



# Quantum circuits for quantum walks with position-dependent coin operator

Armando Pérez Departamento de Física Teórica & IFIC, Universidad de Valencia-CSIC

Ugo Nzongani<sup>1</sup>, Julien Zylberman<sup>2</sup>, Carlo-Elia Doncecchi<sup>1</sup> Fabrice Debbasch<sup>2</sup>, and Pablo Arnault<sup>1</sup>

<sup>1</sup>Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA, Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France <sup>2</sup>Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, 75005 Paris, France

# Quantum walks

Quantum Walks (QW) constitute the quantum counterpart to classical random walks.

Random walks are stochastic processes with many applications (Brownian motion, search algorithms, stock market...)

Two implementations. Given a lattice:

- Discrete time (DQW) This talk. In addition of the spatial Hilbert space they need an additional d.o.f. (coin). Repetition of a unitary operator acting on the total Hilbert space.

- Continuous time (CQW). Defined by a Hamiltonian (matrix). Schrödinger equation.

DQW time evolution (1D)

$$\ket{\psi_{j+1}} = W \ket{\psi_j}$$
 Time step j

with W = SC where  $C \in U(2)$  (coin operator)

$$S = \left|\uparrow\right\rangle\left\langle\uparrow\right| \otimes \sum_{p}\left|p+1\right\rangle\left\langle p\right| + \left|\downarrow\right\rangle\left\langle\downarrow\right| \otimes \sum_{p}\left|p-1\right\rangle\left\langle p\right|$$

(displacement operator)

Applications in algorithmics

 Quantum search can be described as a QW: A. M. Childs and J. Goldstone,
"Spatial search by quantum walk," Phys. Rev. A 70, 022314 (2004).

- Element distinctness (determining whether all the elements of a list are distinct). A. Ambainis, "Quantum walk algorithm for element distinctness," SIAM J. Comput. 37, 210–239 (2007).

### Simulation of physical phenomena Many DQWs have as continuum limit the Dirac equation.

Simulate spin-1/2 particles in an external gauge field. Physica A 443, 179–191 (2016), Phys. Rev. A 93, 052301 (2016), Phys. Rev. A 94, 012335 (2016), Phys. Rev. A 98, 032333 (2018), J. Math. Phys. 60, 012107 (2019), ...

#### Also in a gravitational potential

Phys. Rev. A 88, 042301 (2013), Physica A 397, 157–168 (2014), Ann. Phys. (N. Y.) 383, 645–661 (2017), Quantum Inf. Process. 15, 3467–3486 (2016), Quantum Inf. Comput. 17, 810–824 (2017), Phys. Rev. A 97, 062111 (2018), ...

#### Models with extra dimensions

Phys. Rev. A 95, 042112 (2017), Sci. Rep. 12, 1926 (2022)

Neutrino oscillations: New J. Phys. 18, 103038 (2016), Eur. Phys. J. C 77, 85 (2017). These simulations need a position-dependent coin operator. Our goal is the simulation of these processes on a quantum computer.

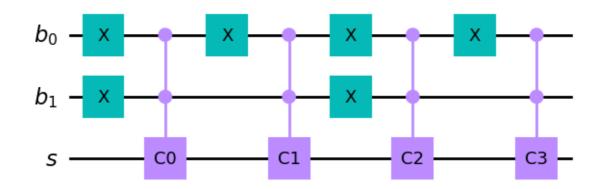
We consider **n qubits** (position) + 1 (coin). N=2<sup>n</sup> positions with periodic boundary conditions. arXiv:2211.05271 (Quant. Inf. Process.)

$$C = \sum_{k=0}^{N-1} |k\rangle \langle k| \otimes C_k$$

Three proposals:

- 1) Naive quantum circuit
- 2) Linear-depth quantum circuit
- 3) Walsh decomposition

