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Motivation

J Quantum computing holds the promise of a major impact on science and industry due to its
capacity to solve complex problems, such as Machine Learning or Combinatorial Optimization
problems (CO).

(] One of the leading quantum paradigms to find approximate solutions to these problems in
the near term are the Variational Quantum Algorithms (VQA).

J Combinatorial optimization problems are ubiquitous.

Therefore, even if they are potentially only approximations of the global optimum, better CO
solutions have a significant practical value.




Motivation

(] Real-world combinatorial optimization problems usually involve not only the minimization
of a cost function, but also a number of equality and inequalities hard constraints that must
be satisfied by the feasible solutions.

Despite their critical relevance in practical scenarios, few studies have been conducted to
explore new possibilities for general constraint encoding in VQAs.

. In this work, we propose the multiobjective variational constrained optimizer (MOVCO), a
method for improving the convergence of variational quantum algorithms to optimal
solutions satisfying a set of restrictions.
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Variational Quantum Algorithms (VQA)
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Variational Quantum Eigensolver (VQE)

Peruzzo, A. et al. Nature Communications, 5:4213 (2014)

(] Originally proposed as a variational algorithm for finding the ground state energy of a chemical

molecule.
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Encodes our problem

J With the optimal parameters, the state matches or approximates the global minimum of the
problem.




Variational Quantum Algorithms (VQA)

J Many applications envisioned for VQAs: Quantum Chemistry, Dynamical Simulations, Numerical
Analysis, Machine Learning, Optimization etc...
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Constrained combinatorial optimization

Definition of the problem

min C(z) with z € {—=1,41}", —emmmm——p ~ Find an optimal solution among
a finite set of elements.

such that the solution z must fulfill a number of
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bz(z) =0, gj(Z) <0

—— Hard constraints that must be
satisfied by the feasible solutions
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Constrained combinatorial optimization

Definition of the problem

min C'(z) with z € {—1,+1}",

inequality and equality constraints:

bz(z) =0, gj(Z) <0

such that the solution z must fulfill a number of

—

—

Best global solution
or solutions
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satisfied by the feasible solutions

A : total space of

N
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S : subspace of solutions
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Constrained combinatorial optimization

Regarding variational algorithms

Binary variable / Pauli Z operator /
\Zi —> Zz C(z) — C‘(Z) gi(z) —

Hamiltonian bz(Z) — BZ(ZA)
(2)

t.;Q>

Measuring K times the quantum processor, the sample mean is the estimator that we actually minimize:

|\Ijk> — {_17 _l_l}N

(7 Nmm Cr(0) A
(W(6)|C(2) | (0)) ! Z ] Cr = (V1| C [Wy)

Constrained variational quantum optimization aims to approximate a wavefunction able to sample
classical states with low cost C, such that

(Uk| Bi(Z2)|0) =0 (V| G4(2) |y) <0




How do we integrate the constraints?

) Strategy 1: Quantum circuits capable of natively preserve the constraints.
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Realistic formulations of practical problems are often too difficult to be efficiently
mapped to a quantum processor.
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) Strategy 1: Quantum circuits capable of natively preserve the constraints.

Quantum Alternating Operator Ansatz Hadfield, S. et al. Algorithms, 12(2):34 (2019)

Realistic formulations of practical problems are often too difficult to be efficiently
mapped to a quantum processor.

J Strategy 2: Transform the original cost function by penalty terms and/or extra slack variables.

Lucas, A. Frontiers in physics, 2, 5 (2014)

Penalty hyperparameters

Cpen =C+ Z)\zb? + Z)\;f(gj)
i J

Not guarantee the convergence of the algorithm to a feasible solution.
Huge overhead produced by the need of optimally tuning the penalty terms, so as to impose the
constraints without disturbing the optimization process.




MOVCO

MULTIOBJECTIVE VARIATIONAL CONSTRAINED OPTIMIZER
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Multiobjective Genetic Algorithm

(d The Non-dominated Sorting Genetic Algorithm (NGSA-Il) is an evolutionary algorithm (meta-
heuristic optimization techniques) to perform multiobjective optimization.

