۧ1

2. Entangling two qubits: 

ȁ ۧ𝜑 1 = 𝛼1ȁ ۧ0 + 𝛽1ȁ ۧ1 &   ȁ ۧ𝜑 2 = 𝛼2ȁ ۧ0 + 𝛽2ȁ ۧ1 , 

Entangled state: ห ൿ𝜓± = 𝛼1𝛼2ȁ ۧ00 ± 𝛽1𝛽2ȁ ۧ11
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෡𝐻𝐶𝐹 𝐽 = ෍

𝑘=2,4,6

෍

𝑞=−𝑘

+𝑘

𝐵𝑘
𝑞 ෠𝑂𝑘

𝑞
(𝐽)

|+MJۧ → ȁ ۧ0

|−MJۧ → ȁ ۧ1

hν = gμBB0

|𝝋ۧ = 𝜶ȁ ۧ0 + 𝜷ȁ ۧ1

Molecular spin-qubit

✓ Ground MJ is well isolated from Excited MJ

✓ 0.3 cm-1 for X band

෡𝐻𝑆 = ෡𝐻𝐶𝐹 + ෡𝐻𝑍𝑒𝑒𝑚𝑎𝑛 + ෡𝐻ℎ𝑦𝑝 + ෡𝐻𝑛𝑢𝑐. 𝑍𝑒𝑒𝑚𝑎𝑛

Electronic structure

Molecular spin-qubit



7

QIP using molecular spin-qubits

✓ Grover’s Quantum Algorithm ✓ Quantum entanglement ➢ A quantum processor

Godfrin, C., et al., Phy. Rev. Lett. 119.18 (2017): 187702. Gaita-Ariño, A., et al., Nat. Chem. 11.4 (2019): 301-309.Mehring, M., et al., Phy. Rev. Lett. 93, 20 (2004): 206603.

TbPc2
15N@C60

Superconducting resonator
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Quantum coherences in spin-qubits

✓ 𝑇𝑚~ 1 ms @10K

✓ (d20-Ph4P)2[V(C8S8)3]

✓ 𝑇𝑚~ 0.2 ms @10K

✓ Nitrogen Vacancy (NV) center 

Takahashi, Susumu, et al. Phy. Rev. Lett. 101.4 

(2008): 047601.

Zadrozny, Joseph M., et al., ACS Cent. Sci. 1.9 

(2015): 488-492.
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Molecular clock-transition (CT) spin-qubits

Shiddiq, Muhandis, et al., Nature 531.7594 (2016): 348-351.

✓ 𝑇𝑚~ 8.4 𝜇s @ 5K

✓ Extra-diagonal CF B4
4= 94.3 MHz

✓At CT field, 𝜕𝐸/𝜕𝐵 = 0

✓ CT frequency = ∆CT

[Ho(W5O18)2]
9–

E
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G

H
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Applied field, B0



10

Molecular clock-transition (CT) spin-qubits

✓ Ho3+ is a Lanthanide non-Kramer ion with J = 8 and I = 7/2

✓A unit cell contains two inversion related [Ho(W5O18)2]
9– (in short HoW10)

✓ Symmetry: near to D4d

✓ Spin spectrum:

෡𝐻𝑆 = ෡𝐻𝐶𝐹 + ෡𝐻𝑍𝑒𝑒𝑚𝑎𝑛 +෡𝐻ℎ𝑦𝑝 + ෡𝐻𝑛𝑢𝑐. 𝑍𝑒𝑒𝑚𝑎𝑛

✓ Spin-qubit: |𝜑ۧ = 𝛼ȁ ۧ±4 ± 𝛽ȁ ۧ∓4 ȁ ۧ−1/2
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General objectives

Addressing of individual molecular spin-

qubits and entangling 2-qubits

1. Quantum coherent control of molecular spin-

qubit using E-field: ȁ ۧ𝜑 = 𝛼ȁ ۧ0 + 𝛽ȁ ۧ1

2. Entangling two qubits: 

ȁ ۧ𝜑 1 = 𝛼1ȁ ۧ0 + 𝛽1ȁ ۧ1 &   ȁ ۧ𝜑 2 = 𝛼2ȁ ۧ0 + 𝛽2ȁ ۧ1 , 

Entangled state: ห ൿ𝜓± = 𝛼1𝛼2ȁ ۧ00 ± 𝛽1𝛽2ȁ ۧ11
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Coherent control of spin using electric field

✓ Maxwell´s equations:

∇ ∙ E =
ρ

ε0
(1) ∇ × E = −

𝜕B

𝜕t
(3)

∇ ∙ B = 0 (2) ∇ × B = μ0j +
1

c2
𝜕E

𝜕t
(4)

