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The Standard Model is incomplete!

• Why is the Higgs particle so light?

• Why are the neutrinos so extremely light?

• What is dark matter? And dark energy? 

• Why do the matter particles come in three «generations»?

• How did we end up with slightly more matter than antimatter?

• …

Need beyond-Standard Model (BSM) physics to explain this
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Understanding the full implications of [experimental] searches 
requires the interpretation of the experimental results in the 
context of many more theoretical models than are currently 

explored at the time of publication. 
HEP Software Foundation [arxiv:1712.06982]

See also: 


• Publishing statistical models: Getting the most out of particle physics experiments  
[arxiv:2109.04981] 


• Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2 
[arxiv:2003.07868] 

• Simple and statistically sound strategies for analysing physical theories  
[arxiv:2012.09874]
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1. Global fits



Anders Kvellestad 6



Anders Kvellestad 7

Statistical fits

Some observable 
Some model

Some other observable 
Some other model
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Global fits

Many observables 
One theory
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The basic steps of a BSM global fit

• Choose your BSM theory and parameterisation 


• Construct the joint likelihood function including observables from 
collider physics, dark matter, flavor physics, +++


• Use sophisticated scanning techniques to explore the likelihood 
function across the parameter space of the theory


• From likelihood samples, carry out frequentist or Bayesian inference 
(parameter estimation, model comparison, …) 

L = LcolliderLDMLflavorLEWPO . . .

9
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• Explore the model parameter space (θ1, θ2, θ3, …)


• At every point θ: calculate predictions(θ) → evaluate joint likelihood L(θ) 
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Fig. 1: Profile likelihood in the (mV , ⁄hV ) plane for vector DM. Contour lines show the 1 and 2‡ confidence regions. The left panel
gives an enhanced view of the resonance region around mV ≥ mh/2. The right panel shows the full parameter space explored in our
fits. The greyed out region shows points that do not satisfy Eq. (30), the white star shows the best-fit point, and the edges of the
preferred parameter space along which the model reproduces the entire observed relic density are indicated with orange annotations.

∆ ln L
Log-likelihood contribution Ideal Vµ Vµ + RD ‰ ‰ + RD Â Â + RD
Relic density 5.989 0.000 0.106 0.000 0.107 0.000 0.109
Higgs invisible width 0.000 0.000 0.000 0.000 0.001 0.000 0.000
“ rays (Fermi-LAT dwarfs) ≠33.244 0.105 0.105 0.102 0.120 0.129 0.136
LUX 2016 (Run II) ≠1.467 0.003 0.003 0.020 0.000 0.028 0.033
PandaX 2016 ≠1.886 0.002 0.002 0.013 0.000 0.018 0.021
PandaX 2017 ≠1.550 0.004 0.004 0.028 0.000 0.039 0.046
XENON1T 2018 ≠3.440 0.208 0.208 0.143 0.211 0.087 0.072
CDMSlite ≠16.678 0.000 0.000 0.000 0.000 0.000 0.000
CRESST-II ≠27.224 0.000 0.000 0.000 0.000 0.000 0.000
PICO-60 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DarkSide-50 2018 ≠0.090 0.000 0.000 0.002 0.000 0.005 0.006
IceCube 79-string 0.000 0.000 0.000 0.000 0.000 0.001 0.001
Hadronic elements ‡s, ‡l ≠6.625 0.000 0.000 0.000 0.000 0.000 0.004
Local DM density fl0 1.142 0.000 0.000 0.000 0.000 0.000 0.001
Most probable DM speed vpeak ≠2.998 0.000 0.000 0.000 0.000 0.000 0.003
Galactic escape speed vesc ≠4.382 0.000 0.000 0.000 0.000 0.000 0.001
–s 5.894 0.000 0.000 0.000 0.000 0.000 0.001
Higgs mass 0.508 0.000 0.000 0.000 0.000 0.000 0.000
Total ≠86.051 0.322 0.428 0.308 0.439 0.307 0.434

Table 6: Contributions to the delta log-likelihood (∆ ln L) at the best-fit point for the vector, Majorana and Dirac DM, compared
to an ‘ideal’ case, both with and without the requirement of saturating the observed relic density (RD). Here ‘ideal’ is defined
as the central observed value for detections, and the background-only likelihood for exclusions. Note that many likelihoods are
dimensionful, so their absolute values are less meaningful than any o�set with respect to another point (for more details, see Sec.
8.3 of Ref. [81]).

5 Results

5.1 Profile likelihoods

In this section, we present profile likelihoods from the
combination of all Diver and T-Walk scans for the vec-
tor, Majorana and Dirac models. Profile likelihoods
in the vector model parameters are shown in Fig. 1,
with key observables rescaled to the predicted DM relic
abundance in Fig. 2. Majorana model parameter profile

likelihoods are shown in Figs. 3 and 4, with observables
in Fig. 5. For the Dirac model, we simply show the
mass-coupling plane in Fig. 6, as the relevant physics
and results are virtually identical to the Majorana case.

