Guaranteeing non-classicality in experimental quantum networks without assuming quantum mechanics

Alex Pozas-Kerstjens

Institute of Mathematical Sciences, Madrid

What you are about to see

Nonlocality

$$
\begin{aligned}
p(a, b \mid x, y) & =\int \mathrm{d} \lambda q(\lambda) p(a \mid x, \lambda) p(b \mid y, \lambda) \\
\mathrm{CHSH} & :=\sum_{a, b, x, y}(-1)^{a+b+x y} p(a, b \mid x, y) \leq 2
\end{aligned}
$$

Nonlocality

$p(a, b \mid x, y)=\int \mathrm{d} \lambda q(\lambda) p(a \mid x, \lambda) p(b \mid y, \lambda)$
$\mathrm{CHSH}:=\sum_{a, b, x, y}(-1)^{a+b+x y} p(a, b \mid x, y) \leq 2$

$$
p(\bar{a} \mid \bar{x})=\int\left[\prod_{j=1}^{m} \mathrm{~d} \lambda_{j} q\left(\lambda_{j}\right)\right] \prod_{i=1}^{n} p\left(a_{i} \mid x_{i}, \bar{\lambda}_{i}\right)
$$

What does a violation of a network Bell inequality mean?

What does a violation of a network Bell inequality mean?
Option 1: The network is not the one you think
NOT this talk. Check poster 51 (Andrés Ulibarrena, today's session)

What does a violation of a network Bell inequality mean?

Option 1: The network is not the one you think
NOT this talk. Check poster 51 (Andrés Ulibarrena, today's session)
Option 2: Something non-classical is going on
In Bell scenarios, nonlocality \Rightarrow the source is non-classical
But the opposite of all sources are classical is at least one source is non-classical

$$
\sqrt{|I|}+\sqrt{|J|} \stackrel{\text { c-C }}{\leq} 1
$$

What does a violation of a network Bell inequality mean?

Option 1: The network is not the one you think
NOT this talk. Check poster 51 (Andrés Ulibarrena, today's session)
Option 2: Something non-classical is going on
In Bell scenarios, nonlocality \Rightarrow the source is non-classical
But the opposite of all sources are classical is at least one source is non-classical

$$
\sqrt{|I|}+\sqrt{|J|} \stackrel{\mathrm{C-C}}{\leq} 1 \stackrel{\mathrm{C-Q}}{\leq} 2^{1 / 4}
$$

What does a violation of a network Bell inequality mean?

Option 1: The network is not the one you think
NOT this talk. Check poster 51 (Andrés Ulibarrena, today's session)
Option 2: Something non-classical is going on
In Bell scenarios, nonlocality \Rightarrow the source is non-classical
But the opposite of all sources are classical is at least one source is non-classical

$$
\sqrt{|I|}+\sqrt{|J|} \stackrel{\mathrm{C-C}}{\leq} 1 \stackrel{\mathrm{C-Q}}{\leq} 2^{1 / 4} \stackrel{\text { Q-Q }}{\leq} \sqrt{2}
$$

What if we don't assume QM?

$$
\sqrt{|I|}+\sqrt{|J|} \stackrel{\mathrm{C-C}}{\leq} 1 \stackrel{\mathrm{C-Q}}{\leq} 2^{1 / 4} \stackrel{\mathrm{Q}-\mathrm{Q}}{\leq} \sqrt{2}
$$

What if we don't assume QM?

$$
\sqrt{|I|}+\sqrt{|J|} \stackrel{\mathrm{C-C}}{\leq} 1 \stackrel{\mathrm{C}-\mathrm{Q}}{\leq} 2^{1 / 4} \stackrel{\mathrm{Q}-\mathrm{Q}}{\leq} \sqrt{2}
$$

A and B share $\Lambda \in\{0,1\}$ with $p(\lambda)=\frac{1}{2}$. B and C share $p(b, c \mid \lambda, z)=\frac{1}{4}\left[1+(-1)^{b+c+\lambda z}\right]$

If we do not assume quantum mechanics, can we guarantee non-classicality?

APK, Gisin, Tavakoli, Phys. Rev. Lett. 128, 010403 (2022), arXiv:2105.09325

Full network nonlocality

In a given network and input/output scenario, $p(\bar{a} \mid \bar{x})$ is fully NN iff it cannot be modelled by allowing at least one source in the network to be of a local-variable nature.

