ENCODINGS OF BINARY VARIABLES FOR EFFICIENT USE ON A QUANTUM COMPUTER

GIACOMO FRANCESCHETTO, MÁRCIO TADDEL ANTÓN MAKAROV, ENEKO ISABA OCEDO

ICE-8 SANTIAGO DE COMPOSTELA

EN INDUSTRIAS ESTRATÉGICAS

Noisy intermediate-scale quantum devices

- Noisy intermediate-scale quantum devices
- Few qubits available

- Noisy intermediate-scale quantum devices
- Few qubits available

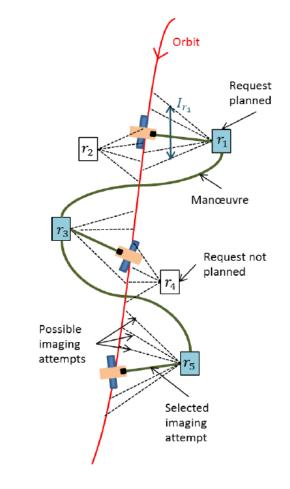
- Noisy intermediate-scale quantum devices
- Few qubits available
- More for *quantum annealers* up to ~ 5000 *physical* qubits (D-Wave Advantage)

- Noisy intermediate-scale quantum devices
- Few qubits available
- More for *quantum annealers* up to ~ 5000 *physical* qubits (D-Wave Advantage)
- Dedicated to QUBO problems: Quadratic Unconstrained Binary Optimization

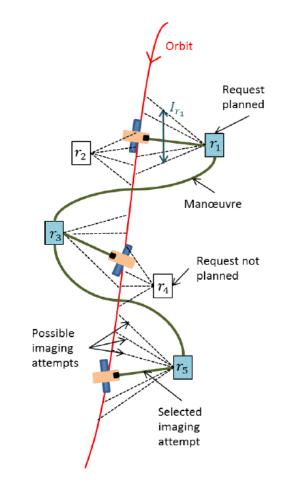
- Noisy intermediate-scale quantum devices
- Few qubits available
- More for *quantum annealers* up to ~ 5000 *physical* qubits (D-Wave Advantage)
- Dedicated to QUBO problems: Quadratic Unconstrained Binary Optimization
- How to make it work in a real-world problem?

Satellite image-acquisition scheduling problem (SIASP)

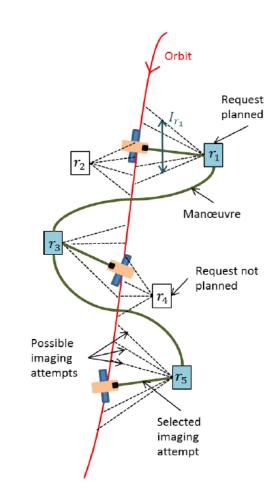
Satellite image-acquisition scheduling problem (SIASP)



- Satellite image-acquisition scheduling problem (SIASP)
- Satellite pass over Earth, too many photo requests which to undertake?

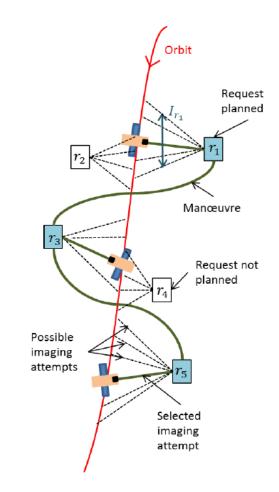


- Satellite image-acquisition scheduling problem (SIASP)
- Satellite pass over Earth, too many photo requests which to undertake?
- SPOT5 dataset (Bensana, Lemaitre, Verfaille, Constraints 4, 293 (1999))



- Satellite image-acquisition scheduling problem (SIASP)
- Satellite pass over Earth, too many photo requests which to undertake?
- SPOT5 dataset (Bensana, Lemaitre, Verfaille, Constraints 4, 293 (1999))

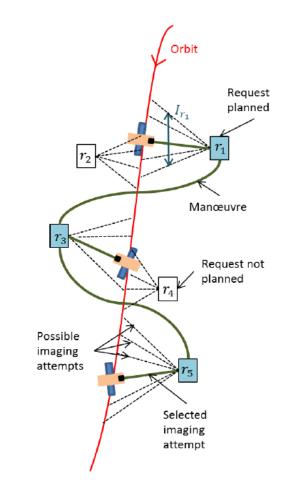
8						
0	1	3	1	2	3	
1	1	3	1	2	3	
2	1	3	1	2 2 2	3	
3	1	3	1	2	3	
4	2	1	13	3		
5	2	1	13	3		
6	2	1	13	3		
7	2	1	13	2 3 3 3 3 3		
-						



- Satellite image-acquisition scheduling problem (SIASP)
- Satellite pass over Earth, too many photo requests which to undertake?
- SPOT5 dataset (Bensana, Lemaitre, Verfaille, Constraints 4, 293 (1999))

_			
3	1	2	3
3	1	2	3
3	1	2	3
3	1	2	3
L	13	;	
		1 1 1 13 13 13	. 13 . 13

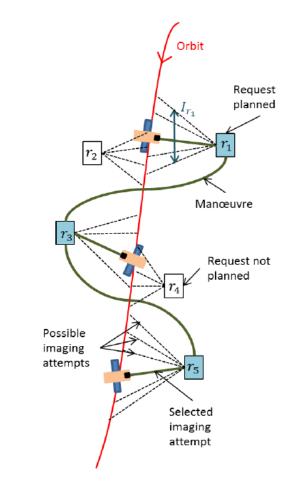
#requests	
weight	
#cameras	
list of cameras	



- Satellite image-acquisition scheduling problem (SIASP)
- Satellite pass over Earth, too many photo requests which to undertake?
- SPOT5 dataset (Bensana, Lemaitre, Verfaille, Constraints 4, 293 (1999))

8					
0	1	3	1	2	3
1	1	3	1	2	3
2	1	3	1	2	3
3	1	3	1	2	3
4		1		3	
5	2	1	13	3	
		1	13	3	
7	2	1	13	3	

#requests	
weight	
#cameras	
list of cameras	



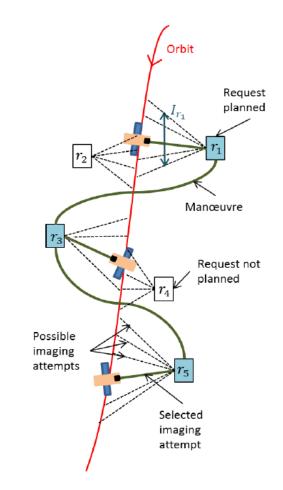
Mono photos (3 possible cameras), stereo photos (unique option)

- Satellite image-acquisition scheduling problem (SIASP)
- Satellite pass over Earth, too many photo requests which to undertake?
- SPOT5 dataset (Bensana, Lemaitre, Verfaille, Constraints 4, 293 (1999))

8							
0	1	3	1	2	3		
1	1	3	1	2	3		
2	1	3	1	2	3		
3	1	З	1	2	3		
	2	1	13	3			
5	2	1	13	3			
6	2	1	13	3			
7	2	1	13	3			

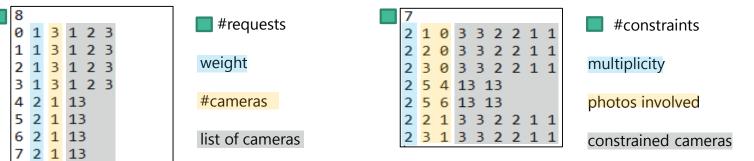
#requests
weight
#cameras
list of cameras

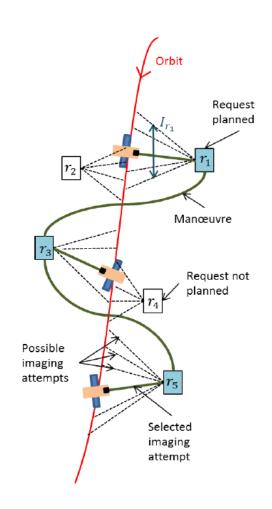
7								
2	1	0	3	3	2	2	1	1
2	2	0	3	3	2	2	1	1
2	3	0	3	3	2	2	1	1
2	5	4	13	3 1	13			
2	5	6	13	3 1	13			
2	2	1	3	3	2	2	1	1
2	3	1	3	3	2	2	1	1



