Gradient magnetometry with various types of spin ensembles

Single atomic ensembles, chain of spins \mathcal{E} two different ensembles

Iagoba Apellaniz ${ }^{1}$ Iñigo Urizar-Lanz ${ }^{1}$ Zoltán Zimborás ${ }^{1,2,3}$
Philipp Hyllus ${ }^{1}$ Géza Tóth ${ }^{1,3,4}$
${ }^{1}$ Department of Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain
${ }^{2}$ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Germany
${ }^{3}$ Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
${ }^{4}$ IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Información Cuántica en España (2023)

- May 30, 2023 -

1 Multiparametric Quantum Metrology

- Cramér-Rao precision bound and quantum Fisher information

■ Multiparametric qFI matrix and simultaneous estimation

2 System setup and precision bounds of the gradient parameter estimation for various states

- Gradient magnetometry and basic setup of the system
- Precision bounds for various systems and different spin states

3 Conclusions

Quantum Metrology

Quantum Fisher Information

- The quantum Cramér-Rao (qCR) bound provides an upper bound for the precision

$$
\frac{1}{(\Delta \theta)^{2}} \leqslant \mu \mathcal{F}_{\mathrm{Q}}[\varrho, A] .
$$

Quantum Metrology

Quantum Fisher Information

- The quantum Cramér-Rao (qCR) bound provides an upper bound for the precision

$$
\frac{1}{(\Delta \theta)^{2}} \leqslant \mu \mathcal{F}_{\mathrm{Q}}[\varrho, A] .
$$

- Goal: Minimize $(\Delta \theta)^{2}$, or equivalently maximize $\mathcal{F}_{\mathrm{Q}}[\varrho, A]$.

Quantum Metrology

Quantum Fisher Information

- The quantum Cramér-Rao (qCR) bound provides an upper bound for the precision

$$
\frac{1}{(\Delta \theta)^{2}} \leqslant \mu \mathcal{F}_{\mathrm{Q}}[\varrho, A] .
$$

- Goal: Minimize $(\Delta \theta)^{2}$, or equivalently maximize $\mathcal{F}_{\mathrm{Q}}[\varrho, A]$.
- Quantum Fisher information

$$
\left.\mathcal{F}_{\mathrm{Q}}[\varrho, A]=2 \sum_{\lambda \neq \mu} \frac{\left(p_{\lambda}-p_{\mu}\right)^{2}}{p_{\lambda}+p_{\mu}}|\langle\lambda| A| \mu\right\rangle\left.\right|^{2}
$$

written on the eigenbasis of the state, $\varrho=\sum p_{\lambda}|\lambda\rangle\langle\lambda|$.

Quantum Metrology

$$
\left.\mathcal{F}_{\mathrm{Q}}[\varrho, A]=2 \sum_{\lambda \neq \mu} \frac{\left(p_{\lambda}-p_{\mu}\right)^{2}}{p_{\lambda}+p_{\mu}}|\langle\lambda| A| \mu\right\rangle\left.\right|^{2}
$$

Properties of the qFI for a single parameter estimation problem
$\boxed{1}$ It is independent of the measurement. An optimal measurement exists though, which saturates the qCR bound.

Quantum Metrology

$$
\left.\mathcal{F}_{\mathrm{Q}}[\varrho, A]=2 \sum_{\lambda \neq \mu} \frac{\left(p_{\lambda}-p_{\mu}\right)^{2}}{p_{\lambda}+p_{\mu}}|\langle\lambda| A| \mu\right\rangle\left.\right|^{2}
$$

Properties of the qFI for a single parameter estimation problem
II It is independent of the measurement. An optimal measurement exists though, which saturates the qCR bound.
2. It is convex over the set of quantum states. Hence, it is maximized by a pure state.
[M G A Paris (2009), IJQI 7, 125]
[G Tóth et al. (2014), JPA:MT 47, 424006]
[L. Pezzé et al. (2018), RMP 90, 035005]

Quantum Metrology

$$
\left.\mathcal{F}_{\mathrm{Q}}[\varrho, A]=2 \sum_{\lambda \neq \mu} \frac{\left(p_{\lambda}-p_{\mu}\right)^{2}}{p_{\lambda}+p_{\mu}}|\langle\lambda| A| \mu\right\rangle\left.\right|^{2}
$$