✓We can generate a directional or controlled E-field but we do not have magnetic monopoles (eq. 1 and 2)

✓We have more freedom in designing the geometry of quantum device using E-Field rather than B-Field

✓ For scalable quantum computing we need coherent control over spins (Objective)

1-qubit 2-qubit

b) c)a)

Requirement

Presence of strong spin-

electric couplings (SECs). 
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Experimental configuration Microwave Pulse sequence in EPR

Experiment: Arzhang Ardavan, Junjie Liu at CAESR, 

Department of Physics, University of Oxford

Coherent control of spin using electric field
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✓ 𝐀𝐩𝐩𝐥𝐢𝐞𝐝 𝐕𝐨𝐥𝐭𝐚𝐠𝐞 𝐕 = 𝐄 ∙ 𝐝, where `d´ (=2mm) is the distance between two-plates 

✓A linear SECs is observed, SECs of order 11.4 ± 0.3 Hz/Vm-1

✓ Linear response is further confirmed through rotating E-field in y-z plane

Liu, J., Mrozek, J., Ullah, A., et al., Nat. Physics, 17.11 (2021): 1205-1209.

Coherent control of spin using electric field
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✓ E-Field will modify the spin-Hamiltonian, ෡𝐻𝐶𝐹 𝐽, 𝑹 → ෡𝐻𝐶𝐹 𝐽, 𝑹 𝑬

෡𝐻𝑒𝑓𝑓 𝐽, 𝑹 𝑬 =෍

𝑘

෍

𝑘=−𝑞

+𝑞

𝐵𝑘
𝑞
(𝐸)෢𝑂𝑘

𝑞
𝐽

✓ E-Field will modify the electronic dipole-moment (𝜹𝒑)

✓ 𝑹(𝑬) can be modeled by decomposing the 𝜹𝒑 into vibrational basis (orthonormal basis)

✓ From linear combination we can obtain 𝑹 𝑬 = σ𝑖=1
3𝑁−6 𝑟𝑖 and compute ෡𝐻𝐶𝐹 𝐽, 𝑹 𝑬

✓ 𝜹𝒑 is determined for each normal mode at DFT level and ෡𝐻𝐶𝐹 𝐽, 𝑹 𝑬 is determined at ab initio level 

(CASSCF-SO)

Coherent control of spin using electric field
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Angular Dependency

𝑈𝑖 = 𝑈𝐸 = −𝛿𝑝𝐸 cos 𝜃

𝑅 𝐸, 𝜃 = ෍

𝑖=1

3𝑁−6

𝑟𝑖(𝐸 𝜃 )

෡𝐻𝐶𝐹 𝐽, 𝑅 𝐸, 𝜃 =෍

𝑘

෍

𝑘=−𝑞

+𝑞

𝐵𝑘
𝑞
(𝐸, 𝜃)෢𝑂𝑘

𝑞
𝐽

✓ Spin-Hamiltonian, 

෡𝐻𝑒𝑓𝑓 𝐽, 𝑅 𝐸 =෍

𝑘

෍

𝑘=−𝑞

+𝑞

𝐵𝑘
𝑞
(𝐸)෢𝑂𝑘

𝑞
𝐽

✓ Theory: SECs of order 4.7 Hz/Vm-1.

✓ Experimental value: 11.4 ± 0.3 Hz/Vm-1.

Coherent control of spin using electric field
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General objectives

Addressing of individual molecular spin-

qubits and entangling 2-qubits

1. Quantum coherent control of molecular spin-

qubit using E-field: ȁ ۧ𝜑 = 𝛼ȁ ۧ0 + 𝛽ȁ ۧ1

2. Entangling two qubits: 

ȁ ۧ𝜑 1 = 𝛼1ȁ ۧ0 + 𝛽1ȁ ۧ1 &   ȁ ۧ𝜑 2 = 𝛼2ȁ ۧ0 + 𝛽2ȁ ۧ1 , 

Entangled state: ห ൿ𝜓± = 𝛼1𝛼2ȁ ۧ00 ± 𝛽1𝛽2ȁ ۧ11
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Entangling two-qubit gates within a pair of clock-qubit 

magnetic molecules

E-field off E-field on

ۧȁ00 𝑠 ۧȁ00 𝑎𝑠

ۧȁ01 𝑠
ۧȁ01 𝑎𝑠ۧȁ10 𝑠

ۧȁ10 𝑎𝑠

ۧȁ11 𝑎𝑠ۧȁ11 𝑠

E
n
e
rg

y

ℏω1
ℏω2
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QIP using molecular spin-qubit: Requirements