5.1.1 Vector model

Fig. 1 shows that the resonance region is tightly con-
strained by the Higgs invisible width from the upper-left
when mV < mh/2, by the relic density constraint from
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Fig. 7: Marginalised posterior distributions in the (mV , ⁄hV ) plane for vector DM. Contour lines show the 1 and 2‡ credible
regions. The left panel gives the result of a scan restricted to the resonance region around mV ≥ mh/2. The right panel shows
a full-range parameter scan. The low-mass mode is su�ciently disfavoured in the full-range scan that it does not appear in the
righthand panel. The greyed out region shows points that do not satisfy Eq. (30). The posterior mean is shown by a white circle,
while the maximum likelihood point is shown as a white star. The edges of the preferred parameter space along which the model
reproduces the entire observed relic density are indicated with orange annotations.

to be within 1‡ of the Planck value, the p-value be-
comes p ¥ 0.35–0.65. For both the Majorana and Dirac
fermion models, we also find p ¥ 0.4–0.7, falling to 0.35–
0.65 with the relic density requirement. All of these are
completely acceptable p-values.

5.2 Marginal posteriors

The marginal posterior automatically penalises fine-
tuning, as upon integration of the posterior, regions
with a limited ‘volume of support’ over the parameters
that were integrated over are suppressed.11 As usual,
the marginal posteriors depend upon the choice of priors
for the free model parameters, which are summarised in
Tables 3 and 4. We choose flat priors where parameters
are strongly restricted to a particular scale, such as the
mixing parameter and the DM mass in scans restricted
to the low-mass region. For other parameters, in order
to avoid favouring a particular scale we employ logarith-
mic priors. Note that in this treatment for the fermionic
DM models we have not chosen priors that favour the
CP-conserving case. We instead present posteriors for
this well motivated case separately, and later in section
6 we perform a Bayesian model comparison between a
CP-conserving fermionic DM model and the full model
considered here.

11By ‘volume of support’, we mean the regions of the parameter
space that have a non-negligible likelihood times prior density.

5.2.1 Vector model

To obtain the marginal posterior distributions, we per-
form separate T-Walk scans for the low and high mass
regimes, shown in Fig. 7. Within each region we plot
the relative posterior probability across the parameter
ranges of interest.

In the left panel of Fig. 7, the scan of the resonance
region shows that the neck region is disfavoured after
marginalising over the nuisance parameters, particularly
mh, which sets the width of the neck. This dilutes the
allowed region due to volume e�ects.

In the full-mass-range scan, the fine-tuned nature
of the resonance region is clearly evident. Although
the best-fit point in the profile likelihood lies in the
resonance region, the posterior mass is so small in the
entire resonance region that it drops out of the global
2‡ credible interval.

5.2.2 Majorana fermion model

As already seen in the profile likelihoods, for the case
of Majorana fermion DM, the presence of the mixing
parameter › leads to a substantial increase in the pre-
ferred parameter region (see Fig. 8). In the resonance
region (left panel), there is now a thin neck-like region
at m‰ ¥ mh/2. This neck region is the same one seen
in both the scalar and vector profile likelihoods, but
falls within the 2‡ credible region of the Majorana pos-
terior, as the admittance of › reduces direct detection
constraints (Eq. 25), softening the penalisation from in-

[arxiv:1808.10465]

Typical result: 
Parameter estimation, presented as profile likelihood and/or posterior density plots
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Computational challenges: 

• Need smart exploration of parameter space


• Need fast theory calculations


• Need fast simulations of experiments (e.g. LHC)


• Need sufficiently detailed likelihoods or 
full statistical models

θ1

θ2

θ3

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)
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• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ)

• L(θ)

• L(θ) • L(θ)• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ) • L(θ)• L(θ)

Some code infrastructure challenges: 

• Need different parameter scanning algorithms 

• Need model-agnostic core framework 

• Need to interface many external physics codes


• Need massive parallelisation…


• …which implies a need for diskless interfacing


• …which implies a need to stop external codes from 
calling STOP and kill your 10,000-CPU scan… :)



Anders Kvellestad 13

2. GAMBIT

G AM B I T
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GAMBIT: The Global And Modular BSM Inference Tool
gambit.hepforge.org          github.com/GambitBSM EPJC 77 (2017) 784          arXiv:1705.07908

• Extensive model database, beyond SUSY
• Fast definition of new datasets, theories
• Extensive observable/data libraries 
• Plug&play scanning/physics/likelihood 

packages
• Various statistical options 

(frequentist /Bayesian)
• Fast LHC likelihood calculator
• Massively parallel
• Fully open-source
Members of: ATLAS, Belle-II, CLiC, CMS, 
CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON
Authors of: BubbleProfiler, Capt'n General, Contur, 
DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, 
EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, 
HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, 
Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, 
WIMPSim