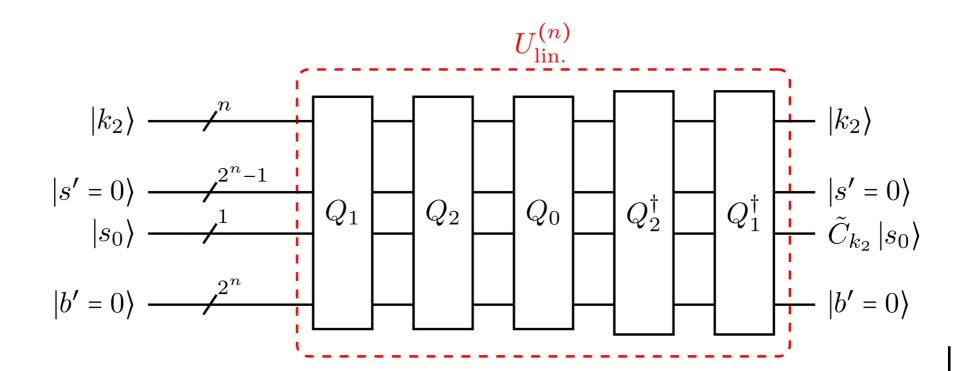
Displacement operator: based on QFT Quantum Inf Process 19, 323 (2020).



#### Naive circuit

- Simple to implement
- Exponential (with n) circuit depth.

Linear depth circuit: we add (an exponential number of) auxiliary coin and space qubits, such that all  $C_k$  gates are applied in parallel.



Walsh decomposition. We first rewrite  $C_k$  as

$$C_{k} = e^{iF_{0}(k)}e^{iF_{1}(k)\sigma^{3}}e^{iF_{2}(k)\sigma^{2}}e^{iF_{3}(k)\sigma^{3}}$$

Using Walsh series, one can decompose

$$e^{\mathbf{i}F(k)\sigma} = \prod_{j=0}^{2^n-1} U_j$$

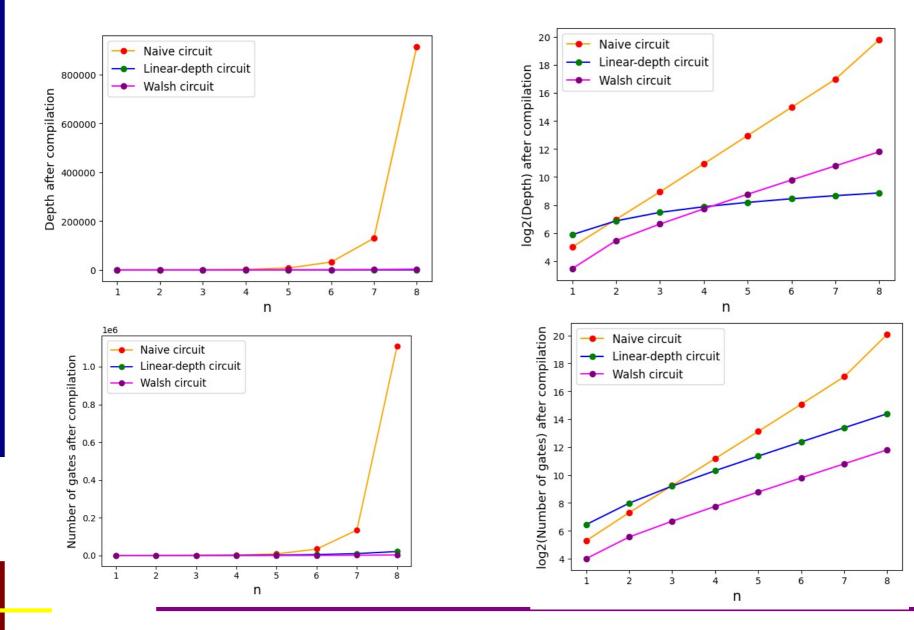
U<sub>j</sub> : CNOTS, single qubit rotations and CZ Gates.

If F(k) is smooth enough, this decomposition can be truncated up to some

$$m \ll n$$
 (smooth fields)

Particular case: linear F(k). Only n qubit gates.

#### Gate and depth counting after QASM compilation (random angles for coin operator)



## Conclusions:

1) Qws with position-dependent coin operators are fundamental to simulate many Physical phenomena. We examined three proposals to implement a 1D QW with a position-dependent Coin operator:

- 1) Naive implementation implies an exponential depth in n.
- 2) Linear-depth circuit requires an exponential number of auxiliary qubits.
- 3) Walsh decomposition can be truncated for smooth functions. Gauge fields.
- 4) Qws are very demanding on quantum computers.

Example: N=8 and 3 time steps. If we require a final error of the order 0.01, Gate errors need to be of the order 10<sup>-6</sup>, which is still far from present status. However, maybe errors will dramatically decrease in next years.