1. Well defined Hilbert space, physical qubit to logical qubit mapping: 00, 01, 10, 11 → E1, E2, E3, E4

2. Enabled interaction , differentiable transitions & coherent control

3. Coherence times (T1 & T2) in the presence of control fields, i.e., E-field and B-Field.

4. Physical implementation, a) initialization, b) preparation & c) readout

Single-qubit, ȁ ۧ𝜑
1
= 𝛼1ȁ ۧ0 ± 𝛽1ȁ ۧ1 → {𝐸1, 𝐸2} & ȁ ۧ𝜑

2
= 𝛼2ȁ ۧ0 ± 𝛽2ȁ ۧ1 → 𝐸3, 𝐸4

Entangled states, ห ൿ𝜓± = 𝛼1𝛼2ȁ ۧ00 ± 𝛽1𝛽2ȁ ۧ11 & ห ൿ𝜑± = 𝛼1𝛽2ȁ ۧ01 ± 𝛽1𝛼2ȁ ۧ10
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1- Two-qubit Hilbert space

✓ Spin spectrum for the dipolar coupled HoW10 dimers:

෡𝐻𝑆
𝑡𝑜𝑡 = ෡𝐻𝑆

𝑎 + ෡𝐻𝑆
𝑏 + ෡𝐻𝑎,𝑏

𝑒𝑥 = ෡𝐻𝑆
𝑎⨂𝕀𝑏 + 𝕀𝑎⨂෡𝐻𝑆

𝑏 + 𝑗𝑎,𝑏
dip

𝐽𝑎⨂𝐽𝑏

✓ Electro-nuclear spin levels: 𝑀𝐽 = ±4 and 𝐼 = 7/2:

ȁ ۧ±4, ±7/2
𝑎
⨂ȁ ۧ±4,±7/2

𝑏
= 256.

✓ Near first CT-field (Bmin):

ȁ ۧ±4, −1/2
𝑎
⨂ȁ ۧ±4,−1/2

𝑏
= ȁ ۧ00 , ȁ ۧ01 , ȁ ۧ10 , ȁ ۧ11 .



a) b) c)
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2-Enabled interaction, differentiable transitions &
coherent control

✓ Enabled interaction: moving away from Bmin will enable interaction between qubit states

✓ Differentiable transitions: @12 mT away from Bmin, 𝛿𝑓 = ȁ ۧ10 − ȁ ۧ01

✓ Coherent control : an E-field of 300 V/2mm is enough to coherently control the qubit states
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3- Coherence times (T1 & T2), Redfield theory

✓ Dynamics of entire system by time evolution of density matrix:

ሶො𝜌 = −
ሶ𝜄

ℏ
෡𝐻𝑆−𝑝ℎ, ො𝜌 𝑡 , 𝑤ℎ𝑒𝑟𝑒, ෡𝐻𝑆−𝑝ℎ =෍

𝛼

𝜕 ෡𝐻𝑆
𝜕ො𝑞

ො𝑞 = 𝑉𝑎𝑏
𝛼 ො𝑞

1. ො𝜌 𝑡 ≈ ො𝜌𝑠(𝑡)⨂ො𝜌𝑝ℎ (weak-couplings, Born-approximation)

2. ො𝜌𝑠(𝑠) → ො𝜌𝑠(𝑡), 𝑡′ = 𝑡 − 𝑠 (Markov-approximation)

✓ Time-evolution of reduced density matrix:

𝑑 ො𝜌𝑎𝑏
𝑠 (𝑡)

𝑑𝑡
= ሶ𝜄𝜔𝑎𝑏 ො𝜌𝑎𝑏

𝑠 −෍

𝑐,𝑑

𝑅𝑎𝑏,𝑐𝑑 ො𝜌𝑐𝑑
𝑠 𝑡 , 𝑤ℎ𝑒𝑟𝑒, 𝑅𝑎𝑏,𝑐𝑑 = 𝛿𝑏𝑑෍

𝑗

Γ𝑎𝑗,𝑗𝑐 − Γ𝑑𝑏,𝑎𝑐 − Γ𝑐𝑎,𝑏𝑑
∗ + 𝛿𝑐𝑎෍

𝑗

Γ𝑏𝑗,𝑗𝑑
∗

✓ Where, 𝑅𝑎𝑏,𝑐𝑑 is tetradic Redfield relaxation operation with Γ𝑑𝑏,𝑎𝑐 are the rate constants:

Γ𝑑𝑏,𝑎𝑐 =෍

𝛼

𝑉𝑑𝑏
𝛼 𝑉𝑎𝑐

𝛼𝐺 𝜔𝑑𝑏, 𝜔𝛼 , 𝐺 𝜔𝑖𝑗, 𝜔𝛼 = 𝛿 𝜔𝑖𝑗 −𝜔𝛼 ത𝑛𝛼 + 𝛿 𝜔𝑖𝑗 + 𝜔𝛼 ത𝑛𝛼 + 1

Here, 𝑉𝑑𝑏
𝛼 are spin-phonon couplings and 𝐺 𝜔𝑑𝑏, 𝜔𝛼 is a spectral function.