Recent collaborators: P Athron, C Balázs, A Beniwal, S 
Bloor, T Bringmann, A Buckley, J-E Camargo-Molina, C 
Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J 
Edsjö, T Emken, A Fowlie, T Gonzalo, W Handley, J Harz, S 
Hoof, F Kahlhoefer, A Kvellestad, P Jackson, D Jacob, C Lin, 
N Mahmoudi, G Martinez, MT Prim, A Raklev, C Rogan, R 
Ruiz, P Scott, N Serra, P Stöcker , W. Su, A Vincent, C 
Weniger, M White, Y Zhang, ++

70+ participants in many experiments and numerous major theory codes
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Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs, 
FlexibleSUSY, gamLike, gm2calc, HEPLike, 
HiggsBounds, HiggsSignals, MicrOmegas, nulike, 
Pythia, SPheno, SUSYHD, SUSYHIT, SuperIso, 
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest, 
PolyChord, TWalk, grid, random, 
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit
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Some technical features

• Two-level parallelisation: 

• MPI for parameter sampling algorithm

• OpenMP for per-point physics computations


• Collection of sampling algorithms as plug-ins 


• Backend system for using C, C++, Fortran, Python and Mathematica 
codes as runtime plug-ins for physics computations


• Run configuration through YAML input file


• Dynamic dependency resolution: order of computations not hard-coded


• GAMBIT Universal Model machine (GUM): code auto-generation for new 
physics models
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CMSSM_parameters
Type: ModelParameters

Function: primary_parameters
Module: CMSSM

LibFirst_1_1_init
Type: void

Function: LibFirst_1_1_init
Module: BackendIniBit

nevents_postcuts
Type: int

Function: predicted_events
Module: ExampleBit_B

Example_lnL_B
Type: double

Function: example_lnL
Module: ExampleBit_B

LibFortran_1_0_init
Type: void

Function: LibFortran_1_0_init
Module: BackendIniBit

function_pointer
Type: fptr

Function: function_pointer_retriever
Module: ExampleBit_A

particle_id
Type: std::string

Function: particle_identity
Module: ExampleBit_B

ptr_arr_tests
Type: int

Function: ptrArrTester
Module: ExampleBit_B

test_BE_Array
Type: double

Function: Backend_array_test
Module: ExampleBit_A

test_vector
Type: std::vector<double>

Function: exampleVec
Module: ExampleBit_B

nevents
Type: double

Function: nevents_pred
Module: ExampleBit_A

nevents
Type: int

Function: nevents_pred_rounded
Module: ExampleBit_A

eventLoopManagement
Type: void

Function: eventLoopManager
Module: ExampleBit_A

event
Type: float

Function: exampleEventGen
Module: ExampleBit_A

event
Type: int

Function: exampleCut
Module: ExampleBit_A

eventAccumulation
Type: int

Function: eventAccumulator
Module: ExampleBit_A

Example_lnL_A
Type: double

Function: nevents_like
Module: ExampleBit_A

xsection
Type: double

Function: test_sigma
Module: ExampleBit_A

G A M B I T

Fig. 5: An example dependency tree generated in the initial-
isation stage of a GAMBIT scan. Each block corresponds to a
single module function, with the red text indicating its capa-
bility. Arrows indicate resolution of dependencies of di�erent
module functions with the results of others. The functions se-
lected by the dependency resolver to provide the observables
and likelihoods requested in the ObsLikes section of the scan’s
input YAML file are shaded in green. Module functions shown
shaded in purple are nested module functions. These run
in an automatically-parallelised loop managed by a loop man-
ager function, which is shown shaded in blue. This example
is included in the GAMBIT distribution as spartan.yaml; see
Sec. 12.1 for more details. Figures like this can be generated
for any scan by following the instructions provided after calling
GAMBIT with the -d switch; see Sec. 6.1 for details.

6. Adopt the Rules specified in the initialisation file (see
Sec. 6.5), removing non-matching module functions
from the list.

7. If exactly one module function is left on the list,
resolve the quantity requested by the target function
with the capability provided by that module function.
This automatically connects the pipe of the target
function to the result of the resolving function.

8. If the resolving function was not already activated
for the scan, activate it and add its dependencies to
the dependency queue (with the resolving function
as new target function).

9. Resolve backend requirements, as described below.
10. Resolve module function options, as described below.
11. Repeat from step 3 until the dependency queue is

empty.

7.2 Evaluation order

After building up the dependency tree of module func-
tions, the dependency resolver determines the initial
runtime ordering of its chosen module functions. An
obvious minimal requirement is that if the output of

module function A is required by module function B, A
is evaluated before B. We do this by topologically sort-
ing the directed dependency tree, using graph-theoretic
methods from the Boost Graph Library18.