Properties of the qFI for a single parameter estimation problem
II It is independent of the measurement. An optimal measurement exists though, which saturates the qCR bound.
2 It is convex over the set of quantum states. Hence, it is maximized by a pure state.
(3. For pure states $\mathcal{F}_{\mathrm{Q}}[|\Psi\rangle, A]=4(\Delta A)^{2}{ }_{\Psi}$.
[M G A Paris (2009), IJQI 7, 125]
[G Tóth et al. (2014), JPA:MT 47, 424006]
[L. Pezzé et al. (2018), RMP 90, 035005]

Entanglement
1 Separable states can achieve at most the so called Shot-noise limit (SNL),

$$
\mathcal{F}_{\mathrm{Q}}\left[\varrho_{\text {sep }}, H\right] \sim N .
$$

$\sqrt{2}$ An ultimate limit is obtained maximizing the qFI over all pure states

$$
\max _{|\Psi\rangle} \mathcal{F}_{\mathrm{Q}}[|\Psi\rangle, H]=N^{2},
$$

which is called the Heisenberg limit.
Hence, entanglement is needed to overcome the SNL.
[V Giovannetti et al. (2004), Sci. 306 1330]

Quantum Metrology

Entanglement
1 Separable states can achieve at most the so called Shot-noise limit (SNL),

$$
\mathcal{F}_{\mathrm{Q}}\left[\varrho_{\text {sep }}, H\right] \sim N .
$$

$\boxed{2}$ An ultimate limit is obtained maximizing the qFI over all pure states

$$
\max _{|\Psi\rangle} \mathcal{F}_{\mathrm{Q}}[|\Psi\rangle, H]=N^{2}
$$

which is called the Heisenberg limit.
Hence, entanglement is needed to overcome the SNL.
[V Giovannetti et al. (2004), Sci. 306 1330]
E.g. entanglement criteria based on qFI

- Due to its tight relation with the variance, qFI has been used to improve some entanglement conditions.
[G Tóth (2022), PRR 4 013075]

Multiparametric Quantum Metrology

■ Ion chains can be used to estimate the magnetic field as a function of position, $B(x)$.
[Matteo Fadel et al., arXiv.org:2201.11081]

Multiparametric Quantum Metrology

Motivation

- Ion chains can be used to estimate the magnetic field as a function of position, $B(x)$.
[Matteo Fadel et al., arXiv.org:2201.11081]
- States invariant to a global rotation of the system have been prepared in elongated traps.

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
- Ion chains can be used to estimate the magnetic field as a function of position, $B(x)$.
[Matteo Fadel et al., arXiv.org:2201.11081]
- States invariant to a global rotation of the system have been prepared in elongated traps.

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
- Two distinguishable ensembles of atoms have been prepared with a highly entangled spin state.
[K Langle et al. (2018), Sci. 360 6387]
- Ion chains can be used to estimate the magnetic field as a function of position, $B(x)$.
[Matteo Fadel et al., arXiv.org:2201.11081]
■ States invariant to a global rotation of the system have been prepared in elongated traps.

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
- Two distinguishable ensembles of atoms have been prepared with a highly entangled spin state.
[K Langle et al. (2018), Sci. 360 6387]
We assume that the magnetic field is pointing in the z-direction and its Taylor expansion around the origin is

$$
\boldsymbol{B}=\left(0,0, B_{0}\right)+\left(0,0, x B_{1}\right)+O\left(x^{2}\right) .
$$

- Ion chains can be used to estimate the magnetic field as a function of position, $B(x)$.
[Matteo Fadel et al., arXiv.org:2201.11081]
- States invariant to a global rotation of the system have been prepared in elongated traps.

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
- Two distinguishable ensembles of atoms have been prepared with a highly entangled spin state.
[K Langle et al. (2018), Sci. 360 6387]
We assume that the magnetic field is pointing in the z-direction and its Taylor expansion around the origin is

$$
B=\left(0,0, B_{0}\right)+\left(0,0, x B_{1}\right)+O\left(x^{2}\right) .
$$

In general, one cannot avoid a global rotation of the state.

- Ion chains can be used to estimate the magnetic field as a function of position, $B(x)$.
[Matteo Fadel et al., arXiv.org:2201.11081]
■ States invariant to a global rotation of the system have been prepared in elongated traps.

[N Behbood et al. (2014), PRL 113 093601]
[I Urizar-Lanz et al. (2013), PRA 88 013626]
- Two distinguishable ensembles of atoms have been prepared with a highly entangled spin state.
[K Langle et al. (2018), Sci. 360 6387]
We assume that the magnetic field is pointing in the z-direction and its Taylor expansion around the origin is

$$
\boldsymbol{B}=\left(0,0, B_{0}\right)+\left(0,0, x B_{1}\right)+O\left(x^{2}\right)
$$

We want to estimate B_{1}.