Mono photos (3 possible cameras), stereo photos (unique option)

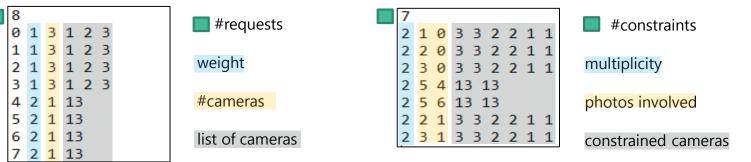
- Satellite image-acquisition scheduling problem (SIASP)
- Satellite pass over Earth, too many photo requests which to undertake?
- SPOT5 dataset (Bensana, Lemaitre, Verfaille, Constraints 4, 293 (1999))

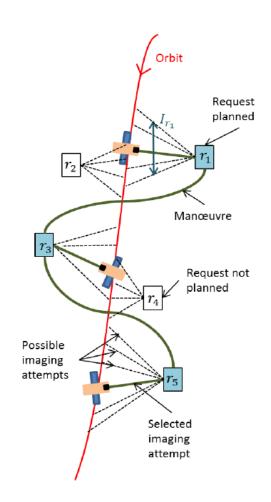




Mono photos (3 possible cameras), stereo photos (unique option)

- Satellite image-acquisition scheduling problem (SIASP)
- Satellite pass over Earth, too many photo requests which to undertake?
- SPOT5 dataset (Bensana, Lemaitre, Verfaille, Constraints 4, 293 (1999))





- Mono photos (3 possible cameras), stereo photos (unique option)
- Instances from 8 to 364 requests, from 7 to 9744 constraints

Quantum annealers: ground state of

Quantum annealers: ground state of

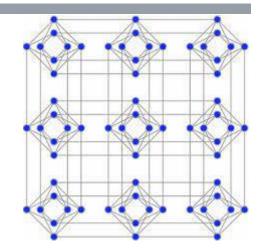
$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$

Quantum annealers: ground state of

$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$

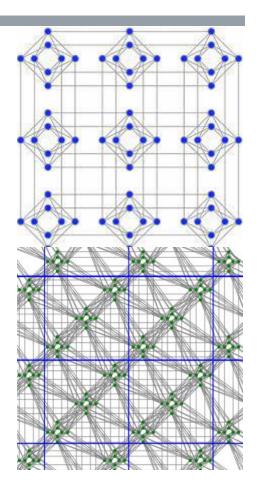
Quantum annealers: ground state of

$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$



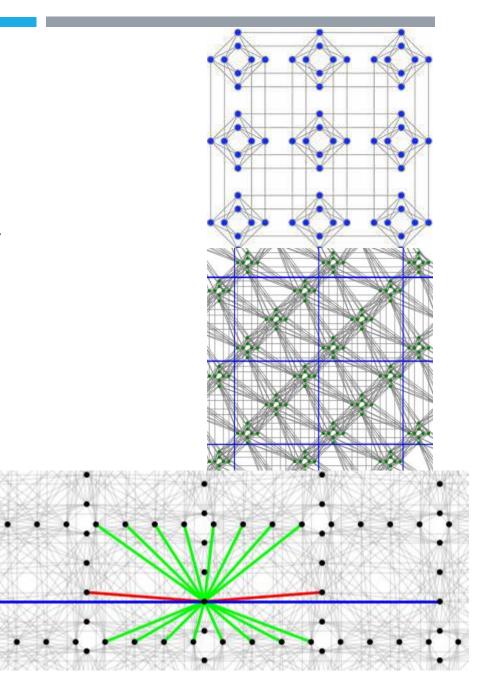
Quantum annealers: ground state of

$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$



Quantum annealers: ground state of

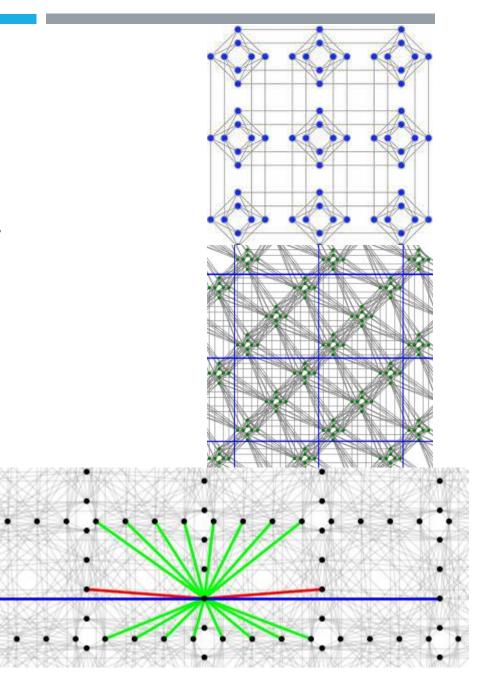
$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$



Quantum annealers: ground state of

$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$

- Topology defines available couplings
- Connection to QUBO

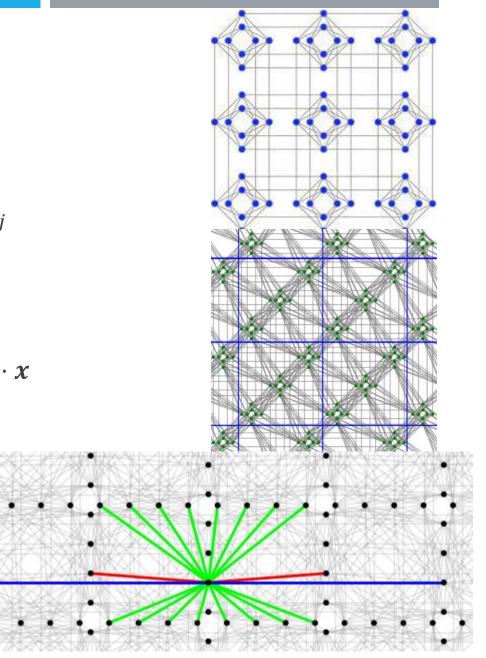


Quantum annealers: ground state of

$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$

- Topology defines available couplings
- Connection to QUBO

ground state of $\sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j \rightarrow \operatorname{argmin}_{x} x^T \cdot Q \cdot x$



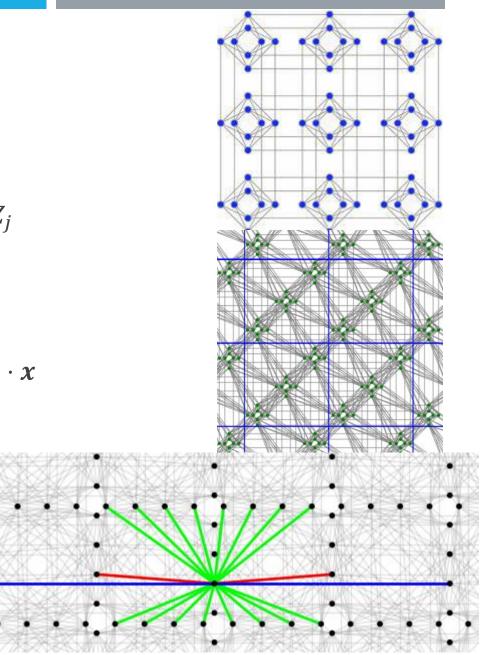
Quantum annealers: ground state of

$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$

- Topology defines available couplings
- Connection to QUBO

ground state of $\sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j \rightarrow \operatorname{argmin}_{x} x^T \cdot Q \cdot x$

SIASP is not QUBO!