𝑀𝐽 = ±4

𝑀𝐽 = +3

𝑀𝐽 = −4 𝑀𝐽 = +4

𝑀𝐽 = ±3

𝑈0𝑛𝛼

𝐸
𝑀𝐽 = −3

Phonon induced spin relaxation
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3- Coherence times (T1 & T2)

✓ Eigenstate decay profile in terms of magnetization

expectation value:

𝑀(𝑡) =෍

𝑎

𝑎 ො𝜌𝑠(𝑡)𝑀 𝑎

✓ Longitudinal relaxation time, 𝑇1, (Fig. a):

ො𝜌𝑠 𝑡 = 0 = ۧȁ0 ۦ ȁ0

𝑀𝑧 𝑡 = 𝑀𝑧 0 − 𝑀𝑧 ∞ 𝑒−𝑡/𝜏 +𝑀𝑧 ∞

✓ Transverse relaxation time, 𝑇2, (Fig. b):

ො𝜌𝑠 𝑡 = 0 = ۧȁ0 ۦ ȁ1

𝑀𝑥,𝑦 𝑡 = 𝑀𝑥,𝑦 0 − 𝑀𝑥,𝑦 ∞ 𝑒−𝑡/𝜏 +𝑀𝑥,𝑦 ∞

✓ 𝑇1 & 𝑇2 divergence around CT B-field, (Fig. c, d):

∆𝑇1&2
𝑇1&2,𝐶𝑇

=
𝑇1&2,𝐵𝑧≠0 − 𝑇1&2,𝐵𝑧=𝐶𝑇

𝑇1&2,𝐵𝑧=𝐶𝑇



E-field off E-field on

ۧȁ00 𝑠 ۧȁ00 𝑎𝑠

ۧȁ01 𝑠
ۧȁ01 𝑎𝑠ۧȁ10 𝑠

ۧȁ10 𝑎𝑠

ۧȁ11 𝑎𝑠ۧȁ11 𝑠

E
n
e
rg

y

ℏω1
ℏω2

tS

Initialization

ۧȁ00

𝜋, ℏω1

E-field E-field

ۧȁ10 Ψ23
±𝑆𝑊𝐴𝑃

…

Train of 8 𝜋 pulses 𝜋, ℏω1

Φ14
±

ℏω1

ℏω1

E-field off

ℏω1

a) b) c)

d)
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✓ E-field will modify the qubit states from symmetric to asymmetric state. (Op. conditions: B=12 mT & E=300 V/2mm)

1. We initialize the system at ȁ ۧ00 ,

2. E-field is turned on,

3. A 𝜋-pulse is applied,

4. E-field is turned off.

ห ൿ𝜓± = 𝛼1𝛼2ȁ ۧ01 ± 𝛽1𝛽2ȁ ۧ10 &

ห ൿ𝜑± = 𝛼1𝛽2ȁ ۧ00 ± 𝛽1𝛼2ȁ ۧ11

4- Physical Implementation
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4- Physical Implementation & gating time

tS

Initialization

ۧȁ00

𝜋, ℏω1

E-field E-field

ۧȁ10 Ψ23
±𝑆𝑊𝐴𝑃

…

Train of 8 𝜋 pulses 𝜋, ℏω1

Φ14
±

Initialization,  8 π pulses 0.3 μs

Preparation, for π-pulse (ℏω) 0.8 μs

Creation of Entanglement, for SWAP gate 5.0 μs

Creation, for π-pulse (ℏω) 0.8 μs

Total 7.0 μs

✓ Entangled-state generation time or gating time: 𝑡𝑔𝑎𝑡𝑖𝑛𝑔 ∝
1

𝛿𝑓

Phase memory time 5 K @ 12 mT 4 K @ 12 mT

𝑇2 2 μs 10 μs

✓ Presence of highly protected qubit (3rd order CT)

✓ Flip-flop qubit:

𝜑 = ȁ ۧ10 ± ȁ ۧ01
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Conclusions & outlook

1- Enhancing spin sensitivity to the E-Field for coherent manipulation of spin information:   

i)    Large unquenched angular momentum (෠L) 

ii)   Broken symmetry 

iii)  Polarizable environment (ligands)

iv)  Spin-sensitivity to molecular distortion

2- These findings demonstrate a relation between:

i)    Spin states, lattice coordinate (optical or acoustic phonons) & electric charge

3- Entanglement generation within pair of HoW10--HoW10:

i)    Coherent manipulation of each qubit due to the presence of strong E-field effect

ii)   One-to-one correspondence between physical and logical qubits.
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