Consider the following evolution for the state

$$
\varrho_{\boldsymbol{\theta}}=\mathrm{e}^{-i \sum_{k} A_{k} \theta_{k}} \varrho \mathrm{e}^{+i \sum_{k} A_{k} \theta_{k}} .
$$

- In this case the CR bound is a matrix inequality for the covariance matrix

$$
\operatorname{Cov}\left[\theta_{i}, \theta_{j}\right] \geqslant \frac{1}{\mu}\left(\mathcal{F}_{\mathrm{Q}}{ }^{-1}\right)_{i, j},
$$

where $\operatorname{Cov}\left[\theta_{i}, \theta_{j}\right]=\left\langle\theta_{i} \theta_{j}\right\rangle-\left\langle\theta_{i}\right\rangle\left\langle\theta_{j}\right\rangle$.

Consider the following evolution for the state

$$
\varrho_{\boldsymbol{\theta}}=\mathrm{e}^{-i \sum_{k} A_{k} \theta_{k}} \varrho \mathrm{e}^{+i \sum_{k} A_{k} \theta_{k}} .
$$

- In this case the CR bound is a matrix inequality for the covariance matrix

$$
\operatorname{Cov}\left[\theta_{i}, \theta_{j}\right] \geqslant \frac{1}{\mu}\left(\mathcal{F}_{\mathrm{Q}}{ }^{-1}\right)_{i, j},
$$

where $\operatorname{Cov}\left[\theta_{i}, \theta_{j}\right]=\left\langle\theta_{i} \theta_{j}\right\rangle-\left\langle\theta_{i}\right\rangle\left\langle\theta_{j}\right\rangle$.

- The qFI matrix elements are

$$
\mathcal{F}_{\mathrm{Q}}\left[\varrho, A_{i}, A_{j}\right]:=\left(\mathcal{F}_{\mathrm{Q}}\right)_{i, j}=2 \sum_{\lambda \neq \mu} \frac{\left(p_{\lambda}-p_{\mu}\right)^{2}}{p_{\lambda}+p_{\mu}}\langle\lambda| A_{i}|\mu\rangle\langle\mu| A_{j}|\lambda\rangle .
$$

Consider the following evolution for the state

$$
\varrho_{\boldsymbol{\theta}}=\mathrm{e}^{-i \sum_{k} A_{k} \theta_{k}} \varrho \mathrm{e}^{+i \sum_{k} A_{k} \theta_{k}} .
$$

- In this case the CR bound is a matrix inequality for the covariance matrix

$$
\operatorname{Cov}\left[\theta_{i}, \theta_{j}\right] \geqslant \frac{1}{\mu}\left(\mathcal{F}_{\mathrm{Q}}{ }^{-1}\right)_{i, j},
$$

where $\operatorname{Cov}\left[\theta_{i}, \theta_{j}\right]=\left\langle\theta_{i} \theta_{j}\right\rangle-\left\langle\theta_{i}\right\rangle\left\langle\theta_{j}\right\rangle$.

- The qFI matrix elements are

$$
\mathcal{F}_{\mathrm{Q}}\left[\varrho, A_{i}, A_{j}\right]:=\left(\mathcal{F}_{\mathrm{Q}}\right)_{i, j}=2 \sum_{\lambda \neq \mu} \frac{\left(p_{\lambda}-p_{\mu}\right)^{2}}{p_{\lambda}+p_{\mu}}\langle\lambda| A_{i}|\mu\rangle\langle\mu| A_{j}|\lambda\rangle .
$$

■ For pure states we have $\mathcal{F}_{\mathbf{Q}}\left[|\Psi\rangle, A_{i}, A_{j}\right]=4\left(\left\langle A_{i} A_{j}\right\rangle_{\Psi}-\left\langle A_{i}\right\rangle_{\Psi}\left\langle A_{j}\right\rangle_{\Psi}\right)$.