Quantum annealers: ground state of

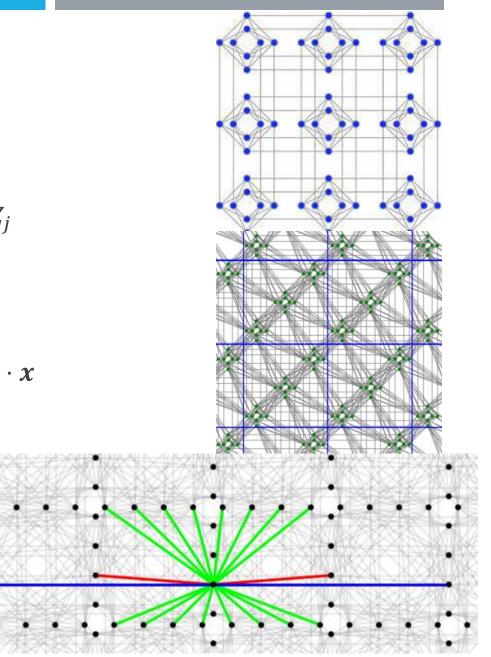
$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$

- Topology defines available couplings
- Connection to QUBO

ground state of $\sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j \rightarrow \operatorname{argmin}_{x} x^T \cdot Q \cdot x$

SIASP is not QUBO!

i) Constraints (not U)



Quantum annealers: ground state of

$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$

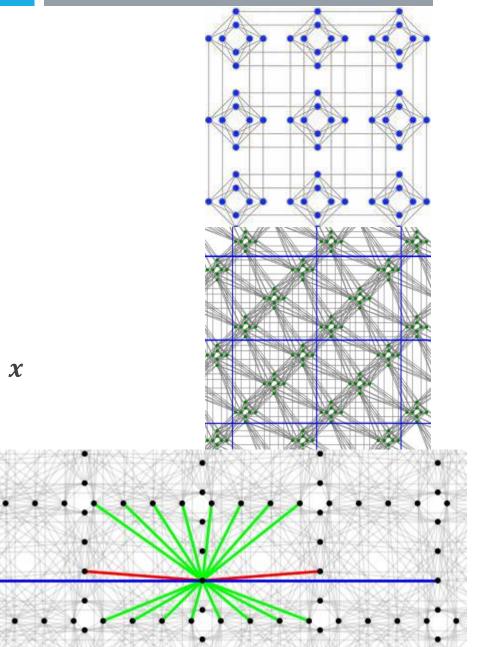
- Topology defines available couplings
- Connection to QUBO

ground state of $\sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j \rightarrow \operatorname{argmin}_{x} x^T \cdot Q \cdot x$

SIASP is not QUBO!

i) Constraints (not U)

Penalty terms



Quantum annealers: ground state of

$$H_P = \sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j$$

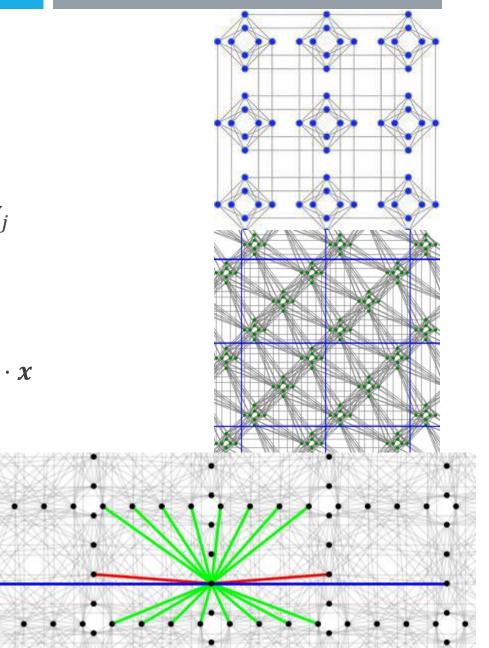
- Topology defines available couplings
- Connection to QUBO

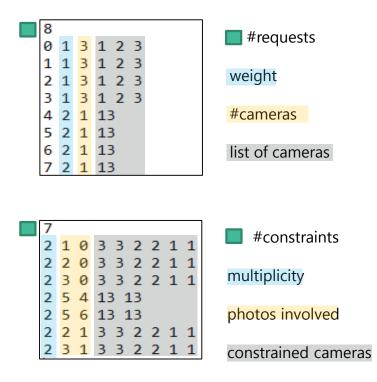
ground state of $\sum_i h_i Z_i + \sum_{ij} J_{ij} Z_i Z_j \rightarrow \operatorname{argmin}_{x} x^T \cdot Q \cdot x$

SIASP is not QUBO!

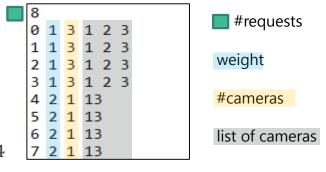
i) Constraints (not U)

- Penalty terms
- E.g.: constraint $x_1 + x_2 \le 1$, extra term $P x_1 x_2$





For each photo request *i*, four binary variables $x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}$

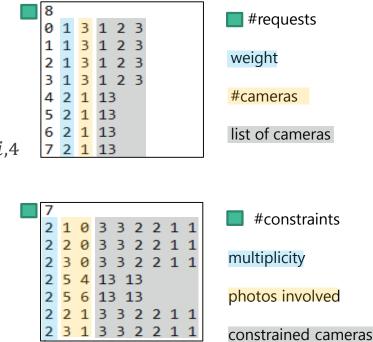


	7				
_	2	1	0	3 3 2 2 1 1	#constraints
	2			3 3 2 2 1 1	
	2	3	0	3 3 2 2 1 1	multiplicity
	2	5	4	13 13	
	2	5	6	13 13	photos involved
	2	2	1	3 3 2 2 1 1	
	2	3	1	3 3 2 2 1 1	constrained cameras

- For each photo request *i*, four binary variables $x_{i,1}, x_{i,2}, x_{i,3}, x_{i,3}$
- "4th" camera represents stereo setup "13"

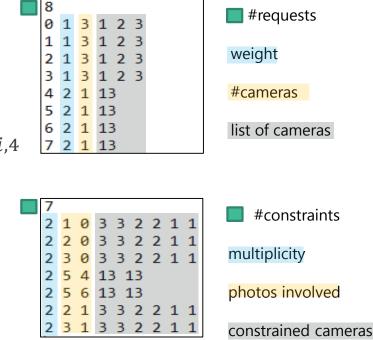
	8					The survey of a
_	0	1	3	1 2 3		#requests
	1	1	3	1 2 3		
	2	1		1 2 3		weight
	3	1		123		
	4		1			#cameras
	5		1			
	6			13		list of cameras
,4	7	2	1	13		
	7	_				#constraints
	2	1	0	33221	1	
	2	2	0	33221	1	and the line is
	2	3		33221	1	multiplicity
	2	5		13 13		
			4			
	2		6	13 13		photos involved
	2				1	photos involved constrained cameras

- For each photo request *i*, four binary variables $x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}$
- "4th" camera represents stereo setup "13"
- $\min_{x_{i,j}} \sum_{i,j} w_i x_{i,j}$



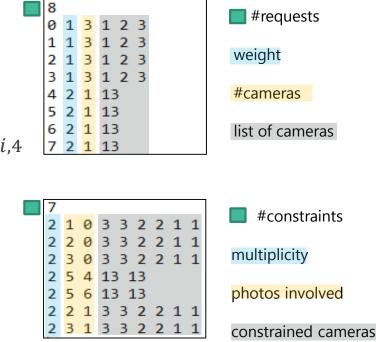
- For each photo request *i*, four binary variables $x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}$
- "4th" camera represents stereo setup "13"
- $\prod_{x_{i,j}} \sum_{i,j} w_i x_{i,j}$
- Under constraints

$$\begin{split} \sum_{j} x_{i,j} &\leq 1 \quad \forall i \\ x_{p,j_p} + x_{q,j_q} &\leq 1 \quad \forall \left((p, j_p), (q, j_q) \right) \in C_2 \\ x_{p,j_p} + x_{q,j_q} + x_{r,j_r} &\leq 2 \quad \forall \left((p, j_p), (q, j_q), (r, j_r) \right) \in C_3 \\ x_{i,4} &= 0 \quad \forall i \in M \\ x_{i,j} &= 0 \quad \forall i \in S, \forall j \in \{1, 2, 3\} \end{split}$$