In most cases, the evaluation order of the observables
and likelihoods listed in the ObsLikes section (Sec. 6.4)
remains unconstrained by the topological sorting. The
dependency resolver first orders the likelihoods by es-
timating the expected evaluation time for each one,
including all dependent module functions, along with
the probability that each likelihood will invalidate a
point. (A point may be invalidated if the likelihood is
extremely close to zero, the point is unphysical, etc.)
These estimates are based on the runtime and invalida-
tion frequency of the previously calculated points, and
updated on the fly during the scan. The dependency
resolver then sorts the evaluation order of likelihoods
such that the expected average time until a point is in-
validated is minimised. In practice this means that, for
instance, the relatively fast checks for consistency of a
model with physicality constraints, such as perturbativ-
ity and the absence of tachyons, would be automatically
performed before the often time-consuming evaluation
of collider constraints. This gives a significant e�ciency
gain in a large scan, because expensive likelihoods are
not even evaluated for points found to be invalid or
su�ciently unlikely on the basis of faster likelihoods.

Observables not associated with likelihoods used to
drive a scan (cf. 6.4) are always calculated after the
likelihood components, as they do not have the power to
completely invalidate a model point. Invalid observable
calculations can still be flagged, but they will not trigger
the termination of all remaining calculations for that
point in the way that an invalid likelihood component
will.

7.3 Resolution of backend requirements

Resolving backend requirements is in some sense a lot
easier than resolving module function dependencies, in
that backend requirements cannot themselves have ex-
plicit backend requirements or dependencies, so there is
no equivalent of the dependency tree to build. However,
the ability to specify groups of backend functions from
which only one requirement must be resolved, along
with rules that apply to them (Sec. 3.1.3), especially
the declaration that backend requirements that share a
certain tag must be resolved from the same backend —
without necessarily specifying which backend — makes
backend resolution a uniquely challenging problem.

18http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/

17

Dependency resolution
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• GAMBIT can be used beyond particle physics 


• At its core: A general tool for computationally heavy optimisation and  
parameter estimation tasks


• Coming soon: GAMBIT-light 
A lightweight GAMBIT without the particle physics 

GAMBIT-light
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Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs, 
FlexibleSUSY, gamLike, gm2calc, HEPLike, 
HiggsBounds, HiggsSignals, MicrOmegas, nulike, 
Pythia, SPheno, SUSYHD, SUSYHIT, SuperIso, 
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest, 
PolyChord, TWalk, grid, random, 
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit



G AM B I T
Anders Kvellestad 20

Models Core ScannerBit

Minimal C, C++, Fortran, Python  
interface libraries

Diver, GreAT, MultiNest, 
PolyChord, TWalk, grid, random, 
postprocessor, …

Scanners
LightBit

Your target function code here
(C, C++, Python, Fortran)
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3. Applications of Bayesian inference 

G AM B I T
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Fig. 3: Left: Joint profile likelihoods in the µ–M1 (top) and M2–m
f̃

planes (bottom). Stars indicate the point of highest likelihood
in each plain, and white contours correspond to the 1‡ and 2‡ CL regions with respect to the best-fit point. Right: Coloured regions
indicating in which parts of the 2‡ best-fit region di�erent co-annihilation and funnel mechanisms contribute to keeping the relic
density low. The best-fit point in each region is indicated by a star with the corresponding colour.

of Fig. 3). Because the MSSM7 employs a common
sfermion soft-mass parameter m

2
f̃

at the input scale
(Q = 1 TeV in our case), mass splittings among di�er-
ent sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE
running from Q = 1 TeV to Q = MSUSY, which splits
m

2
f̃

into individual soft masses, is generally subdomi-
nant.

In the tree-level stop mass matrix the o�-
diagonal element is vyt(Au3 sin — ≠ µ cos —), while it
is vyb,· (Ad3 cos — ≠ µ sin —) in the sbottom and stau
mass matrices, where yt,b,· are the fermion Yukawa cou-
plings and v ¥ 246 GeV. Because increased left-right
mixing reduces the mass of the lighter of the two mass
eigenstates, the large top Yukawa ensures that t̃1 is the

lightest sfermion across most of the allowed parameter
space (including for models that exhibit sbottom co-
annihilation). With 3 Æ tan — Æ 70 the terms Au3 sin —

(stop) and µ sin — (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space.
The dependence on large µ to obtain a sbottom mass
significantly lower than the mass set by the common
m

f̃
parameter explains why the sbottom co-annihilation

region does not extend as far to small µ as the stop co-
annihilation region in Fig. 3. Also, since yb ¥ 2.5y· , the
lightest stau remains heavier than the lightest sbottom
in the regions of parameter space with large mixing for
the down-type sfermions, which explains the absence
of any region dominated by stau co-annihilation in our
results.

GUT-scale SUSY: 1705.07935
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Fig. 2: Left: The profile likelihood ratio in the CMSSM, for m0 and m1/2 (top) and tan — and A0 (bottom), with explicit 68%
and 95% CL contour lines drawn in white, and the best fit point indicated by a star. Right: Colour-coding shows the mechanisms
active in models within the 95% CL contour for avoiding thermal overproduction of neutralino dark matter, through either
chargino co-annihilation, resonant annihilation via the A/H funnel, or stop co-annihilation. Other potential mechanisms (e.g. stau
co-annihilation) are not present, as they do not lie within the 95% CL contour.