Consider the following evolution for the state

$$
\varrho_{\boldsymbol{\theta}}=\mathrm{e}^{-i \sum_{k} A_{k} \theta_{k}} \varrho \mathrm{e}^{+i \sum_{k} A_{k} \theta_{k}} .
$$

- In this case the CR bound is a matrix inequality for the covariance matrix

$$
\operatorname{Cov}\left[\theta_{i}, \theta_{j}\right] \geqslant \frac{1}{\mu}\left(\mathcal{F}_{\mathrm{Q}}{ }^{-1}\right)_{i, j}
$$

where $\operatorname{Cov}\left[\theta_{i}, \theta_{j}\right]=\left\langle\theta_{i} \theta_{j}\right\rangle-\left\langle\theta_{i}\right\rangle\left\langle\theta_{j}\right\rangle$.

- The qFI matrix elements are

$$
\mathcal{F}_{\mathrm{Q}}\left[\varrho, A_{i}, A_{j}\right]:=\left(\mathcal{F}_{\mathrm{Q}}\right)_{i, j}=2 \sum_{\lambda \neq \mu} \frac{\left(p_{\lambda}-p_{\mu}\right)^{2}}{p_{\lambda}+p_{\mu}}\langle\lambda| A_{i}|\mu\rangle\langle\mu| A_{j}|\lambda\rangle .
$$

■ For pure states we have $\mathcal{F}_{\mathbf{Q}}\left[|\Psi\rangle, A_{i}, A_{j}\right]=4\left(\left\langle A_{i} A_{j}\right\rangle_{\Psi}-\left\langle A_{i}\right\rangle_{\Psi}\left\langle A_{j}\right\rangle_{\Psi}\right)$.

- When $\left[A_{i}, A_{j}\right]=0$, the bounds can be saturated.

Outline

1. Multiparametric Quantum Metrology

- Cramér-Rao precision bound and quantum Fisher information
- Multiparametric qFI matrix and simultaneous estimation

2 System setup and precision bounds of the gradient parameter estimation for various states

- Gradient magnetometry and basic setup of the system
- Precision bounds for various systems and different spin states
- The system is elongated in one of the spatial directions. The quantum state is a product state between position and spin states,

$$
\varrho=\varrho^{(\mathrm{x})} \otimes \varrho^{(\mathrm{s})} .
$$

- The system is elongated in one of the spatial directions. The quantum state is a product state between position and spin states,

$$
\varrho=\varrho^{(\mathrm{x})} \otimes \varrho^{(\mathrm{s})} .
$$

- In this work we assume that the position state is an statistical mixture of point-like particles

$$
\varrho^{(\mathrm{x})}=\int \frac{P(x)}{\langle x \mid x\rangle}|x\rangle\langle x| .
$$

- The atoms interact only with the magnetic field, $h^{(n)}=\gamma B_{z}{ }^{(n)} \otimes j_{z}{ }^{(n)}$, where $\gamma=g \mu_{\mathrm{B}}$. The collective Hamiltonian is

$$
H=\gamma \sum B_{z}{ }^{(n)} \otimes j_{z}^{(n)} .
$$

- The atoms interact only with the magnetic field, $h^{(n)}=\gamma B_{z}{ }^{(n)} \otimes j_{z}{ }^{(n)}$, where $\gamma=g \mu_{\mathrm{B}}$. The collective Hamiltonian is

$$
H=\gamma \sum B_{z}^{(n)} \otimes j_{z}^{(n)} .
$$

- The two unknown parameters are B_{0} and B_{1} are encoded in b_{0} and b_{1} acting onto the state with the following unitary operator

$$
U=\mathrm{e}^{-i\left(b_{0} H_{0}+b_{1} H_{1}\right)},
$$

where

$$
H_{0}:=J_{z}=\sum_{n} j_{z}^{(n)} \quad \text { and } \quad H_{1}=\sum_{n} x^{(n)} \otimes j_{z}^{(n)}
$$

- The atoms interact only with the magnetic field, $h^{(n)}=\gamma B_{z}{ }^{(n)} \otimes j_{z}{ }^{(n)}$, where $\gamma=g \mu_{\mathrm{B}}$. The collective Hamiltonian is

$$
H=\gamma \sum B_{z}^{(n)} \otimes j_{z}^{(n)} .
$$

- The two unknown parameters are B_{0} and B_{1} are encoded in b_{0} and b_{1} acting onto the state with the following unitary operator

$$
U=\mathrm{e}^{-i\left(b_{0} H_{0}+b_{1} H_{1}\right)},
$$

where

$$
H_{0}:=J_{z}=\sum_{n} j_{z}^{(n)} \quad \text { and } \quad H_{1}=\sum_{n} x^{(n)} \otimes j_{z}^{(n)}
$$