- For each photo request *i*, four binary variables $x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}$
- "4th" camera represents stereo setup "13"
- $\min_{x_{i,j}} \sum_{i,j} w_i x_{i,j}$
- Under constraints

$$\begin{split} \sum_{j} x_{i,j} &\leq 1 \quad \forall i \quad (\text{each photo once}) \\ x_{p,j_p} + x_{q,j_q} &\leq 1 \quad \forall ((p,j_p),(q,j_q)) \in C_2 \\ x_{p,j_p} + x_{q,j_q} + x_{r,j_r} &\leq 2 \quad \forall ((p,j_p),(q,j_q),(r,j_r)) \in C_3 \\ x_{i,4} &= 0 \quad \forall i \in M \\ x_{i,j} &= 0 \quad \forall i \in S, \forall j \in \{1,2,3\} \end{split}$$

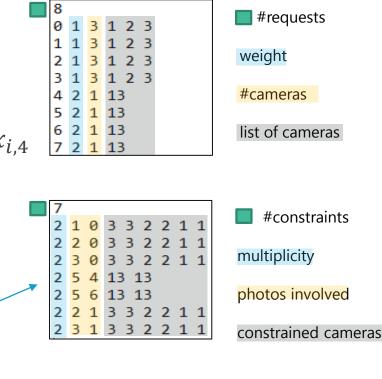


- For each photo request *i*, four binary variables $x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}$
- "4th" camera represents stereo setup "13"
- $\min_{x_{i,j}} \sum_{i,j} w_i x_{i,j}$
- Under constraints

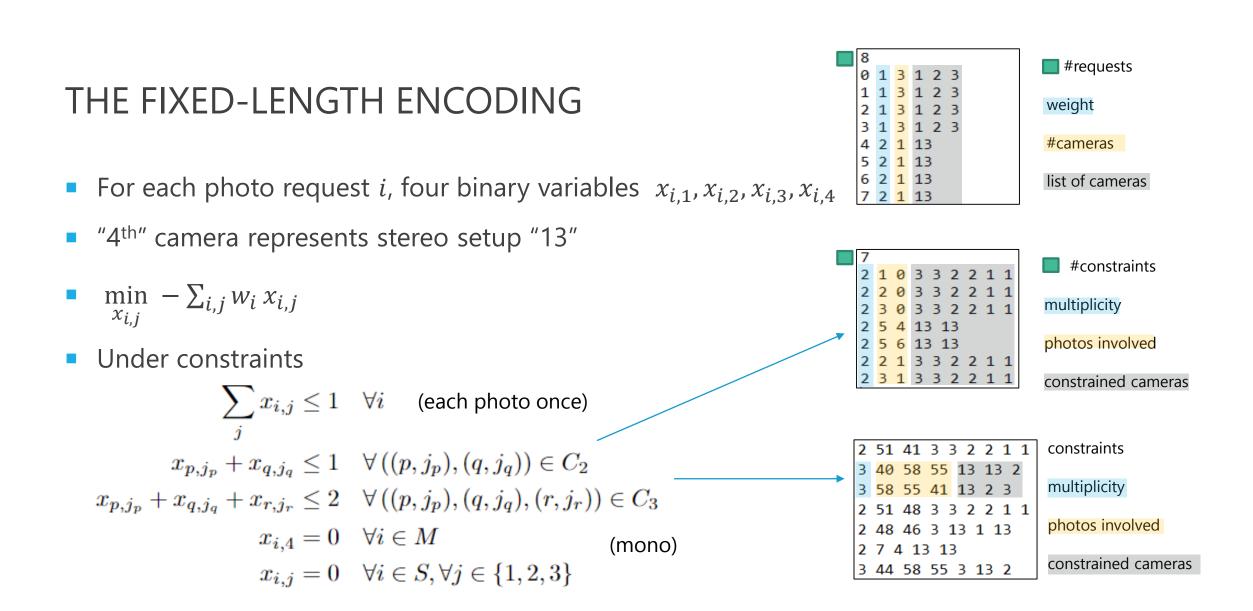
 $\sum_j x_{i,j} \leq 1 \quad orall i$ (each photo once)

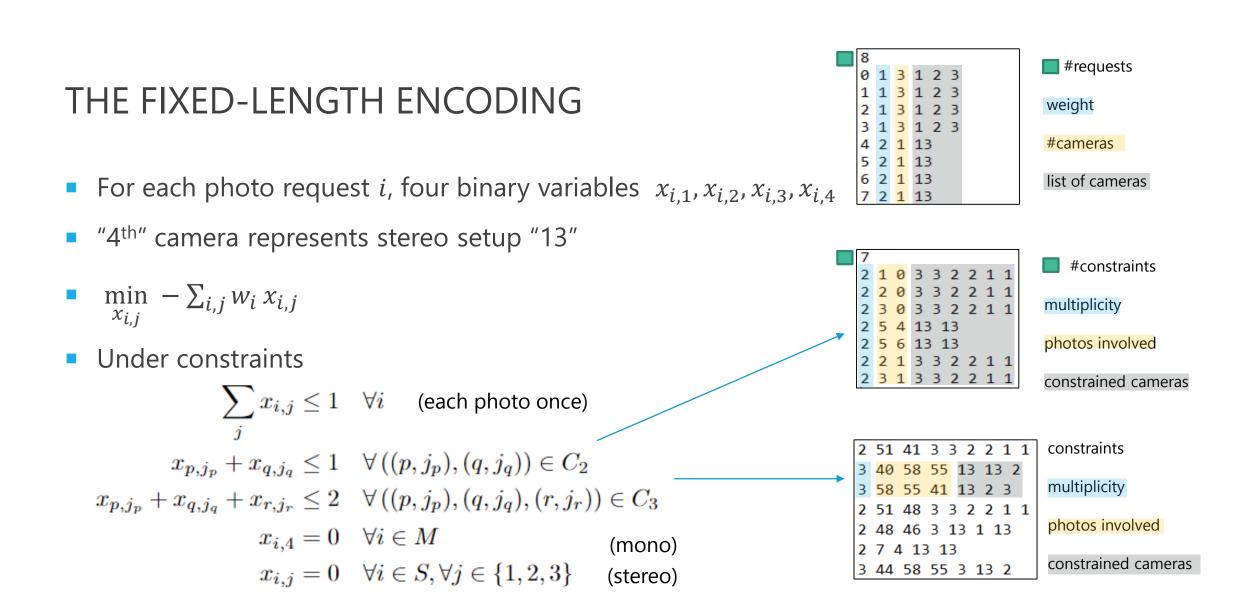
 $\begin{aligned} x_{p,j_p} + x_{q,j_q} &\leq 1 \quad \forall ((p,j_p), (q,j_q)) \in C_2 \\ x_{p,j_p} + x_{q,j_q} + x_{r,j_r} &\leq 2 \quad \forall ((p,j_p), (q,j_q), (r,j_r)) \in C_3 \\ x_{i,4} &= 0 \quad \forall i \in M \end{aligned}$

$$x_{i,j} = 0 \quad \forall i \in S, \forall j \in \{1, 2, 3\}$$



#requests 01312 1 1 3 1 2 3 THE FIXED-LENGTH ENCODING 2 1 3 1 2 3 weight 3 1 3 1 2 3 4 2 1 13 5 2 1 13 6 2 1 13 #cameras list of cameras For each photo request *i*, four binary variables $x_{i,1}, x_{i,2}, x_{i,3}, x_{i,4}$ 7 2 1 13 "4th" camera represents stereo setup "13" #constraints 0332211 $\min_{x_{i,j}} - \sum_{i,j} w_i x_{i,j}$ 20332211 multiplicity 0332211 2 5 4 13 13 photos involved 2 5 6 13 13 Under constraints 2 2 1 3 3 2 2 1 1 2 3 1 3 3 2 2 1 1 constrained cameras $\sum x_{i,j} \leq 1 \quad orall i$ (each photo once) 2 51 41 3 3 2 2 1 1 constraints $x_{p,j_p} + x_{q,j_q} \le 1 \quad \forall ((p,j_p),(q,j_q)) \in C_2$ 3 40 58 55 13 13 2 3 58 55 41 13 2 3 multiplicity $x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2 \quad \forall ((p,j_p), (q,j_q), (r,j_r)) \in C_3$ 2 51 48 3 3 2 2 1 1 photos involved 2 48 46 3 13 1 13 $x_{i,4} = 0 \quad \forall i \in M$ 2 7 4 13 13 constrained cameras 3 44 58 55 3 13 2 $x_{i,j} = 0 \quad \forall i \in S, \forall j \in \{1, 2, 3\}$