We now see that relaxing the relic density con-
straint to an upper limit opens up a much richer set of
phenomenologically-viable scenarios, with lighter Hig-
gsino or mixed Higgino-bino LSPs. From the perspective
of global fits, treating the relic density as an upper bound
is a conservative approach, and allows us to test whether
the preference for heavy spectra found in recent studies
[115, 146, 308] persists even when a greater variety of
light LSPs is permitted.

The right panel of Fig. 1 shows that at 95% CL,
all of the identified annihilation mechanisms (stop co-
annihilation, A/H-funnel and chargino co-annihilation)
permit solutions where the measured relic density is fully
accounted for, as well as scenarios where only a very

small fraction of the DM relic abundance is explained
in the CMSSM. The fit does not demonstrate any clear
preference for the relic density to be under-abundant or
very close to the measured value. Looking at the top
of this plot, we indeed see the established picture for
chargino co-annihilation discussed above, where a pure
Higgsino DM candidate should have a mass of around
1 TeV to fit the observed relic density.

In Fig. 2, we show 2D CMSSM joint profile likeli-
hoods for m0 and m1/2, as well as for tan — and A0.
Here the plots include both positive and negative µ, and
are again coloured by relic density mechanism. We see
a large region of high likelihood at large m0 and m1/2,
consisting of overlapping chargino co-annihilation and
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Neutrinos and cosmo: 2009.03287 Dark matter EFTs: 2106.02056
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MSSM7: 1705.07917
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Fig. 3: Left: Joint profile likelihoods in the µ–M1 (top) and M2–m
f̃

planes (bottom). Stars indicate the point of highest likelihood
in each plain, and white contours correspond to the 1‡ and 2‡ CL regions with respect to the best-fit point. Right: Coloured regions
indicating in which parts of the 2‡ best-fit region di�erent co-annihilation and funnel mechanisms contribute to keeping the relic
density low. The best-fit point in each region is indicated by a star with the corresponding colour.

of Fig. 3). Because the MSSM7 employs a common
sfermion soft-mass parameter m

2
f̃

at the input scale
(Q = 1 TeV in our case), mass splittings among di�er-
ent sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE
running from Q = 1 TeV to Q = MSUSY, which splits
m

2
f̃

into individual soft masses, is generally subdomi-
nant.

In the tree-level stop mass matrix the o�-
diagonal element is vyt(Au3 sin — ≠ µ cos —), while it
is vyb,· (Ad3 cos — ≠ µ sin —) in the sbottom and stau
mass matrices, where yt,b,· are the fermion Yukawa cou-
plings and v ¥ 246 GeV. Because increased left-right
mixing reduces the mass of the lighter of the two mass
eigenstates, the large top Yukawa ensures that t̃1 is the

lightest sfermion across most of the allowed parameter
space (including for models that exhibit sbottom co-
annihilation). With 3 Æ tan — Æ 70 the terms Au3 sin —

(stop) and µ sin — (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space.
The dependence on large µ to obtain a sbottom mass
significantly lower than the mass set by the common
m

f̃
parameter explains why the sbottom co-annihilation

region does not extend as far to small µ as the stop co-
annihilation region in Fig. 3. Also, since yb ¥ 2.5y· , the
lightest stau remains heavier than the lightest sbottom
in the regions of parameter space with large mixing for
the down-type sfermions, which explains the absence
of any region dominated by stau co-annihilation in our
results.

GUT-scale SUSY: 1705.07935
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and 95% CL contour lines drawn in white, and the best fit point indicated by a star. Right: Colour-coding shows the mechanisms
active in models within the 95% CL contour for avoiding thermal overproduction of neutralino dark matter, through either
chargino co-annihilation, resonant annihilation via the A/H funnel, or stop co-annihilation. Other potential mechanisms (e.g. stau
co-annihilation) are not present, as they do not lie within the 95% CL contour.

We now see that relaxing the relic density con-
straint to an upper limit opens up a much richer set of
phenomenologically-viable scenarios, with lighter Hig-
gsino or mixed Higgino-bino LSPs. From the perspective
of global fits, treating the relic density as an upper bound
is a conservative approach, and allows us to test whether
the preference for heavy spectra found in recent studies
[115, 146, 308] persists even when a greater variety of
light LSPs is permitted.

The right panel of Fig. 1 shows that at 95% CL,
all of the identified annihilation mechanisms (stop co-
annihilation, A/H-funnel and chargino co-annihilation)
permit solutions where the measured relic density is fully
accounted for, as well as scenarios where only a very

small fraction of the DM relic abundance is explained
in the CMSSM. The fit does not demonstrate any clear
preference for the relic density to be under-abundant or
very close to the measured value. Looking at the top
of this plot, we indeed see the established picture for
chargino co-annihilation discussed above, where a pure
Higgsino DM candidate should have a mass of around
1 TeV to fit the observed relic density.

