Photon-magnon interaction in ferromagnets of different sizes

Sergio Martínez-Losa del Rincón

Universidad Zaragoza

ÎÎÎ

Motivation

Spin wave generation

Frequency tunable and mobile

Outline

Theoretical Framework

Experimental Work

Results and Analysis

Ongoing Work

Introduction

Magnons as quasiparticles

Introduction Applications of Magnonic Sytems - Quantum Computation

Photon microwave transducer to optical domain

Dark Matter detectors

T. Trickle, Z. Zhang, and K. M. Zurek, **Detecting Light Dark Matter with Magnons** Phys. Rev. Lett. 124, 201801 (2020) Magnons as quasiparticles

Introduction

PRL 111, 127003 (2013)

PHYSICAL REVIEW LETTERS

week ending 20 SEPTEMBER 2013

High Cooperativity in Coupled Microwave Resonator Ferrimagnetic Insulator Hybrids

Shaped ferromagnets

Magnon-photon coupling in ferromagnets

Rotation of the magnetization in response to torques

T. L. Gilbert, Lagrangian formulation of the gyromagnetic equation of the magnetization field, Phys. Rev. 100, 1243–1243 (1955).

Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik, Mathias Helsen, Felipe Garcia-Sanchez, and Bartel Van Waeyenberge, **The design and verification of MuMax3**, AIP Advances 4, 107133 (2014)

Magnon-photon coupling in ferromagnets

$$f = \gamma \cdot \sqrt{(B_{dc} + (N_y - N_x) \cdot M_{ ext{sat}} \cdot \mu_0) \cdot (B_{dc} + (N_z - N_x) \cdot M_{ ext{sat}}) \cdot \mu_0}$$

3D-MLSI Current distribution simulation for superconducting multi-layered structures

$$g = \frac{B_{rms}}{2} \sqrt{\frac{\Delta f \chi V_{mag.system}}{h}}$$

Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik, Mathias Helsen, Felipe Garcia-Sanchez, and Bartel Van Waeyenberge, **The design and verification of MuMax3**, AIP Advances 4, 107133 (2014)

Shaped ferromagnets

Experimental Work Materials

Universidad Zaragoza

Fabrication Process - Slab cut

curr mag III

5 000 x

WD

Fabrication Process - Slab deposition

Fabrication Process - Cooling system

Laboratory devices

Transmission lines

S. Martinez-Losa del Rincon, I. Gimeno, J. Perez-Bailon, V. Rollano, F. Luis, D. Zueco, M. J. Martinez-Perez, **Measuring the magnon-photon coupling in shaped ferromagnets: tuning of the resonance frequency**, Phys. Rev. Applied 19, 014002 (2023)

 $B_{ext} \rightarrow$

From CPW to Resonator

Resonators

20

10µm x 600nm x 120nm

Results and Analysis

Coupling values summary

$\begin{array}{c} \text{Sample} \\ (25 \mu \text{m} \times 25 \mu \text{m} \times 120 \text{nm}) \end{array}$			$\begin{array}{c} \text{Sample} \\ (10 \mu \text{m} \times 600 \text{nm} \times 120 \text{nm}) \end{array}$			$\begin{array}{c} \text{Sample} \\ (15 \mu\text{m} \times 3 \mu\text{m} \times 60 \text{nm}) \end{array}$		
Characterization type	Frequency	g-value	$Characterization \ type$	Frequency	g-value	$Characterization \ type$	Frequency	g-value
	(GHz)	(MHz)		(GHz)	(MHz)		(GHz)	(MHz)
Theoretical calculus	2.99	11.36	Theoretical calculus	11	85	Theoretical calculus	5	37
Transmission line	2.99	11.4	Transmission line	-	-	Transmission line	5	27
Resonator	-	-	Resonator	11	57.5	Resonator	4.2	17

Ongoing Work

Ongoing Work

J. Román-Roche, F. Luis, and D. Zueco, Photon Condensation and Enhanced Magnetism in Cavity QED, Phys. Rev. Lett. 127, 167201 (2021)

Ongoing Work

Conclusions

- CPW and resonators with ferromagnetic materials creates different states of matter
- Demonstrated performance in nanoscale and mesoscale of quantum phenomena
- Reuse of samples to make resonators
- Magnons are just more than quasiparticles

Supervisors

Theoretical colleagues

Thank you