- $x_1 + x_2 \le 1$ \rightarrow $P x_1 x_2$
- $x_3 + x_4 + x_5 \le 2 \rightarrow ?$

- $x_1 + x_2 \le 1 \qquad \rightarrow \qquad P \ x_1 x_2$
- $x_3 + x_4 + x_5 \le 2 \rightarrow ?$
- Natively quadratic: $P(x_3 + x_4 + x_5 + s_1 + 2s_2 2)^2$

- $\bullet \quad x_1 + x_2 \le 1 \qquad \rightarrow \qquad P \; x_1 x_2$
- $x_3 + x_4 + x_5 \le 2 \rightarrow ?$
- Natively quadratic: $P(x_3 + x_4 + x_5 + s_1 + 2s_2 2)^2$

Extra slack variables s_1 , s_2 , and 16 terms

- $x_3 + x_4 + x_5 \le 2 \rightarrow ?$
- Natively quadratic: $P(x_3 + x_4 + x_5 + s_1 + 2s_2 2)^2$

Extra slack variables s₁, s₂, and 16 terms

• Cubic: $x_3 + x_4 + x_5 \le 2 \rightarrow P x_3 x_4 x_5$

- $\bullet \quad x_1 + x_2 \le 1 \qquad \rightarrow \qquad P \; x_1 x_2$
- $x_3 + x_4 + x_5 \le 2 \rightarrow ?$
- Natively quadratic: $P(x_3 + x_4 + x_5 + s_1 + 2s_2 2)^2$

Extra slack variables s₁, s₂, and 16 terms

• Cubic: $x_3 + x_4 + x_5 \le 2 \rightarrow P x_3 x_4 x_5$

Single-term, no slack, but beyond quadratic

- $x_1 + x_2 \le 1 \qquad \rightarrow \qquad P \ x_1 x_2$
- $x_3 + x_4 + x_5 \le 2 \rightarrow ?$
- Natively quadratic: $P(x_3 + x_4 + x_5 + s_1 + 2s_2 2)^2$

Extra slack variables s₁, s₂, and 16 terms

• Cubic: $x_3 + x_4 + x_5 \le 2 \rightarrow P x_3 x_4 x_5$

Single-term, no slack, but beyond quadratic

Need for reduction to quadratic!

Finding equivalent quadratic polynomials, i.e. same argmin

- Finding equivalent quadratic polynomials, i.e. same argmin
- E.g. $-x_1x_2x_3 = \min_{s} -s(x_1 + x_2 + x_3 2)$, slack variable s

- Finding equivalent quadratic polynomials, i.e. same argmin
- E.g. $-x_1x_2x_3 = \min_{s} -s(x_1 + x_2 + x_3 2)$, slack variable s
- $a x_1 x_2 x_3 \cdots x_d \rightarrow ?$

- Finding equivalent quadratic polynomials, i.e. same argmin
- E.g. $-x_1x_2x_3 = \min_{s} -s(x_1 + x_2 + x_3 2)$, slack variable s
- $a x_1 x_2 x_3 \cdots x_d \rightarrow ?$

Boros: based on replacing pairs for slack variables: x₂x₃ for s₁;

- Finding equivalent quadratic polynomials, i.e. same argmin
- E.g. $-x_1x_2x_3 = \min_{s} -s(x_1 + x_2 + x_3 2)$, slack variable s
- $a x_1 x_2 x_3 \cdots x_d \rightarrow ?$

- **Boros**: based on replacing pairs for slack variables: x₂x₃ for s₁;
- Ishikawa: based on whole term, efficient when a<0 (1 slack), not so for a>0 (d/2 slacks)

- Finding equivalent quadratic polynomials, i.e. same argmin
- E.g. $-x_1x_2x_3 = \min_{s} -s(x_1 + x_2 + x_3 2)$, slack variable s
- $a x_1 x_2 x_3 \cdots x_d \rightarrow ?$

- **Boros**: based on replacing pairs for slack variables: x₂x₃ for s₁;
- Ishikawa: based on whole term, efficient when a<0 (1 slack), not so for a>0 (d/2 slacks)
- Contribution: mixed method: Ishikawa for a<0, Boros for a>0

• Fixed-length encoding is wasteful

- Fixed-length encoding is wasteful
- Must reduce number of qubits!

Fixed-length encoding is wasteful

Must reduce number of qubits!

0.0

standard encoding: either $x_{i,1}, x_{i,2}, x_{i,3}$ (mono) or x_i (stereo)

Fixed-length encoding is wasteful

Must reduce number of qubits!

standard encoding: either $x_{i,1}, x_{i,2}, x_{i,3}$ (mono) or x_i (stereo) $\sum_j x_{i,j} \le 1 \quad \forall i$ $x_{p,j_p} + x_{q,j_q} \le 1 \quad \forall ((p, j_p), (q, j_q)) \in C_2$ $x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2 \quad \forall ((p, j_p), (q, j_q), (r, j_r)) \in C_3$ $\frac{x_{i,q} = 0 \quad \forall i \in M}{x_{i,j} = 0 \quad \forall i \in S, \forall j \in \{1, 2, 3\}}$

Fixed-length encoding is wasteful

Must reduce number of qubits!

~~

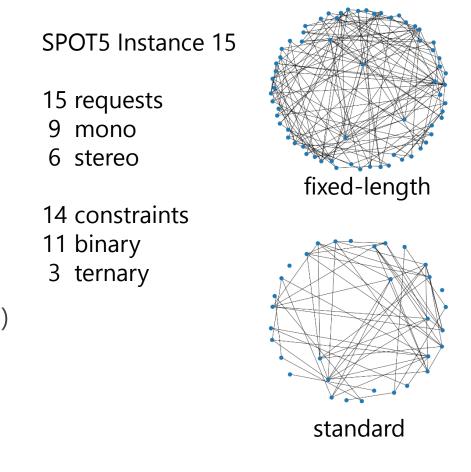
standard encoding: either $x_{i,1}, x_{i,2}, x_{i,3}$ (mono) or x_i (stereo)

$$\sum_{j} x_{i,j} \leq 1 \quad \forall i$$

$$x_{p,j_p} + x_{q,j_q} \leq 1 \quad \forall ((p, j_p), (q, j_q)) \in C_2$$

$$x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \leq 2 \quad \forall ((p, j_p), (q, j_q), (r, j_r)) \in C_3$$

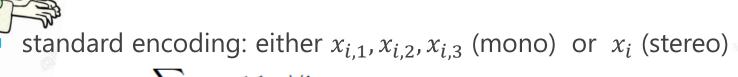
$$\frac{x_{i,4} = 0 \quad \forall i \in M}{x_{i,4} = 0 \quad \forall i \in S, \forall j \in \{1, 2, 3\}}$$



Fixed-length encoding is wasteful

Must reduce number of qubits!

~~

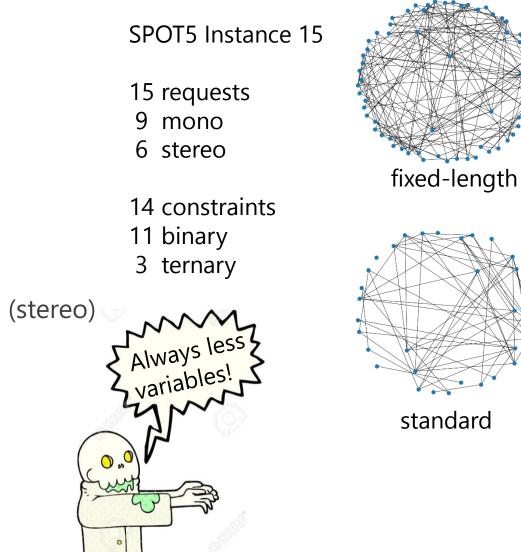


$$\sum_{j} x_{i,j} \leq 1 \quad \forall i$$

$$x_{p,j_p} + x_{q,j_q} \leq 1 \quad \forall ((p, j_p), (q, j_q)) \in C_2$$

$$x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \leq 2 \quad \forall ((p, j_p), (q, j_q), (r, j_r)) \in C_3$$

$$\frac{x_{i,4} = 0 \quad \forall i \in M}{x_{i,4} = 0 \quad \forall i \in S, \forall j \in \{1, 2, 3\}}$$



• Then let's make an even denser encoding!