Full network nonlocality

 In a given network and input/output scenario, $p(\bar{a} \mid \bar{x})$ is fully NN iff it cannot be modelled by allowing at least one source in the network to be of a local-variable nature.

APK, Gisin, Tavakoli, Phys. Rev. Lett. 128, 010403 (2022), arXiv:2105.09325

Full network nonlocality

 In a given network and input/output scenario, $p(\bar{a} \mid \bar{x})$ is fully NN iff it cannot be modelled by allowing at least one source in the network to be of a local-variable nature.

Guarantee of non-classicality No mention to quantum mechanics

APK, Gisin, Tavakoli, Phys. Rev. Lett. 128, 010403 (2022), arXiv:2105.09325

Full network nonlocality

In a given network and input/output scenario, $p(\bar{a} \mid \bar{x})$ is fully NN iff it cannot be modelled by allowing at least one source in the network to be of a local-variable nature.

Guarantee of non-classicality

No mention to quantum mechanics

Easy to characterize via inflation

Wolfe, Spekkens, Fritz, J. Causal Inference 7, 2017-0020 (2019), arXiv:1609.00672
APK, Gisin, Tavakoli, Phys. Rev. Lett. 128, 010403 (2022), arXiv:2105. 09325

First ever demonstration on star network

Branch parties perform 2 binary-outcome measurements Central party performs 1 binary-outcome measurement

$$
p\left(a_{1}, a_{2}, a_{3}, b \mid x_{1}, x_{2}, x_{3}\right)
$$

Wang, APK et al., Nat. Commun. 14, 2153 (2023), arXiv:2212.09765

First ever demonstration on star network

Found using inflation [J. Causal Inference 7, 2017-0020 (2019)]

$$
\begin{aligned}
\mathcal{I}_{1}= & -\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{0}^{(3)} B\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{0}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{1}^{(3)} B\right\rangle+\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{1}^{(3)} B\right\rangle \\
& -\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{0}^{(3)}\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{0}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{1}^{(3)}\right\rangle+\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{1}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(3)} B\right\rangle \\
& -\left\langle A_{1}^{(1)} A_{0}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{1}^{(3)} B\right\rangle+\left\langle A_{1}^{(1)} A_{1}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(3)}\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{1}^{(3)}\right\rangle \\
& +\left\langle A_{1}^{(1)} A_{1}^{(3)}\right\rangle-2\left\langle A_{0}^{(2)} B\right\rangle-2\left\langle A_{0}^{(2)}\right\rangle-2\langle B\rangle-2
\end{aligned}
$$

Wang, APK et al., Nat. Commun. 14, 2153 (2023), arXiv:2212.09765

First ever demonstration on star network

Found using inflation [J. Causal Inference 7, 2017-0020 (2019)]

$$
\begin{aligned}
\mathcal{I}_{1}= & -\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{0}^{(3)} B\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{0}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{1}^{(3)} B\right\rangle+\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{1}^{(3)} B\right\rangle \\
& -\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{0}^{(3)}\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{0}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{1}^{(3)}\right\rangle+\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{1}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(3)} B\right\rangle \\
& -\left\langle A_{1}^{(1)} A_{0}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{1}^{(3)} B\right\rangle+\left\langle A_{1}^{(1)} A_{1}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(3)}\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{1}^{(3)}\right\rangle \\
& +\left\langle A_{1}^{(1)} A_{1}^{(3)}\right\rangle-2\left\langle A_{0}^{(2)} B\right\rangle-2\left\langle A_{0}^{(2)}\right\rangle-2\langle B\rangle-2 \\
= & \mathrm{CHSH}\left(A^{(1)}, A^{(3)}\right)_{b=a_{2}=0, x_{2}=0}
\end{aligned}
$$

Wang, APK et al., Nat. Commun. 14, 2153 (2023), arXiv:2212. 09765

First ever demonstration on star network

Found using inflation [J. Causal Inference 7, 2017-0020 (2019)]

