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Motivation
 Quantum computing holds the promise of a major impact on science and industry due to its
capacity to solve complex problems, such as Machine Learning or Combinatorial Optimization
problems (CO).

 One of the leading quantum paradigms to find approximate solutions to these problems in
the near term are the Variational Quantum Algorithms (VQA).

 Combinatorial optimization problems are ubiquitous.

Therefore, even if they are potentially only approximations of the global optimum, better CO
solutions have a significant practical value.



Motivation
 Real-world combinatorial optimization problems usually involve not only the minimization
of a cost function, but also a number of equality and inequalities hard constraints that must
be satisfied by the feasible solutions.

Despite their critical relevance in practical scenarios, few studies have been conducted to
explore new possibilities for general constraint encoding in VQAs.

 In this work, we propose the multiobjective variational constrained optimizer (MOVCO), a
method for improving the convergence of variational quantum algorithms to optimal
solutions satisfying a set of restrictions.
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Variational Quantum Algorithms (VQA)
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including classical
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by our problem.

An ansatz: a parameterized
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Variational Quantum Eigensolver (VQE)

Hardware-efficient ansatz

 Originally proposed as a variational algorithm for finding the ground state energy of a chemical
molecule.

variational parameters

With the optimal parameters, the state matches or approximates the global minimum of the
problem.

ansatz

 The parameters of an ansatz are trained by
the minimization of the expectation value of the
Hamiltonian.

Encodes our problem

Peruzzo, A. et al. Nature Communications, 5:4213 (2014)



Many applications envisioned for VQAs: Quantum Chemistry, Dynamical Simulations, Numerical
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Constrained combinatorial optimization

S

A

A : total space of

possible solutions.

S : subspace of solutions

that satisfy all constraints.

Definition of the problem

Find an optimal solution among
a finite set of elements.

Hard constraints that must be
satisfied by the feasible solutions

Best global solution
or solutions (2N states)

feasible subspace



Constrained combinatorial optimization
Regarding variational algorithms

Pauli Z operator

Constrained variational quantum optimization aims to approximate a wavefunction able to sample
classical states with low cost Ck such that

Measuring K times the quantum processor, the sample mean is the estimator that we actually minimize:

Hamiltonian
Binary variable
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 Strategy 1: Quantum circuits capable of natively preserve the constraints.

How do we integrate the constraints?

Quantum Alternating Operator Ansatz Hadfield, S. et al. Algorithms, 12(2):34 (2019)

 Strategy 2: Transform the original cost function by penalty terms and/or extra slack variables.

Lucas, A. Frontiers in physics, 2, 5 (2014)

Realistic formulations of practical problems are often too difficult to be efficiently
mapped to a quantum processor.

Penalty hyperparameters

Not guarantee the convergence of the algorithm to a feasible solution.
Huge overhead produced by the need of optimally tuning the penalty terms, so as to impose the
constraints without disturbing the optimization process.



MOVCO
MULTIOBJECTIVE VARIATIONAL CONSTRAINED OPTIMIZER
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 The Non-dominated Sorting Genetic Algorithm (NGSA-II) is an evolutionary algorithm (meta-
heuristic optimization techniques) to perform multiobjective optimization.

Multiobjective Genetic Algorithm

 The ultimate goal of NGSA-II is to find a set of
optimal solutions for multiple cost functions.
This set is known as the set of non-dominated
solutions, or Pareto Front.

K. Deb et al., IEEE Trans. Evol. Comput, 6, 2,182-197 (2002)
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 The Non-dominated Sorting Genetic Algorithm (NGSA-II).

Multiobjective Genetic Algorithm

K. Deb et al., IEEE Trans. Evol. Comput, 6, 2,182-197 (2002)

 The optimization process is
carried out by iteratively evolving
a population (a set of solutions)
to obtain better individuals (better
solutions) using the concept of
survival of the fittest and
biological-inspired operators.

Tournament
selection

Parents

Offspring

Mutation

arXiv:2302.04196



MultiObjective Variational Constrained
Optimizer (MOVCO)

 The parameters of a variational wavefunction are iteratively updated through the simultaneous
optimization of two fitness functions, using the genetic algorithm NGSA-II.

Fitness function to maximize the constraints 
satisfaction.

Fitness function to minimize the energy of 
feasible solutions

These functions are commuting observables, so that they can be simultaneously measured in the
quantum processor.

Percentage of constraints satisfied
Feasible subspace
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MultiObjective Variational Constrained
Optimizer (MOVCO)
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MultiObjective Variational Constrained
Optimizer (MOVCO)

 The Pareto front is zero-dimensional in the space of the
functions.

Optimization in the space of fitness functions

Pareto front
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Numerical results
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 The Cash Management problem consists
in finding the optimal scheduling of cash
delivery to a network of branches and
ATMs in a given geography in a way that the
cost of the transactions performed is
minimized, while satisfying some
requirements.

 It is a scheduling problem similar to the
Nurse Scheduling Problem, where a series
of tasks have to be scheduled over a time
interval so that they meet certain
constraints.

Application to a real-world problem
Cash Management 
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Performance of MOVCO
We observe how the method prevents the variational wave function from being trapped in local minima outside
the feasible space. Besides in the percentage of constraints satisfied, we get a good performance in the
probability of sampling the global minimum, as well as in the cost of the solutions obtained.

Approximation
ratio

arXiv:2302.04196

Average of the the percentage of constraints satisfied by 
each sampled solution



Comparison with the penalties approach
MOVCO overcomes the algorithm with penalties in every considered metric.
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Benchmarking for larger systems by product states
The improvement is noticeable in both constraint satisfaction and transaction cost of the sampled
solutions and becomes more pronounced as we increase the iterations of the algorithms.
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Conclusions
I. We introduce the Multi-Objective Variational Constrained Optimizer (MOVCO), a

variational quantum method to solve problems with hard constraints.

II. This method allows improving the performance of Variational Quantum Algorithms. It
provides benefits in avoiding unfeasible minima while enhancing convergence to lower
energy solutions.

III. We provide empirical evidence of the robust performance of MOVCO on a very
relevant industrial problem, the Cash Management problem.

IV. This work provides further insight into the application of variational algorithms to real-
world problems of practical interest, where it is essential to include a large number of
constraints.

V. These ideas on multiobjective optimization can be extended to a broad range of
quantum algorithms, for example in Quantum Machine Learning.
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