- Then let's make an even denser encoding!
- Stereo: x_i only

- Then let's make an even denser encoding!
- Stereo: x_i only
- Mono: only 2 bits, $x_{i,0}$, $x_{i,1}$

	<i>x</i> _{<i>i</i>,0}	<i>x</i> _{<i>i</i>,1}
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

- Then let's make an even denser encoding!
- Stereo: x_i only
- Mono: only 2 bits, $x_{i,0}$, $x_{i,1}$
- Removes more constraints:

	<i>x</i> _{<i>i</i>,0}	<i>x</i> _{<i>i</i>,1}
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

- Then let's make an even denser encoding!
- Stereo: x_i only
- Mono: only 2 bits, $x_{i,0}$, $x_{i,1}$
- Removes more constraints:

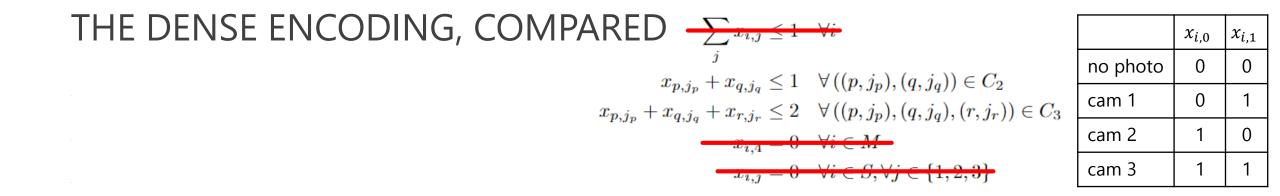
 $\frac{1}{\sum x_{i,j} \leq 1 \quad \forall i}$ $x_{p,j_p} + x_{q,j_q} \le 1 \quad \forall ((p,j_p), (q,j_q)) \in C_2$ $x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2 \quad \forall ((p,j_p), (q,j_q), (r,j_r)) \in C_3$ $-x_{i,4} = 0 \quad \forall i \in M$ $x_{i,j} = 0 \quad \forall i \in S, \forall j \in \{1, 2, 3\}$

	<i>x</i> _{<i>i</i>,0}	<i>x</i> _{<i>i</i>,1}
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

- Then let's make an even denser encoding!
- Stereo: x_i only
- Mono: only 2 bits, $x_{i,0}$, $x_{i,1}$
- Removes more constraints:

$$\begin{split} \sum_{j} x_{i,j} \leq 1 \quad \forall i \\ x_{p,j_p} + x_{q,j_q} \leq 1 \quad \forall ((p, j_p), (q, j_q)) \in C_2 \\ x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \leq 2 \quad \forall ((p, j_p), (q, j_q), (r, j_r)) \in C_3 \\ \frac{x_{i,4} = 0 \quad \forall i \in M}{x_{i,j} = 0 \quad \forall i \in S, \forall j \in \{1, 2, 3\}} \end{split}$$

	<i>x</i> _{<i>i</i>,0}	$x_{i,1}$
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1



THE DENSE ENCODING, COMPARED $\sum_{x_{i,j} \leq 1} \forall i$

However... how do C₂, C₃ look like now?

J	
$x_{p,j_p} + x_{q,j_q} \le 1$	$\forall \left((p, j_p), (q, j_q) \right) \in C_2$
$x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2$	$\forall \left((p, j_p), (q, j_q), (r, j_r) \right) \in C_3$
$-x_{i,4} - 0$	$\forall i \in M$

11, 4, 0

 $x_{i,j}$

	<i>x</i> _{<i>i</i>,0}	<i>x</i> _{<i>i</i>,1}
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

THE DENSE ENCODING, COMPARED $\sum_{x_{i,j} \leq 1} \forall i$

- However... how do C₂, C₃ look like now?
- C₂: **2** 4 5 3 3 2 2 1 1

- $\begin{array}{c|c} & & \\ & & \\ j \\ & & \\ & x_{p,j_p} + x_{q,j_q} \leq 1 \quad \forall \left((p,j_p), (q,j_q) \right) \in C_2 \\ & & \\ & x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \leq 2 \quad \forall \left((p,j_p), (q,j_q), (r,j_r) \right) \in C_3 \\ & \hline & \\ & \hline & \\ & \hline & x_{i,4} = 0 \quad \forall i \in M \\ \hline & & \\ & \hline & x_{i,4} = 0 \quad \forall i \in S, \forall j \in \{1,2,3\} \end{array} \qquad \begin{array}{c} \text{no photo} \\ & \text{cam 1} \\ & \text{cam 2} \\ & \text{cam 3} \end{array}$
- x_{i,0}
 x_{i,1}

 no photo
 0

 cam 1
 0
 1

 cam 2
 1
 0

 cam 3
 1
 1

THE DENSE ENCODING, COMPARED $-\sum_{x_{i,j} \leq 1} x_{i,j} \leq 1$

- However... how do C₂, C₃ look like now?
- C₂: 2 4 5 3 3 2 2 1 1
- standard encoding (also fixed-length):
 e.g. P x_{4,3}x_{5,3}

$1PARED \underline{\sum x_{i,j} \leq 1 \forall i}$		$x_{i,0}$
$ x_{p,j_p} + x_{q,j_q} \le 1 \forall \left((p, j_p), (q, j_q) \right) \in C_2 $	no photo	0
$x_{p,j_p} + x_{q,j_q} \leq 1 \forall ((p,j_p), (q,j_q)) \in C_2$ $x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \leq 2 \forall ((p,j_p), (q,j_q), (r,j_r)) \in C_3$	cam 1	0
$x_{i,4} = 0 \forall i \in M$	cam 2	1
$x_{i,j} = 0 \forall i \in S, \forall j \in \{1, 2, 3\}$	cam 3	1

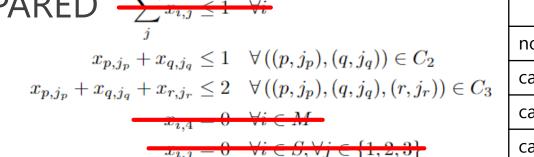
 $|x_{i,1}|$

0

0

THE DENSE ENCODING, COMPARED $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 1 - \frac{1}{\sqrt{i}}$

- However... how do C₂, C₃ look like now?
- C₂: 2 4 5 3 3 2 2 1 1
- standard encoding (also fixed-length):
 e.g. P x_{4,3}x_{5,3}
- dense encoding:



	<i>x</i> _{<i>i</i>,0}	$x_{i,1}$
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

<i>x</i> _{4,0} <i>x</i> _{4,1}				
$x_{5,0}x_{5,1}$	00	01	11	10
00	0	0	0	0
01	0	Р	0	0
11	0	0	Р	0
10	0	0	0	Р

THE DENSE ENCODING, COMPARED $\sum_{x_{i,j} \leq 1} \forall x_{i,j} \leq 1 \forall x_{i,j} \in 1 \forall x_{i,j} \in$

- However... how do C₂, C₃ look like now?
- C₂: 2 4 5 3 3 2 2 1 1
- standard encoding (also fixed-length):
 e.g. P x_{4,3}x_{5,3}
- dense encoding:

e.g. *P* x_{4,0} x_{4,1} x_{5,0} x_{5,1}

$ARED \rightarrow x_{i,j} \leq 1 \forall i$	
j $x \to \pm x \to \leq 1 \forall ((n, i), (a, i)) \in C_{\tau}$	
$x_{p,j_p} + x_{q,j_q} \le 1 \forall ((p,j_p), (q,j_q)) \in C_2$ $x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2 \forall ((p,j_p), (q,j_q), (r,j_r)) \in C_3$	-
$x_{i,4} = 0 \forall i \in M$	(
$\overline{x_{i,j}} = 0 \forall i \in S, \forall j \in \{1, 2, 3\}$	

	<i>x</i> _{<i>i</i>,0}	$x_{i,1}$
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

<i>x</i> _{4,0} <i>x</i> _{4,1}				
$x_{5,0}x_{5,1}$	00	01	11	10
00	0	0	0	0
01	0	Р	0	0
11	0	0	Р	0
10	0	0	0	Р

THE DENSE ENCODING, COMPARED $\sum_{x_{i,j} \leq 1} \forall x_{i,j} \leq 1 \forall x_{i,j} \in 1 \forall x_{i,j} \in$

- However... how do C₂, C₃ look like now?
- C₂: 2 4 5 3 3 2 2 1 1
- standard encoding (also fixed-length):
 e.g. P x_{4,3}x_{5,3}
- dense encoding:

e.g. *P* x_{4,0} x_{4,1} x_{5,0} x_{5,1}

• Quartic terms for quadratic constraint!

