Quantum supremacy in mechanical tasks: projectiles, rockets and quantum backflow

D. Trillo, T.P. Le, M. Navascués arXiv:2209.00725

ICE8 - Santiago de Compostela May 2023

Some mechanical tasks with quantum advantage

- Quantum tunnelling (1927?)

Fig. 2.
Figure: Hund, F. Zur Deutung der Molekelspektren. I. Z. Physik 40, 742-764 (1927)

Some mechanical tasks with quantum advantage

- Quantum tunnelling

- Quantum backflow (1969)

APPENDIX C. The Curious Role of the Probabllity Current

Our first task here is to show that the ideal probability current $j(t, 0)$ (Eq. 5.1) can be appreciably negative for an appreciable part of the total time interval. even though ψ itself is travelling wholly in the positive direction. It will suffice to take a wave of the type treated in Appendix A, having just two components with positive energies E_{1} and $E_{2}\left(>E_{1}\right)$ and real amplitudes a_{1} and a_{2}. Using (A.5) and (5.1) we find that
$j(t, 0)=\sigma \pi^{-\frac{t}{2}} \exp \left(-\sigma^{2} t^{2}\right)\left[a_{1}{ }^{2}+a_{2}{ }^{2}+a_{1} a_{2}\left\{\left(E_{1} / E_{2}\right)^{\frac{1}{2}}+\left(E_{2} / E_{1}\right)^{\frac{t}{2}}\right\} \cos \left(E_{2}-E_{1}\right) t\right]$.

It is clear that j here is not always positive, and that the backflow effects can be made indefinitely large by increasing the ratio E_{2} / E_{1}.

Figure: Allcock, G.R. The time of arrival in quantum mechanics III. The measurement ensemble. Ann.Phys. 53, 311 (1969)

Some mechanical tasks with quantum advantage

- Quantum tunnelling
- Quantum backflow (1969)

Figure 1: Evolution of a wavepacket under the free dynamics, illustrating the backflow phenomenon. From left to right, the plots show the position probability density at times $t=-0.1, t=0$ and $t=0.1$.

Figure: Eveson, S.P., Fewster, C.J. \& Verch, R. Quantum Inequalities in Quantum Mechanics. Ann. Henri Poincaré 6, 1-30 (2005)

Some mechanical tasks with quantum advantage

- Quantum tunnelling
- Quantum backflow (1969)

The Bracken-Melloy constant ${ }^{1}$

$$
c_{b m}=\sup _{\hat{\psi} \in L^{2}([0, \infty), d p), \Delta T} \int_{0}^{\Delta T}-j(0, t) d t
$$

where

$$
j(x, t):=\frac{1}{m} \operatorname{Im}\left[\bar{\psi}(x, t) \partial_{x} \psi(x, t)\right]
$$

is the usual probability current density. Estimated to be $c_{b m} \approx 0.04$.
${ }^{1}$ A J Bracken and G F Melloy. Probability backflow and a new dimensionless quantum number. J. Phys. A: Math. Gen. 272197 (1994)

Some mechanical tasks with quantum advantage

- Quantum tunnelling
- Quantum backflow
- Tsirelson's other problem (2006)

Figure: Tsirelson, B.S. How often is the coordinate of a Harmonic oscillator positive? arXiv:quant-ph/0611147

Some mechanical tasks with quantum advantage

- Quantum tunnelling
- Quantum backflow
- Tsirelson's other problem (2006)

Figure: Tsirelson, B.S. How often is the coordinate of a Harmonic oscillator positive? arXiv:quant-ph/0611147

However, in quantum mechanics:
$1>\frac{1}{3} \sup _{\psi \in L^{2}(\mathbb{R})}\langle\psi| \Theta(X)+e^{\frac{i H T}{3}} \Theta(X) e^{-\frac{i H T}{3}}+e^{\frac{i H 2 T}{3}} \Theta(X) e^{-\frac{i H 2 T}{3}}|\psi\rangle \gtrsim 0.71$

Some mechanical tasks with quantum advantage

- Quantum tunnelling
- Quantum backflow
- Tsirelson's other problem (2006)

Finally picked up in ${ }^{2}$ to perform quantumness ${ }^{3}$ and entanglement ${ }^{4}$ certification.
${ }^{2}$ Zaw, L.H., Aw, C.C., Lasmar, Z., Scarani, V. Detecting quantumness in uniform precessions. Phys.Rev.A 106, 032222 (2022)
${ }^{3}$ Zaw, L.H. and Scarani, V. Dynamics-based quantumness certification of continuous variables with generic time-independent Hamiltonians. arXiv:2212.06017
${ }^{4}$ Jayachandran, P., Zaw, L.H., Scarani, V. Dynamic-based entanglement witnesses for harmonic oscillators. arXiv:2210.10357

Quantum projectiles

Quantum projectiles

We compare a state $\psi \in L^{2}[0, L]$ with a classical particle confined to $[0, L]$ with momentum probability density $P(p):=|\hat{\psi}(p)|^{2}$.