In Fig. 2, we show 2D CMSSM joint profile likeli-
hoods for m0 and m1/2, as well as for tan — and A0.
Here the plots include both positive and negative µ, and
are again coloured by relic density mechanism. We see
a large region of high likelihood at large m0 and m1/2,
consisting of overlapping chargino co-annihilation and
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1908.02302

Flavour EFT: 2006.03489 Neutrinos and cosmo: 2009.03287 Dark matter EFTs: 2106.02056
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General strategy
• Collecting posterior samples:


• T-Walk (ensemble MCMC) or PolyChord/MultiNest (nested sampling)


• Computing Bayesian evidences:

• PolyChord or MultiNest


• Sampling to map out profile likelihood function:

• Diver (differential evolution)

• And add all samples from the Bayesian scans

[arXiv:1705.07959]24
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Fig. 7: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the MultiNest scanner
with a selection of di�erence tolerances (tol) and numbers of live points (nlive). The maximum likelihood point is shown by a
white star.
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Fig. 8: Marginalised posterior probability density maps from a 15-dimensional scan of the scalar singlet parameter space, using the
MultiNest scanner with a selection of di�erence tolerances (tol) and numbers of live points (nlive). Note that the colourbar strictly
only applies to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at the edge of the 1‡ credible region, and
so on). The posterior mean is shown with a grey bullet point.
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Fig. 9: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the Diver scanner with
a selection of di�erence convergence thresholds (convthresh) and population sizes (NP). The maximum likelihood point is shown by
a white star.

the NP parameter, and the threshold for convergence is
controlled by the convthresh parameter.

We examine population sizes of NP = 2000, 5000,
10 000 and 20 000, and convthresh values of 10≠4, 10≠3,
10≠2 and 10≠1. Although these parameters have di�er-
ent definitions to nlive and tol in MultiNest, we take
advantage of the similarity in the appropriate ranges for
these and plot the scan results on the same axes in Figs.
5 and 6. We see that a convthresh value of less than 10≠3

gives consistent results for the best-fit log-likelihood at
all values of NP.

In two dimensions, both MultiNest and Diver are able
to find roughly the same or equivalently good best-fit
points. The di�erences in the algorithms become evident
in seven and fifteen dimensions however, where Diver

consistently outperform MultiNest for equivalent param-
eter values. This is somewhat expected, given that Diver

is designed as an optimisation routine, whereas Multi-

Nest is intended to compute the Bayesian evidence and
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Fig. 7: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the MultiNest scanner
with a selection of di�erence tolerances (tol) and numbers of live points (nlive). The maximum likelihood point is shown by a
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Fig. 8: Marginalised posterior probability density maps from a 15-dimensional scan of the scalar singlet parameter space, using the
MultiNest scanner with a selection of di�erence tolerances (tol) and numbers of live points (nlive). Note that the colourbar strictly
only applies to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at the edge of the 1‡ credible region, and
so on). The posterior mean is shown with a grey bullet point.
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Fig. 9: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the Diver scanner with
a selection of di�erence convergence thresholds (convthresh) and population sizes (NP). The maximum likelihood point is shown by
a white star.

the NP parameter, and the threshold for convergence is
controlled by the convthresh parameter.

We examine population sizes of NP = 2000, 5000,
10 000 and 20 000, and convthresh values of 10≠4, 10≠3,
10≠2 and 10≠1. Although these parameters have di�er-
ent definitions to nlive and tol in MultiNest, we take
advantage of the similarity in the appropriate ranges for
these and plot the scan results on the same axes in Figs.
5 and 6. We see that a convthresh value of less than 10≠3

gives consistent results for the best-fit log-likelihood at
all values of NP.

In two dimensions, both MultiNest and Diver are able
to find roughly the same or equivalently good best-fit
points. The di�erences in the algorithms become evident
in seven and fifteen dimensions however, where Diver

consistently outperform MultiNest for equivalent param-
eter values. This is somewhat expected, given that Diver

is designed as an optimisation routine, whereas Multi-

Nest is intended to compute the Bayesian evidence and

24

★

GAMBIT 1.0.0

�3

�2

�1

0

lo
g 1

0
�
h
S

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 20,000
tol: 0.0001
Prof. likelihood

★
GAMBIT 1.0.0

�3

�2

�1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 20,000
tol: 0.01
Prof. likelihood

★
GAMBIT 1.0.0

�3

�2

�1

0

2.0 2.5 3.0 3.5
log10(mS/GeV)

MultiNest
nlive: 5,000
tol: 0.001
Prof. likelihood

★
GAMBIT 1.0.0

�3

�2

�1

0

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

MultiNest
nlive: 2,000
tol: 0.001
Prof. likelihood

Fig. 7: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the MultiNest scanner
with a selection of di�erence tolerances (tol) and numbers of live points (nlive). The maximum likelihood point is shown by a
white star.
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Fig. 8: Marginalised posterior probability density maps from a 15-dimensional scan of the scalar singlet parameter space, using the
MultiNest scanner with a selection of di�erence tolerances (tol) and numbers of live points (nlive). Note that the colourbar strictly
only applies to the rightmost panel, and that colours map to the same enclosed posterior mass on each plot, rather than to the
same iso-posterior density level (i.e. the transition from red to purple is designed to occur at the edge of the 1‡ credible region, and
so on). The posterior mean is shown with a grey bullet point.
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Fig. 9: Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the Diver scanner with
a selection of di�erence convergence thresholds (convthresh) and population sizes (NP). The maximum likelihood point is shown by
a white star.

the NP parameter, and the threshold for convergence is
controlled by the convthresh parameter.