K. Deb et al., IEEE Trans. Evol. Comput, 6, 2,182-197 (2002)

J The ultimate goal of NGSA-Il is to find a set of

optimal solutions for multiple cost functions.
This set is known as the set of non-dominated
solutions, or Pareto Front.
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Multiobjective Genetic Algorithm

) The Non-dominated Sorting Genetic Algorithm (NGSA-II). K. Deb et al., IEEE Trans. Evol. Comput, 6, 2,182-197 (2002)

( The optimization process is
carried out by iteratively evolving 10/ 01 01 1 1 Parents
a population (a set of solutions)

to obtain better individuals (better l J
solutions) using the concept of
survival of the fittest and

biological-inspired operators. 1111011 Offspring

Tournament
selection
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MultiObjective Variational Constrained
Optimizer (MOVCO)

J The parameters of a variational wavefunction are iteratively updated through the simultaneous
optimization of two fitness functions, using the genetic algorithm NGSA-II.

Fitness function to maximize the constraints Fitness function to minimize the energy of
satisfaction. feasible solutions

K — —
P(f) = Z . (0) E(0) =Y (Cull) — max[C]) /K
k=1 \

\

Feasible subspace

Percentage of constraints satisfied

These functions are commuting observables, so that they can be simultaneously measured in the
quantum processor.
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MultiObjective Variational Constrained
Optimizer (MOVCO)
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MultiObjective Variational Constrained
Optimizer (MOVCO)
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Numerical results




Application to a real-world problem
Cash Management

(J The Cash Management problem consists
in finding the optimal scheduling of cash
delivery to a network of branches and
ATMs in a given geography in a way that the
cost of the transactions performed is
minimized, while satisfying some
requirements.

It is a scheduling problem similar to the
Nurse Scheduling Problem, where a series
of tasks have to be scheduled over a time
interval so that they meet certain
constraints.

(a)

(b)

DAY 1 DAY 2 DAY 3 DAY 4
ATM 0  Send/Withdraw -1k
Initial prediction 8k 8k ok 7k
Final cash 8k 8k ok 6k
ATM 1  Send/Withdraw +3k -6k
Initial prediction 4k 10k Ok 10k
Final cash 7k 7k 6k 7k
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Performance of MOVCO

We observe how the method prevents the variational wave function from being trapped in local minima outside

the feasible space. Besides in the percentage of constraints satisfied, we get a good performance in the
probability of sampling the global minimum, as well as in the cost of the solutions obtained.
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MOVCO overcomes the algorithm with penalties in every considered metric.
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Benchmarking for larger systems by product states

The improvement is noticeable in both constraint satisfaction and transaction cost of the sampled
solutions and becomes more pronounced as we increase the iterations of the algorithms.
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Conclusions

I.  We introduce the Multi-Objective Variational Constrained Optimizer (MOVCO), a
variational quantum method to solve problems with hard constraints.

II.  This method allows improving the performance of Variational Quantum Algorithms. It
provides benefits in avoiding unfeasible minima while enhancing convergence to lower
energy solutions.

Ill.  We provide empirical evidence of the robust performance of MOVCO on a very
relevant industrial problem, the Cash Management problem.

I\V.  This work provides further insight into the application of variational algorithms to real-
world problems of practical interest, where it is essential to include a large number of
constraints.

V. These ideas on multiobjective optimization can be extended to a broad range of
quantum algorithms, for example in Quantum Machine Learning.

arXiv:2302.04196




Thank you for
Conclusions your attention

I.  We introduce the Multi-Objective Variational Constrained Optimizer (MOVCO), a
variational quantum method to solve problems with hard constraints.

II.  This method allows improving the performance of Variational Quantum Algorithms. It
provides benefits in avoiding unfeasible minima while enhancing convergence to lower
energy solutions.

Ill.  We provide empirical evidence of the robust performance of MOVCO on a very
relevant industrial problem, the Cash Management problem.

I\V.  This work provides further insight into the application of variational algorithms to real-
world problems of practical interest, where it is essential to include a large number of
constraints.

V. These ideas on multiobjective optimization can be extended to a broad range of
quantum algorithms, for example in Quantum Machine Learning.

arXiv:2302.04196




