Fast Pattern Matching in Quantum Circuits

Luca Mondada \& Pablo Andres-Martinez
ICE-8 Conference, Santiago Spain, 1st June 2023
arXiv:2302.06717 [quant-ph]

Quantum Circuit compilation pipeline

$\rightarrow \mathrm{T} \mid \overline{\mathrm{E}} \mathrm{T} \rightarrow$

IBM Q
QUANTINUUM

Quantum Circuit optimisation ...is about to get a lot harder

1. Ever larger circuits
2. Ever larger instruction set
3. Every bit of optimisation will matter

a.k.a Quantum Circuit optimisation the easy way

-田田- $=$
$-\sqrt{x-x}-=$

a.k.a Quantum Circuit optimisation the easy way

a.k.a Quantum Circuit optimisation the easy way

a.k.a Quantum Circuit optimisation the easy way

Digression
 String pattern matching

Tries: storing string patterns

Tries: storing string patterns

Tries: storing string patterns

Tries are finite state machines

input:TRIVIAL

Tries are finite state machines

input: TRIVIAL

Tries are finite state machines

input: TRIVIAL

Tries are finite state machines

input: TRIVIAL

Tries are deterministic finite state machines

input: TRIVIAL

Tries also work for circuits!

Tries also work for circuits!

Tries also work for circuits!

Tries also work for (port)graphs!

Tries also work for (port)graphs!

- No total ordering of the nodes
- No qubits
- No fixed node degrees

Graph Tries are finite state machines

Graph Tries are non-deterministic FSM

Bound the number of non-deterministic states!

Thm. If every pattern circuit has at most Q qubits, then any path from root to leaf in the graph trie will have at most Q nondeterministic states.

- Bound independent of input circuit size
- Graph trie depth bound by $Q \cdot d$

All code available at

 github.com/lmondada/portmatchingMany Patterns Matching: Comparison

Please reach out!
luca@mondada.net