We examine population sizes of NP = 2000, 5000,
10 000 and 20 000, and convthresh values of 10≠4, 10≠3,
10≠2 and 10≠1. Although these parameters have di�er-
ent definitions to nlive and tol in MultiNest, we take
advantage of the similarity in the appropriate ranges for
these and plot the scan results on the same axes in Figs.
5 and 6. We see that a convthresh value of less than 10≠3

gives consistent results for the best-fit log-likelihood at
all values of NP.

In two dimensions, both MultiNest and Diver are able
to find roughly the same or equivalently good best-fit
points. The di�erences in the algorithms become evident
in seven and fifteen dimensions however, where Diver

consistently outperform MultiNest for equivalent param-
eter values. This is somewhat expected, given that Diver

is designed as an optimisation routine, whereas Multi-

Nest is intended to compute the Bayesian evidence and

MultiNest, posterior MultiNest, likelihood Diver, likelihood
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Example: «Higgs portal» dark matter 
[arxiv:1808.10465]

• Study of three models where the dark matter (DM) field only interacts with the Standard 
Model fields through interactions with the Higgs field


• 1) Vector DM   2) Dirac fermion DM   3) Majorana fermion DM 


• Parameter space

• DM mass

• 1—2 parameters for the DM-Higgs interaction

• 7 nuisance parameters


• Likelihoods for DM density, Higgs «invisible decay width», and many experimental 
searches for DM signals (indirect and direct) 


• Intended here as an example — the results are now somewhat outdated

SMH

DM

DM

SM
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• Both profile likelihoods and posteriors


• Helps disentangle «low likelihood» vs «high likelihood but fine-tuned»
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• Both profile likelihoods and posteriors


• Helps disentangle «low likelihood» vs «high likelihood but fine-tuned»
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Bayesian model comparisons

Within the fermion DM models: 
 
Strong evidence for model that allows 
a CP-violating H-DM interaction, i.e. a 
more complicated model 
 
(Nested models)

No particular preference in 
comparisons between the different 
classes of DM models 


(Non-nested models)
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More examples of Bayesian applications  
in BSM phenomenology 
(by no means an exhaustive list)

• Fast theory emulators, fast marginalised likelihoods, …

• Fast AMS-02 antiproton likelihoods: [arxiv:2303.07362]

• Fast higher-order LHC cross-section predictions: [arxiv:2006.16273] 


• Bayesian takes on fine-tuning questions in BSM physics  
 [arxiv:1204.4940], [arxiv:1709.07895] (and many more…) 


• Bayesian uncertainties for missing higher-order terms in QFT calculations: 
[arxiv:2006.16293]


• Creative applications of (originally) Bayesian methods

• Nested sampling for estimating small p-values [arxiv:2105.13923]

• Nested sampling for event generation [arxiv:2205.02030]


• + many applications of Bayesian parameter estimation and model comparison…
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Summary
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• How can we learn the most physics from our experimental results?  
Test all the results against all interesting theories!


• GAMBIT is an open-source tool for large-scale global fits of new theories in 
particle physics


• A modular and model-independent core software framework  
→ GAMBIT has been used to investigate a wide range of new theories


• Bayesian approaches widely used in BSM physics:  
parameter estimation, model comparison, emulation, theory uncertainties 


• Different questions, different answers: Useful to perform both Bayesian and 
frequentist analyses (if computationally feasible)


• Coming soon: GAMBIT-light 


• gambit.hepforge.org and github.com/GambitBSM/gambit_2.4


• GAMBIT results are publicly available: zenodo.org/communities/gambit-official
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http://gambit.hepforge.org
https://github.com/GambitBSM/gambit_2.4
http://zenodo.org/communities/gambit-official
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Bonus tracks
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Parameter space exploration

[arxiv:2012.09874]
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Parameter space exploration

[arxiv:1705.07959]
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• Basic building blocks: module functions 

• A physics module: a collection of module 
functions related to the same physics topic


• Each module function has a single capability 
(what it calculates) 


• A module function can have dependencies 
on the results of other module functions


• A module function can declare which 
models it can work with 

• GAMBIT determines which module functions 
should be run in which order for a given scan 
(dependency resolution) 
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CMSSM_parameters
Type: ModelParameters