- Since $\left[H_{0}, H_{1}\right]=0$, the precision bounds can be saturated.
- The atoms interact only with the magnetic field, $h^{(n)}=\gamma B_{z}{ }^{(n)} \otimes j_{z}{ }^{(n)}$, where $\gamma=g \mu_{\mathrm{B}}$. The collective Hamiltonian is

$$
H=\gamma \sum B_{z}^{(n)} \otimes j_{z}^{(n)} .
$$

- The two unknown parameters are B_{0} and B_{1} are encoded in b_{0} and b_{1} acting onto the state with the following unitary operator

$$
U=\mathrm{e}^{-i\left(b_{0} H_{0}+b_{1} H_{1}\right)},
$$

where

$$
H_{0}:=J_{z}=\sum_{n} j_{z}^{(n)} \quad \text { and } \quad H_{1}=\sum_{n} x^{(n)} \otimes j_{z}^{(n)} .
$$

- Since $\left[H_{0}, H_{1}\right]=0$, the precision bounds can be saturated.

In the following we are interested on the precision bound for b_{1}, the gradient parameter. Precision bounds for states insensitive to the homogeneous B_{0}
For states that commute with the homogeneous field, $\left[\varrho, J_{z}\right]=0$, the precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \mathcal{F}_{\mathrm{Q}}\left[\varrho, H_{1}\right]
$$

and it is saturable.

Precision bounds for states insensitive to the homogeneous B_{0}
For states that commute with the homogeneous field, $\left[\varrho, J_{z}\right]=0$, the precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \mathcal{F}_{\mathrm{Q}}\left[\varrho, H_{1}\right]
$$

and it is saturable.

- For statistical mixtures of point-like particles

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sum_{n, m} \int x_{n} x_{m} P(x) \mathrm{d} x \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(\mathrm{s})}, j_{z}{ }^{(n)}, j_{z}{ }^{(m)}\right]
$$

Precision bounds for states insensitive to the homogeneous B_{0}
For states that commute with the homogeneous field, $\left[\varrho, J_{z}\right]=0$, the precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \mathcal{F}_{\mathrm{Q}}\left[\varrho, H_{1}\right]
$$

and it is saturable.

- For statistical mixtures of point-like particles

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sum_{n, m} \int x_{n} x_{m} P(x) \mathrm{d} x \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(s)}, j_{z}^{(n)}, j_{z}^{(m)}\right]
$$

Precision bounds for states sensitive to the homogeneous B_{0}
For states sensitive to global rotations of the spin state, the precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant\left(\mathcal{F}_{\mathrm{Q}}\right)_{1,1}-\frac{\left(\mathcal{F}_{\mathrm{Q}}\right)_{0,1}^{2}}{\left(\mathcal{F}_{\mathrm{Q}}\right)_{0,0}}
$$

For states that commute with the homogeneous field, $\left[\varrho, J_{z}\right]=0$, the precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \mathcal{F}_{\mathrm{Q}}\left[\varrho, H_{1}\right]
$$

and it is saturable.

- For statistical mixtures of point-like particles

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sum_{n, m} \int x_{n} x_{m} P(x) \mathrm{d} x \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(s)}, j_{z}^{(n)}, j_{z}^{(m)}\right]
$$

Precision bounds for states sensitive to the homogeneous B_{0}
For states sensitive to global rotations of the spin state, the precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant\left(\mathcal{F}_{\mathrm{Q}}\right)_{1,1}-\frac{\left(\mathcal{F}_{\mathrm{Q}}\right)_{0,1}^{2}}{\left(\mathcal{F}_{\mathrm{Q}}\right)_{0,0}}
$$

- For statistical mixtures of point-like particles
$\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sum_{n, m} \int x_{n} x_{m} P(x) \mathrm{d} x \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(\mathrm{s})}, j_{z}{ }^{(n)}, j_{z}{ }^{(m)}\right]-\frac{\left(\sum_{n} \int x_{n} P(x) \mathrm{d} x \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(\mathrm{s})}, j_{z}{ }^{(n)}, J_{z}\right]\right)^{2}}{\mathcal{F}_{\mathrm{Q}}\left[\varrho^{(\mathrm{s})}, J_{z}\right]}$.