ARED $-\sum_{x_{i,j} \leq 1}$	
j	
$x_{p,j_p} + x_{q,j_q} \le 1$	$\forall \left((p, j_p), (q, j_q) \right) \in C_2$
$x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2$	$\forall \left((p, j_p), (q, j_q), (r, j_r) \right) \in C_3$
$-x_{i,4} = 0$	$\forall i \in M$
0	$\forall i \in Q \; \forall i \in \{1, 0, 0\}$

As in the second second

	<i>x</i> _{<i>i</i>,0}	<i>x</i> _{<i>i</i>,1}
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

<i>x</i> _{4,0} <i>x</i> _{4,1}				
$x_{5,0}x_{5,1}$	00	01	11	10
00	0	0	0	0
01	0	Р	0	0
11	0	0	Р	0
10	0	0	0	Р

CD, V, C] 1, 2, 0

THE DENSE ENCODING, COMPARED $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 1 - \frac{1}{\sqrt{i}}$

- However... how do C₂, C₃ look like now?
- C₂: 2 4 5 3 3 2 2 1 1
- standard encoding (also fixed-length):
 e.g. P x_{4,3}x_{5,3}
- dense encoding:

e.g. *P* x_{4,0} x_{4,1} x_{5,0} x_{5,1}

Quartic terms for quadratic constraint!

 $\begin{array}{l} \mathsf{ARED} \quad \underbrace{\sum_{j} x_{i,j} \leq 1 \quad \forall i}_{j} \\ x_{p,j_p} + x_{q,j_q} \leq 1 \quad \forall \left((p,j_p), (q,j_q)\right) \in C_2 \\ x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \leq 2 \quad \forall \left((p,j_p), (q,j_q), (r,j_r)\right) \in C_3 \\ \underbrace{x_{i,4} = 0 \quad \forall i \in M}_{0 \quad \forall i \in M} \end{array}$

	<i>x</i> _{<i>i</i>,0}	<i>x</i> _{<i>i</i>,1}
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

<i>x</i> _{4,0} <i>x</i> _{4,1}				
$x_{5,0}x_{5,1}$	00	01	11	10
00	0	0	0	0
01	0	Р	0	0
11	0	0	Р	0
10	0	0	0	Р

-11, 2, 0

• C₃: 3 7 8 9 2 3 13

THE DENSE ENCODING, COMPARED $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 1 - \frac{1}{\sqrt{i}}$

- However... how do C₂, C₃ look like now?
- C₂: 2 4 5 3 3 2 2 1 1
- standard encoding (also fixed-length):
 e.g. P x_{4,3}x_{5,3}
- dense encoding:

e.g. *P* x_{4,0} x_{4,1} x_{5,0} x_{5,1}

- Quartic terms for quadratic constraint!
- C₃: 3 7 8 9 2 3 13
- standard encoding: $P x_{7,2} x_{8,3} x_9$ (cubic)

ARED $\xrightarrow{x_{i,j} \leq 1}$	
j	
$x_{p,j_p} + x_{q,j_q} \le 1$	$\forall \left((p, j_p), (q, j_q) \right) \in C_2$
$x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2$	$\forall \left((p, j_p), (q, j_q), (r, j_r) \right) \in C_3$
$x_{i,4} = 0$	$\forall i \in M$
0	M' = GM' = (1, 0, 0)

Ju1.1

	<i>x</i> _{<i>i</i>,0}	<i>x</i> _{<i>i</i>,1}
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

<i>x</i> _{4,0} <i>x</i> _{4,1}				
$x_{5,0}x_{5,1}$	00	01	11	10
00	0	0	0	0
01	0	Р	0	0
11	0	0	Р	0
10	0	0	0	Р

THE DENSE ENCODING, COMPARED $\sum_{i,j} x_{i,j} \leq 1 \quad \forall i$

- However... how do C₂, C₃ look like now?
- C₂: 2 4 5 3 3 2 2 1 1
- standard encoding (also fixed-length):
 e.g. P x_{4,3}x_{5,3}
- dense encoding:

e.g. *P* x_{4,0} x_{4,1} x_{5,0} x_{5,1}

• Quartic terms for quadratic constraint!

ARED $- \sum_{x_{i,j} \leq 1}$	
j	
$x_{p,j_p} + x_{q,j_q} \le 1$	$\forall \left((p, j_p), (q, j_q) \right) \in C_2$
$x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2$	$\forall \left((p, j_p), (q, j_q), (r, j_r) \right) \in C_3$
$x_{i,4} = 0$	$\forall i \in M$
0	$\forall i \in \mathcal{O} \forall i \in \{1, 0, 0\}$

As in the second second

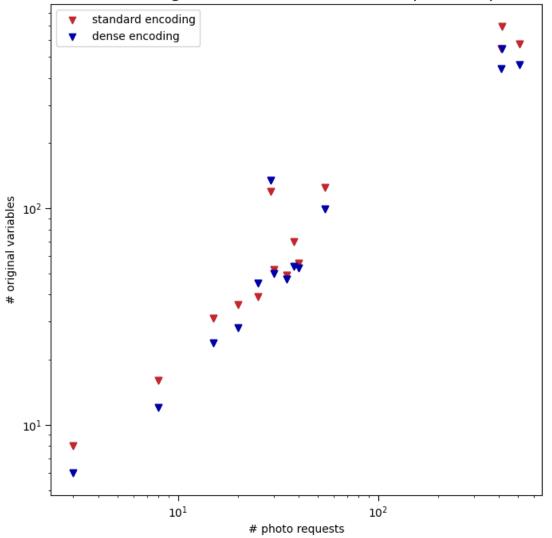
	<i>x</i> _{<i>i</i>,0}	<i>x</i> _{<i>i</i>,1}
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

<i>x</i> _{4,0} <i>x</i> _{4,1}				
$x_{5,0}x_{5,1}$	00	01	11	10
00	0	0	0	0
01	0	Р	0	0
11	0	0	Р	0
10	0	0	0	Р

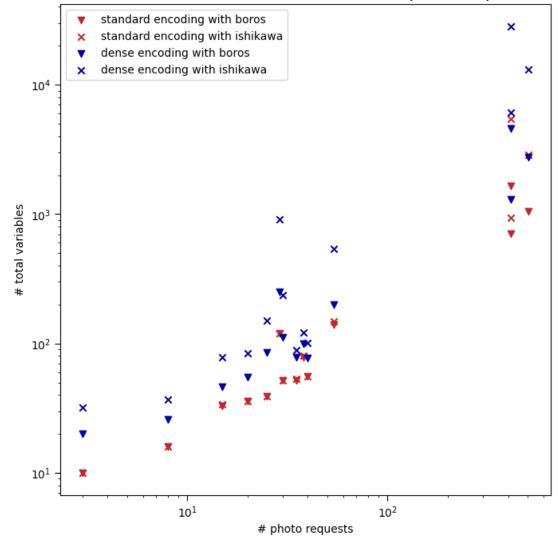
- C₃: 3 7 8 9 2 3 13
- standard encoding: $P x_{7,2} x_{8,3} x_9$ (cubic)
- dense encoding: $P x_{7,0} (1 x_{7,1}) x_{8,0} x_{8,1} x_9$ (quintic!)