Function: primary_parameters
Module: CMSSM

LibFirst_1_1_init
Type: void

Function: LibFirst_1_1_init
Module: BackendIniBit

nevents_postcuts
Type: int

Function: predicted_events
Module: ExampleBit_B

Example_lnL_B
Type: double

Function: example_lnL
Module: ExampleBit_B

LibFortran_1_0_init
Type: void

Function: LibFortran_1_0_init
Module: BackendIniBit

function_pointer
Type: fptr

Function: function_pointer_retriever
Module: ExampleBit_A

particle_id
Type: std::string

Function: particle_identity
Module: ExampleBit_B

ptr_arr_tests
Type: int

Function: ptrArrTester
Module: ExampleBit_B

test_BE_Array
Type: double

Function: Backend_array_test
Module: ExampleBit_A

test_vector
Type: std::vector<double>

Function: exampleVec
Module: ExampleBit_B

nevents
Type: double

Function: nevents_pred
Module: ExampleBit_A

nevents
Type: int

Function: nevents_pred_rounded
Module: ExampleBit_A

eventLoopManagement
Type: void

Function: eventLoopManager
Module: ExampleBit_A

event
Type: float

Function: exampleEventGen
Module: ExampleBit_A

event
Type: int

Function: exampleCut
Module: ExampleBit_A

eventAccumulation
Type: int

Function: eventAccumulator
Module: ExampleBit_A

Example_lnL_A
Type: double

Function: nevents_like
Module: ExampleBit_A

xsection
Type: double

Function: test_sigma
Module: ExampleBit_A
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Fig. 5: An example dependency tree generated in the initial-
isation stage of a GAMBIT scan. Each block corresponds to a
single module function, with the red text indicating its capa-
bility. Arrows indicate resolution of dependencies of di�erent
module functions with the results of others. The functions se-
lected by the dependency resolver to provide the observables
and likelihoods requested in the ObsLikes section of the scan’s
input YAML file are shaded in green. Module functions shown
shaded in purple are nested module functions. These run
in an automatically-parallelised loop managed by a loop man-
ager function, which is shown shaded in blue. This example
is included in the GAMBIT distribution as spartan.yaml; see
Sec. 12.1 for more details. Figures like this can be generated
for any scan by following the instructions provided after calling
GAMBIT with the -d switch; see Sec. 6.1 for details.

6. Adopt the Rules specified in the initialisation file (see
Sec. 6.5), removing non-matching module functions
from the list.

7. If exactly one module function is left on the list,
resolve the quantity requested by the target function
with the capability provided by that module function.
This automatically connects the pipe of the target
function to the result of the resolving function.

8. If the resolving function was not already activated
for the scan, activate it and add its dependencies to
the dependency queue (with the resolving function
as new target function).

9. Resolve backend requirements, as described below.
10. Resolve module function options, as described below.
11. Repeat from step 3 until the dependency queue is

empty.

7.2 Evaluation order

After building up the dependency tree of module func-
tions, the dependency resolver determines the initial
runtime ordering of its chosen module functions. An
obvious minimal requirement is that if the output of

module function A is required by module function B, A
is evaluated before B. We do this by topologically sort-
ing the directed dependency tree, using graph-theoretic
methods from the Boost Graph Library18.

In most cases, the evaluation order of the observables
and likelihoods listed in the ObsLikes section (Sec. 6.4)
remains unconstrained by the topological sorting. The
dependency resolver first orders the likelihoods by es-
timating the expected evaluation time for each one,
including all dependent module functions, along with
the probability that each likelihood will invalidate a
point. (A point may be invalidated if the likelihood is
extremely close to zero, the point is unphysical, etc.)
These estimates are based on the runtime and invalida-
tion frequency of the previously calculated points, and
updated on the fly during the scan. The dependency
resolver then sorts the evaluation order of likelihoods
such that the expected average time until a point is in-
validated is minimised. In practice this means that, for
instance, the relatively fast checks for consistency of a
model with physicality constraints, such as perturbativ-
ity and the absence of tachyons, would be automatically
performed before the often time-consuming evaluation
of collider constraints. This gives a significant e�ciency
gain in a large scan, because expensive likelihoods are
not even evaluated for points found to be invalid or
su�ciently unlikely on the basis of faster likelihoods.

Observables not associated with likelihoods used to
drive a scan (cf. 6.4) are always calculated after the
likelihood components, as they do not have the power to
completely invalidate a model point. Invalid observable
calculations can still be flagged, but they will not trigger
the termination of all remaining calculations for that
point in the way that an invalid likelihood component
will.

7.3 Resolution of backend requirements

Resolving backend requirements is in some sense a lot
easier than resolving module function dependencies, in
that backend requirements cannot themselves have ex-
plicit backend requirements or dependencies, so there is
no equivalent of the dependency tree to build. However,
the ability to specify groups of backend functions from
which only one requirement must be resolved, along
with rules that apply to them (Sec. 3.1.3), especially
the declaration that backend requirements that share a
certain tag must be resolved from the same backend —
without necessarily specifying which backend — makes
backend resolution a uniquely challenging problem.

18http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/
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