1 Multiparametric Quantum Metrology

- Cramér-Rao precision bound and quantum Fisher information
- Multiparametric qFI matrix and simultaneous estimation

2 System setup and precision bounds of the gradient parameter estimation for various states

- Gradient magnetometry and basic setup of the system
- Precision bounds for various systems and different spin states

3 Conclusions

Chain of qubits

$$
P(x)=\prod_{n} \delta\left(x_{n}-n a\right)
$$

Chain of qubits

$$
P(x)=\prod_{n} \delta\left(x_{n}-n a\right) .
$$

Totally polarized $|0\rangle_{y}^{\otimes N}$ state under a magnetic field pointing towards the z-direction
(a) Initial state

(b) Final state

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sum_{n, m} n m a^{2} \mathcal{F}_{\mathrm{Q}}\left[|0\rangle_{y}^{\otimes N}, j_{z}{ }^{(n)}, j_{z}{ }^{(m)}\right]-\frac{\left(\sum_{n} n a \mathcal{F}_{\mathrm{Q}}\left[|0\rangle_{y}^{\otimes N}, j_{z}{ }^{(n)}, J_{z}\right]\right)^{2}}{\mathcal{F}_{\mathrm{Q}}\left[|0\rangle_{y}^{\otimes N}, J_{z}\right]}
$$

Chain of qubits

$$
P(x)=\prod_{n} \delta\left(x_{n}-n a\right)
$$

- Mean particle position:

$$
\mu=a \frac{N+1}{2}
$$

- Variance of the particle positions:

$$
\begin{gathered}
\sigma^{2}=a^{2} \frac{N^{2}-1}{12} \\
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sum_{n, m} n m a^{2} \mathcal{F}_{\mathrm{Q}}\left[|0\rangle_{y}^{\otimes N}, j_{z}^{(n)}, j_{z}^{(m)}\right]-\frac{\left(\sum_{n} n a \mathcal{F}_{\mathrm{Q}}\left[|0\rangle_{y}^{\otimes N}, j_{z}^{(n)}, J_{z}\right]\right)^{2}}{\mathcal{F}_{\mathrm{Q}}\left[|0\rangle_{y}^{\otimes N}, J_{z}\right]} \\
\\
=a^{2} \frac{N^{2}-1}{12} N=\sigma^{2} N
\end{gathered}
$$

Totally polarized $|0\rangle_{y}^{\otimes N}$ state under a magnetic field pointing towards the z-direction

(b) Final state

Permutationally invariant PDF

$$
P(x)=\frac{1}{N!} \sum_{k \in S_{N}} \mathcal{P}_{k}[P(x)]
$$

- $\mu=\int x_{n} P(x) \mathrm{d} x$.
[N Behbood et al. (2014), PRL 113 093601]
- $\sigma^{2}=\int x_{n}^{2} P(x) \mathrm{d} x$, if the origin is at 0 .
- $\eta=\int x_{n} x_{m} P(x) \mathrm{d} x$ for $n \neq m$.
$\eta \in\left[-\sigma^{2} /(N-1), \sigma^{2}\right]$.

Permutationally invariant PDF

$$
P(x)=\frac{1}{N!} \sum_{k \in S_{N}} \mathcal{P}_{k}[P(x)]
$$

- $\mu=\int x_{n} P(x) \mathrm{d} x$.
[N Behbood et al. (2014), PRL 113 093601]
- $\sigma^{2}=\int x_{n}^{2} P(x) \mathrm{d} x$, if the origin is at 0 .
- $\eta=\int x_{n} x_{m} P(x) \mathrm{d} x$ for $n \neq m$.
$\eta \in\left[-\sigma^{2} /(N-1), \sigma^{2}\right]$.
Precision CR bound

$$
\begin{aligned}
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant & \left(\sigma^{2}-\eta\right) \sum_{n} \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(\mathrm{s})}, j_{z}{ }^{(n)}\right] \\
& +\eta \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(\mathrm{s})}, J_{z}\right]
\end{aligned}
$$

-

Permutationally invariant PDF

$$
P(x)=\frac{1}{N!} \sum_{k \in S_{N}} \mathcal{P}_{k}[P(x)]
$$

- $\mu=\int x_{n} P(x) \mathrm{d} x$.
- $\sigma^{2}=\int x_{n}^{2} P(x) \mathrm{d} x$, if the origin is at 0 .
- $\eta=\int x_{n} x_{m} P(x) \mathrm{d} x$ for $n \neq m$.

$$
\eta \in\left[-\sigma^{2} /(N-1), \sigma^{2}\right] .
$$

Precision CR bound

$$
\begin{aligned}
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant & \left(\sigma^{2}-\eta\right) \sum_{n} \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(\mathrm{s})}, j_{z}^{(n)}\right] \\
& +\eta \mathcal{F}_{\mathrm{Q}}\left[\varrho^{(\mathrm{s})}, J_{z}\right]
\end{aligned}
$$