Dense encoding: less original variables,

Number of original variables vs number of photo requests

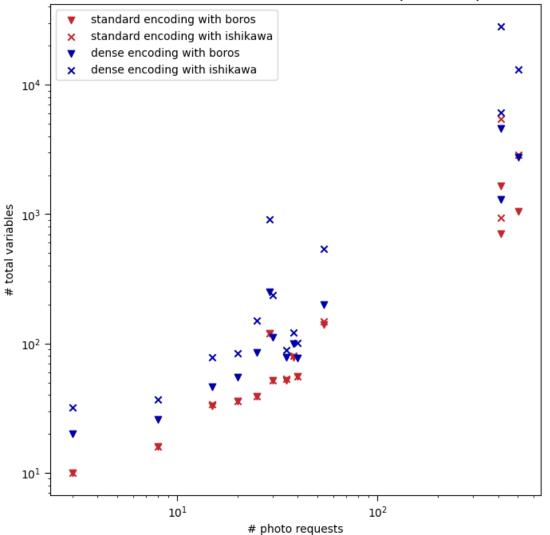


- Dense encoding: less original variables,
- but more added variables from reduction technique



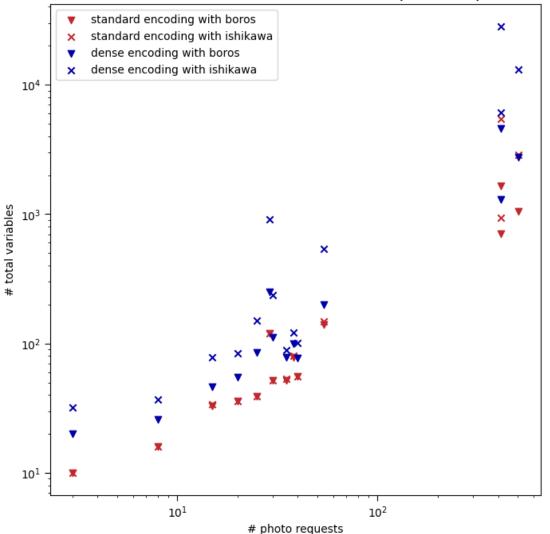
- Dense encoding: less original variables,
- but more added variables from reduction technique
- In total, dense encoding requires more variables

Number of total variables vs number of photo requests



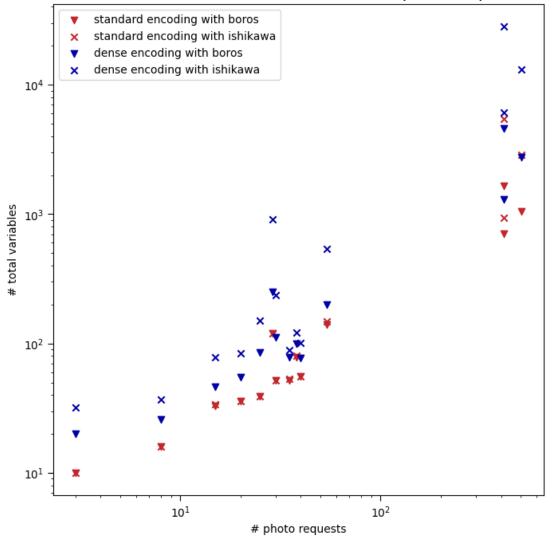
- Dense encoding: less original variables,
- but more added variables from reduction technique
- In total, dense encoding requires more variables
- More logical qubits needed

Number of total variables vs number of photo requests



- Dense encoding: less original variables,
- but more added variables from reduction technique
- In total, dense encoding requires more variables
- More logical qubits needed

Number of total variables vs number of photo requests



CONCLUSIONS

CONCLUSIONS

• Encoding drastically changes what can be performed in quantum computer

CONCLUSIONS

- Encoding drastically changes what can be performed in quantum computer
- Although reduction of qubits of utmost necessity, not simply "the denser the better"

THANK YOU FOR YOUR ATTENTION

FROM SIASP TO QUBO

- SIASP is not QUBO!
- i) Constraints (not U)
- Penalty terms
- E.g.: constraint $x_1 + x_2 \le 1$, extra term $P x_1 x_2$

ii) Higher-order polynomial (not Q)

- Reduction to quadratic form with extra variables
- Equivalent polynomial, i.e. one that has the same argmin

REDUCTION TO QUADRATIC

- Finding **equivalent** quadratic polynomials
- E.g.: $-x_1x_2x_3 \rightarrow -s(x_1 + x_2 + x_3 2)$
- Slack variable s
- In general: $a x_1 x_2 x_3 \cdots x_d \rightarrow ?$
- Boros (E. Boros et al, Discrete Applied Mathematics **123** 155 (2002))
- i) replace pair, e.g. x_2x_3 , for slack s_1 ; ii) add term $M(x_2x_3 - 2x_2s_1 - 2x_3s_1 + 3s_1)$ to enforce $s_1 = x_2x_3$; iii) repeat until all quadratic
- 1 added variable per replaced pair
- Ishikawa (H. Ishikawa, IEEE Trans. on Patt. Analysis and Mach. Intellig., 33, 1234 (2011))

i) if
$$a < 0$$
, $\rightarrow a s_1(\sum_i x_i - d + 1)$ [above]
ii) if $a > 0$, $\rightarrow a \sum_i s_i [2(2i - \sum_i x_i) - 1] + a \sum_{i \neq j} x_i x_j$

Variables added: i) 1 per term, ii) ~d/2 per term

THE DENSE ENCODING, COMPARED $\sum_{i} x_{i,j} \leq 1 - \forall i$

- However... how do C₂, C₃ look like now?
- C₂:
- dense encoding: $P x_{4,0} x_{4,1} x_{5,0} x_{5,1} \le 1$ $P (1 - x_{4,0}) x_{4,1} (1 - x_{5,0}) x_{5,1} \le 1$ $P x_{4,0} (1 - x_{4,1}) x_{5,0} (1 - x_{5,1}) \le 1$
- Quartic terms for quadratic constraint!
- C₃: 3 7 8 9 2 3 13
- standard encoding: $P x_{7,2} x_{8,3} x_9$ (cubic)

j	
$x_{p,j_p} + x_{q,j_q} \le 1$	$\forall \left((p, j_p), (q, j_q) \right) \in C_2$
$x_{p,j_p} + x_{q,j_q} + x_{r,j_r} \le 2$	$\forall \left((p, j_p), (q, j_q), (r, j_r) \right) \in C_3$
$-x_{i,4} = 0$	$\forall i \in M$

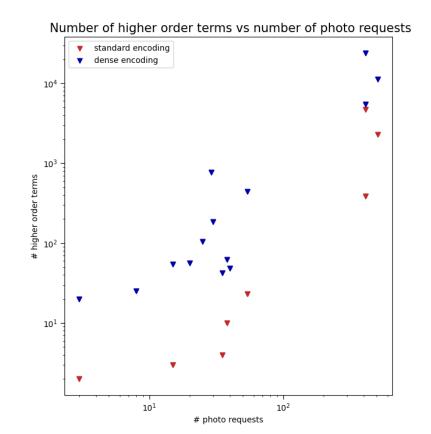
	<i>x</i> _{<i>i</i>,0}	$x_{i,1}$
no photo	0	0
cam 1	0	1
cam 2	1	0
cam 3	1	1

<i>x</i> _{4,0} <i>x</i> _{4,1}				
$x_{5,0}x_{5,1}$	00	01	11	10
00	0	0	0	0
01	0	Р	0	0
11	0	0	Р	0
10	0	0	0	Р

dense encoding:
$$P x_{7,0} (1 - x_{7,1}) x_{8,0} x_{8,1} x_9$$
 (quintic!)

THE DENSE ENCODING, COMPARED

quadratic constraint
 standard: P x_{4,3}x_{5,3}
 dense encoding: P x_{4,0} x_{4,1} x_{5,0} x_{5,1}



• ternary constraint standard: $P x_{7,2} x_{8,3} x_9$ dense encoding: $P x_{7,0} (1 - x_{7,1}) x_{8,0} x_{8,1} x_9$