$$
\operatorname{Prob}_{c}(x(\Delta T) \geq a) \geq \operatorname{Prob}\left(p \geq \frac{(a-L) m}{\Delta T}\right)
$$

Quantum projectiles

$$
\operatorname{Prob}_{c}(x(\Delta T) \geq a)=\operatorname{Prob}\left(p \geq \frac{(a-L) m}{\Delta T}\right)=\int_{\frac{(a-L) m}{\Delta T}}^{\infty}|\hat{\psi}(p)|^{2} d p
$$

$$
\operatorname{Prob}_{q}(x(\Delta T) \geq a)=\langle\psi| e^{i H \Delta T} \Theta(X-a) e^{-i H \Delta T}|\psi\rangle
$$

Quantum projectiles

Quantity of interest:

$$
\varphi:=\sup _{\psi \in L^{2}[0, L]}\left(\langle\psi| e^{i H \Delta T} \Theta(X-a) e^{-i H \Delta T}|\psi\rangle-\int_{\frac{(a-L) m}{\Delta T}}^{\infty}|\hat{\psi}(p)|^{2} d p\right) .
$$

Quantum projectiles

$$
\begin{aligned}
& \varphi: \\
& \sup _{\psi \in L^{2}([0, L], d x)}\left(\langle\psi| e^{i H \Delta T} \Theta(X-a) e^{-i H \Delta T}|\psi\rangle-\int_{\frac{(a-L) \mid}{\Delta T}}^{\infty}|\hat{\psi}(p)|^{2} d p\right) \\
&=\sup _{\psi \in L^{2}([0, L], d x)}\langle\psi| \Theta\left(X+P \frac{\Delta T}{m}-a\right)-\Theta\left(P-\frac{(a-L) m}{\Delta T}\right)|\psi\rangle \\
&=\sup _{\psi} \int_{\mathbb{R}^{2}} \Theta\left(x+p \frac{\Delta T}{m}-a\right)-\Theta\left(p-\frac{(a-L) m}{\Delta T}\right) W_{\psi}(x, p) d x d p,
\end{aligned}
$$

where

$$
W_{\psi}(x, p):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \psi(x-y / 2) \overline{\psi(x+y / 2)} e^{i p y} d y
$$

is the Wigner quasi-probability distribution.

Quantum projectiles

$$
\sup _{\psi \in L^{2}([0, L], d x)} \int_{\mathbb{R}^{2}} \Theta\left(x+p \frac{\Delta T}{m}-a\right)-\Theta\left(p-\frac{(a-L) m}{\Delta T}\right) W_{\psi}(x, p)
$$

Quantum projectiles

Figure: With $\Delta T=2 m, L=1, a=2$, we perform the transformation $X \mapsto \sqrt{2}(X-1), P \mapsto \sqrt{0.5} P-\sqrt{2}$

Quantum projectiles

Figure: With $\Delta T=2 m, L=1, a=2$, we perform the transformation $X \mapsto \sqrt{2}(X-1), P \mapsto \sqrt{0.5} P-\sqrt{2}$

So φ only depends on $\alpha=\frac{m L^{2}}{\Delta T}$,

Quantum projectiles

Quantum projectiles

So φ only depends on $\alpha=\frac{m L^{2}}{\Delta T}$, and is actually equal to $c_{b m}$ in the limit $\alpha \rightarrow \infty$.

Quantum projectiles: lower bounds

Figure: Blue, continuous: $\varphi(\alpha)$ to precision 10^{-4}. Red, dashed: A linear approximation near 0 . Black, dashed, constant: The conjectured value of $c_{b m}$.

Quantum projectiles: upper bounds ${ }^{5}$

${ }^{5}$ R F Werner, Wigner quantisation of arrival time and oscillator phase, J. Phys. A: Math. Gen. 214565 (1988)

Quantum projectiles: upper bounds ${ }^{5}$

Werner's operator: spectrum in $\approx[-0.1559,1.0077]$
${ }^{5}$ R F Werner, Wigner quantisation of arrival time and oscillator phase, J. Phys. A: Math. Gen. 214565 (1988)

Quantum projectiles: upper bounds ${ }^{6}$

${ }^{6}$ R F Werner, Wigner quantisation of arrival time and oscillator phase, J. Phys. A: Math. Gen. 214565 (1988)

Quantum projectiles: upper bounds ${ }^{6}$

Result: $c_{b m} \leq 0.08$ (Werner: $c_{b m} \leq 0.15$)
${ }^{6}$ R F Werner, Wigner quantisation of arrival time and oscillator phase, J. Phys. A: Math. Gen. 214565 (1988)

Quantum rockets: an advantage beyond $c_{b m}$?

Quantum rockets: an advantage beyond $c_{b m}$?

No.

Quantum rockets: an advantage beyond $c_{b m}$?

No.
If we further fix in the projectile problem the position probability density of the particle to be $P(x):=|\psi(x)|^{2}$, then we can go beyond $c_{b m}$ to ≥ 0.1262

Thank you for your attention!