[N Behbood et al. (2014), PRL 113 093601]

Singlet states

$$
\varrho^{(\mathrm{s})}=\sum_{\lambda} p_{\lambda}|0,0, i\rangle\langle 0,0, i|
$$

Its precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant\left(\sigma^{2}-\eta\right) N
$$

Singlet states

$$
\varrho^{(\mathrm{s})}=\sum_{\lambda} p_{\lambda}|0,0, i\rangle 0,0, i \mid
$$

Its precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant\left(\sigma^{2}-\eta\right) N .
$$

Best separable state

$$
\mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle_{\text {sep }}, j_{z}{ }^{(n)}, j_{z}{ }^{(m)}\right]= \begin{cases}4\left(\Delta j_{z}{ }^{(n)}\right)^{2} & \text { if } n=m \\ 0 & \text { otherwise. }\end{cases}
$$

Then, the precision is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sigma^{2} N .
$$

Singlet states

$$
\varrho^{(\mathrm{s})}=\sum_{\lambda} p_{\lambda}|0,0, i\rangle 0,0, i \mid
$$

Its precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant\left(\sigma^{2}-\eta\right) N
$$

Best separable state

$$
\mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle_{\text {sep }}, j_{z}{ }^{(n)}, j_{z}{ }^{(m)}\right]= \begin{cases}4\left(\Delta j_{z}{ }^{(n)}\right)^{2} & \text { if } n=m \\ 0 & \text { otherwise. }\end{cases}
$$

Then, the precision is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sigma^{2} N
$$

|GHZ> states

$$
\mathcal{F}_{\mathrm{Q}}\left[|\mathrm{GHZ}\rangle, j_{z}^{(n)}\right]=1
$$

and

$$
\mathcal{F}_{\mathrm{Q}}\left[|\mathrm{GHZ}\rangle_{x}, J_{z}\right]=N^{2} .
$$

Hence,

$$
\begin{aligned}
\frac{1}{\left(\Delta b_{1}\right)^{2}} & \leqslant\left(\sigma^{2}-\eta\right) N \\
+ & \eta N^{2} .
\end{aligned}
$$

Singlet states

$$
\varrho^{(\mathrm{s})}=\sum_{\lambda} p_{\lambda}|0,0, i\rangle 0,0, i \mid
$$

Its precision bound is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant\left(\sigma^{2}-\eta\right) N
$$

Best separable state

$$
\mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle_{\text {sep }}, j_{z}^{(n)}, j_{z}^{(m)}\right]= \begin{cases}4\left(\Delta j_{z}^{(n)}\right)^{2} & \text { if } n=m \\ 0 & \text { otherwise } .\end{cases}
$$

Then, the precision is

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sigma^{2} N
$$

$$
P(x)=\prod_{n=1}^{N / 2} \delta\left(x_{n}+a\right) \prod_{n=N / 2+1}^{N} \delta\left(x_{n}-a\right)
$$

The contribution of the position of the particles:

$$
\int x_{n} P(x) \mathrm{d} x=\left\{\begin{array}{l}
-a \\
+a
\end{array} \text { and } \int x_{n} x_{m} P(x) \mathrm{d} x=\left\{\begin{array}{l}
+a^{2} \\
-a^{2}
\end{array}\right.\right.
$$

- In this case the mean position is $\mu=0$ and the variance is $\sigma^{2}=a^{2}$.

Double well of atoms

$$
P(x)=\prod_{n=1}^{N / 2} \delta\left(x_{n}+a\right) \prod_{n=N / 2+1}^{N} \delta\left(x_{n}-a\right)
$$

The contribution of the position of the particles:

$$
\int x_{n} P(x) \mathrm{d} x=\left\{\begin{array}{l}
-a \\
+a
\end{array} \text { and } \int x_{n} x_{m} P(x) \mathrm{d} x=\left\{\begin{array}{l}
+a^{2} \\
-a^{2}
\end{array}\right.\right.
$$

- In this case the mean position is $\mu=0$ and the [K Langle et al. (2018), Sci. 360 6387] variance is $\sigma^{2}=a^{2}$.