$$
\begin{aligned}
\mathcal{I}_{1}= & -\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{0}^{(3)} B\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{0}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{1}^{(3)} B\right\rangle+\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{1}^{(3)} B\right\rangle \\
& -\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{0}^{(3)}\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{0}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(2)} A_{1}^{(3)}\right\rangle+\left\langle A_{1}^{(1)} A_{0}^{(2)} A_{1}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(3)} B\right\rangle \\
& -\left\langle A_{1}^{(1)} A_{0}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{1}^{(3)} B\right\rangle+\left\langle A_{1}^{(1)} A_{1}^{(3)} B\right\rangle-\left\langle A_{0}^{(1)} A_{0}^{(3)}\right\rangle-\left\langle A_{1}^{(1)} A_{0}^{(3)}\right\rangle-\left\langle A_{0}^{(1)} A_{1}^{(3)}\right\rangle \\
& +\left\langle A_{1}^{(1)} A_{1}^{(3)}\right\rangle-2\left\langle A_{0}^{(2)} B\right\rangle-2\left\langle A_{0}^{(2)}\right\rangle-2\langle B\rangle-2 \\
= & \mathrm{CHSH}\left(A^{(1)}, A^{(3)}\right)_{b=a_{2}=0, x_{2}=0}
\end{aligned}
$$

We need

1. S_{1} and S_{3} non-classical
2. B performs an entangling measurement

Wang, APK et al., Nat. Commun. 14, 2153 (2023), arXiv:2212. 09765

First ever demonstration on star network: results

(a)
(b)

Fidelity $\approx 82 \%$

We need

1. S_{1} and S_{3} non-classical \checkmark
2. B performs an entangling measurement \checkmark

Wang, APK et al., Nat. Commun. 14, 2153 (2023), arXiv:2212.09765

What does a violation of a network Bell inequality mean?

Violation of $\mathbf{F N N}$ inequalities \Rightarrow All the sources are non-classical

What does a violation of a network Bell inequality mean?

Violation of FNN inequalities \Rightarrow All the sources are non-classical

Option 1: The network is not the one you think
NOT this talk. Check poster 51 (Andrés Ulibarrena, today's session)
Loopholes: Locality, measurement independence, detection efficiency, source independence, ...

A paranoid demonstration

- Two separate lasers
(spectral + time + space indistinguishability)
- Real-time QRNGs
- Precise timing Ultrafast optics \& electronics

Closed loopholes Locality Measurement independence Source independence

Gu, Huang, APK et al., Phys. Rev. Lett. 130, 190201 (2023), arXiv:2302.02472

A paranoid demonstration: results

Model: Sources have white noise HOM projects into $\Pi^{ \pm}=v_{h} \Phi^{ \pm}+\frac{1-v_{h}}{2}\left(\Phi^{+}+\Phi^{-}\right)$or $\mathbb{1}-\Pi^{+}-\Pi^{-}$
MES visibilities: $v_{\mathrm{S}_{1}}=0.9710 \pm 0.0035$ and $v_{\mathrm{S}_{2}}=0.9860 \pm 0.0007$
HOM visibility: $v_{h}=0.943 \pm 0.027$
At maximum: $\mathcal{R}_{\mathrm{C}-\mathrm{NS}}=3.3212 \pm 0.0638, \mathcal{R}_{\mathrm{NS}-\mathrm{C}}=3.3563 \pm 0.0632\left(\mathcal{R}_{\mathrm{Q}-\mathrm{Q}} \approx 3.356\right)$
Gu, Huang, APK et al., Phys. Rev. Lett. 130, 190201 (2023), arXiv:2302.02472

The end

Conclusions

- FNN: correlations impossible to attain unless all sources are nonclassical
- Guarantees without assuming QM
- Strong observations in hard conditions

The end

Conclusions

- FNN: correlations impossible to attain unless all sources are nonclassical
- Guarantees without assuming QM
- Strong observations in hard conditions

Next steps

- More networks (triangle)
- Certification of network structure See poster 51 today (Andrés Ulibarrena)
- Close remaining loopholes

More importantly...

- Strong observations in demanding conditions
- Networks are a natural theoretical model Milder requirements in visibilities, etc.
- Can bring back the assumption of QM to get even milder conditions

Xue-Mei Gu (USTC-MPL) Chao Zhang (USTC) Andrés Ulibarrena (Heriot-Watt)

Thank you for your attention

 Questions? Comments?| 2104.10700 | NN Review | (Rep. Prog. Phys. 85, 056001) |
| :--- | :--- | :--- |
| 2105.09325 | Full NN | (Phys. Rev. Lett. 128, 010403) |
| 2212.09765 | 3-branch star | (Nat. Commun. 14, 2153) |
| 2302.02472 | Bilocality | (Phys. Rev. Lett. 130, 190201) |

apozas/\{fullnn, three-star-fnn\}
\checkmark
physics@alexpozas.com

- EXCELENCIA

SEVERO
OCHOA