For spin $-\frac{1}{2}$ system, the state that maximizes the bound is

$$
|\psi\rangle=\frac{\stackrel{N / 2}{\mid 0, \ldots, 0}, 1, \ldots, 1\rangle+|1, \ldots, 1,0, \ldots, 0\rangle}{\sqrt{2}}, \quad \text { and } \quad \frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant \sigma^{2} N^{2}
$$

Product of two equal spin states
For states of the type $|\psi\rangle^{(\mathrm{L})} \otimes|\psi\rangle^{(\mathrm{R})}$, we have that

$$
\mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle^{(\mathrm{L})} \otimes|\psi\rangle^{(\mathrm{R})}, j_{z}{ }^{(n)}, j_{z}{ }^{(m)}\right]= \begin{cases}\mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle, j_{z}^{(n)}, j_{z}^{(m)}\right] & \text { if } n \text { and } m \text { same well } \\ 0 & \text { otherwise }\end{cases}
$$

Product of two equal spin states
For states of the type $|\psi\rangle^{(\mathrm{L})} \otimes|\psi\rangle^{(\mathrm{R})}$, we have that

$$
\mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle^{(\mathrm{L})} \otimes|\psi\rangle^{(\mathrm{R})}, j_{z}{ }^{(n)}, j_{z}{ }^{(m)}\right]= \begin{cases}\mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle, j_{z}^{(n)}, j_{z}^{(m)}\right] & \text { if } n \text { and } m \text { same well } \\ 0 & \text { otherwise }\end{cases}
$$

Hence, the precision bounds can be simply computed for $N / 2$ particles at one of the wells,

$$
\frac{1}{\left(\Delta b_{1}\right)^{2}} \leqslant 2 \sigma^{2} \mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle, J_{z}^{(N / 2)}\right] \leqslant \sigma^{2} N^{2} / 2 .
$$

Double well of atoms

If we assume $a=1$, we have that $H_{0}=J_{z}{ }^{(\mathrm{L})}+J_{z}{ }^{(\mathrm{R})}$ and $H_{1}=J_{z}{ }^{(\mathrm{L})}-J_{z}{ }^{(\mathrm{R})}$.

$$
\mathcal{F}_{\mathrm{Q}}\left[\rho, H_{0}\right]+\mathcal{F}_{\mathrm{Q}}\left[\rho, H_{1}\right]=2 \mathcal{F}_{\mathrm{Q}}\left[\rho, J_{z}{ }^{(\mathrm{L})}\right]+2 \mathcal{F}_{\mathrm{Q}}\left[\rho, J_{z}{ }^{(\mathrm{R})}\right]
$$

Separable states

$$
\mathcal{F}_{\mathrm{Q}}\left[\rho, H_{0}\right]+\mathcal{F}_{\mathrm{Q}}\left[\rho, H_{1}\right]=2 N_{\mathrm{L}}+2 N_{\mathrm{R}}=2 N .
$$

Heisenberg limit for evenly split systems

$$
\mathcal{F}_{\mathrm{Q}}\left[\rho, H_{0}\right]+\mathcal{F}_{\mathrm{Q}}\left[\rho, H_{1}\right]=2 N_{\mathrm{L}}^{2}+2 N_{\mathrm{R}}^{2}=N^{2} .
$$

Examples

$$
\begin{gathered}
|\mathrm{GHZ}\rangle \rightarrow \mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle, H_{0}\right]=N^{2} \quad \text { and } \quad \mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle, H_{1}\right]=0 . \\
|\psi\rangle=\frac{\left|\sqrt{0,2}, \frac{N / 2}{1, \ldots\rangle}\right\rangle+|1, \ldots, 0, \ldots\rangle}{\sqrt{2}} \rightarrow \mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle, H_{1}\right]=N^{2} \quad \text { and } \quad \mathcal{F}_{\mathrm{Q}}\left[|\psi\rangle, H_{0}\right]=0 .
\end{gathered}
$$

Conclusions

- In principle, the effect of an unknown global rotation has to be considered.
- For a single ensemble with localized particles, a method with a huge practical advantage, the shot-noise limit can be surpassed if and only if there is a strong statistical correlation between the particle positions.
- There is a trade-off between homogeneous and gradient magnetometry if one wants to estimate both parameters at the same time.

Conclusions

- In principle, the effect of an unknown global rotation has to be considered.
- For a single ensemble with localized particles, a method with a huge practical advantage, the shot-noise limit can be surpassed if and only if there is a strong statistical correlation between the particle positions.
- There is a trade-off between homogeneous and gradient magnetometry if one wants to estimate both parameters at the same time.

Thank you for your attention!

