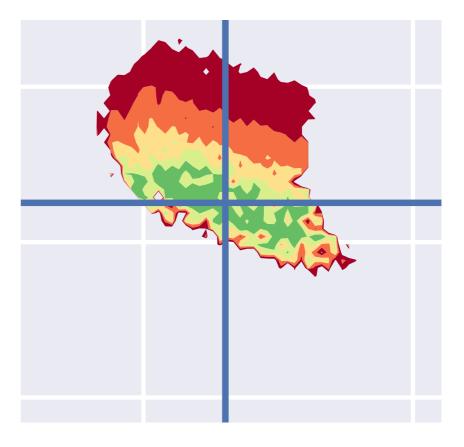
History matching for nuclear ab initio calculations

Christian Forssén Chalmers University of Technology



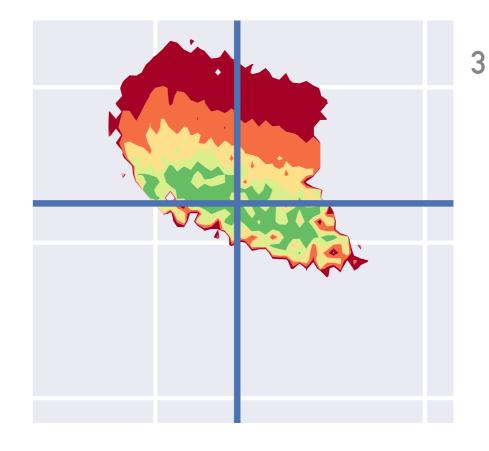
ISNET-9, Washington University in St Louis, May 22-26, 2023

Presenting (mainly) work published in: ²

Ab initio predictions link the neutron skin of ²⁰⁸Pb to nuclear forces by <u>B. Hu, W.G. Jiang, T. Miyagi, Z. Sun</u>, A. Ekström, cf, G. Hagen, J.D. Holt, T. Papenbrock, S.R. Stroberg, I. Vernon, **Nature Phys. 18, 1196 (2022)**

Emergence of nuclear saturation within Δ-full chiral effective field theory by W.G. Jiang, cf, <u>T. Djärv</u>, G. Hagen, arXiv:2212.13203

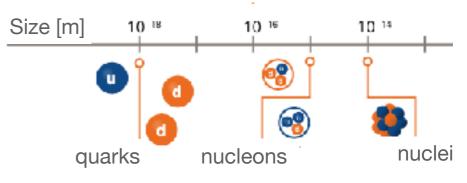
Emulating ab initio computations of infinite nucleonic matter by <u>W.G. Jiang</u>, cf, <u>T. Djärv</u>, G. Hagen, **arXiv:2212.13216**



Uncertainty quantification for *ab initio* methods based on effective field theory (EFT)

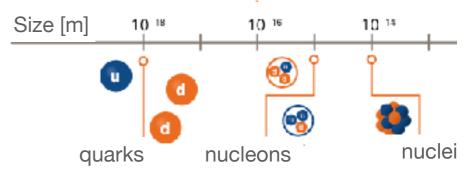
Scientific goals in ab initio nuclear theory 4

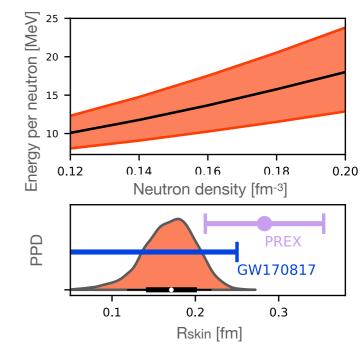
- Model the strong interaction at low-energy
 - At the most fundamental level, the strong interaction is described by Quantum Chromodynamics (QCD);
 - At low energies, quarks condense into hadrons;
 - Atomic nuclei can supposedly be described with relevant low-energy degrees of freedom—nucleons and pions—and residual interactions;
 - Effective field theories (EFTs) offer a systematic description of this physics.



Scientific goals in ab initio nuclear theory

- Model the strong interaction at low-energy
 - At the most fundamental level, the strong interaction is described by Quantum Chromodynamics (QCD);
 - At low energies, quarks condense into hadrons;
 - Atomic nuclei can supposedly be described with relevant low-energy degrees of freedom—nucleons and pions—and residual interactions;
 - Effective field theories (EFTs) offer a systematic description of this physics.
- Parameter estimation and model checking
 - Infer the parameters (low-energy constants = LECs) of chiral EFT from low-energy, nuclear data: E.g. NN scattering observables, few-nucleon or other low-energy observables.
 - Also other parameters might be of interest. E.g.,
 - Can we infer the breakdown scale of the EFT?
 - Can we rigorously test the EFT model assumptions?
- Predictive power
 - Predict scientifically relevant nuclear observables with quantified uncertainties.





Learning from data via Bayes

Apply Bayes' theorem

Posterior $p(\boldsymbol{\alpha} \mid \mathcal{D}, I) = \frac{p(\mathcal{D} \mid \boldsymbol{\alpha}, I) \cdot p(\boldsymbol{\alpha} \mid I)}{(\boldsymbol{\alpha} \mid I)}$

Prior

Marginal likelihood

The prior encodes our knowledge about parameter values before analyzing the data

Likelihood

- The likelihood is the probability of observing the data given a set of parameters
- The marginal likelihood (or model evidence) provides normalization of the posterior.
- The **posterior** is the inferred probability density for the parameters.

Learning from data via Bayes

Apply Bayes' theorem

Posterior $p(\boldsymbol{\alpha} \mid \mathcal{D}, I) = \frac{p(\mathcal{D} \mid \boldsymbol{\alpha}, I) \cdot p(\boldsymbol{\alpha} \mid I)}{p(\mathcal{D} \mid I)}$

Prior

Marginal likelihood

The prior encodes our knowledge about parameter values before analyzing the data

Likelihood

- The likelihood is the probability of observing the data given a set of parameters
- The marginal likelihood (or model evidence) provides normalization of the posterior.
- The posterior is the inferred probability density for the parameters.
- Predictions for "future" data, modeled with $y(\alpha)$, are described by the **posterior predictive distribution** (ppd)

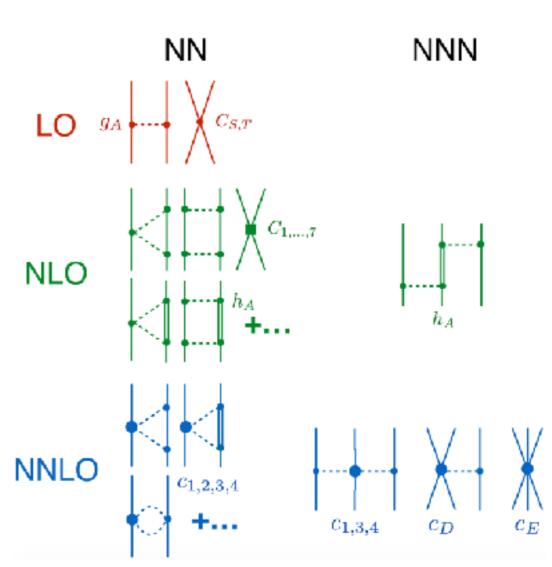
 $\{y(\boldsymbol{\alpha}): \boldsymbol{\alpha} \sim p(\boldsymbol{\alpha} \mid \mathcal{D}, I)\}$

We will also introduce **full ppd**:s $\{y(\alpha) + \delta y : \alpha \sim p(\alpha | \mathcal{D}, I), \delta y \sim p(\delta y)\}$

Ab initio modeling of nuclear systems using χEF^{T}

 χ EFT promises a connection with QCD

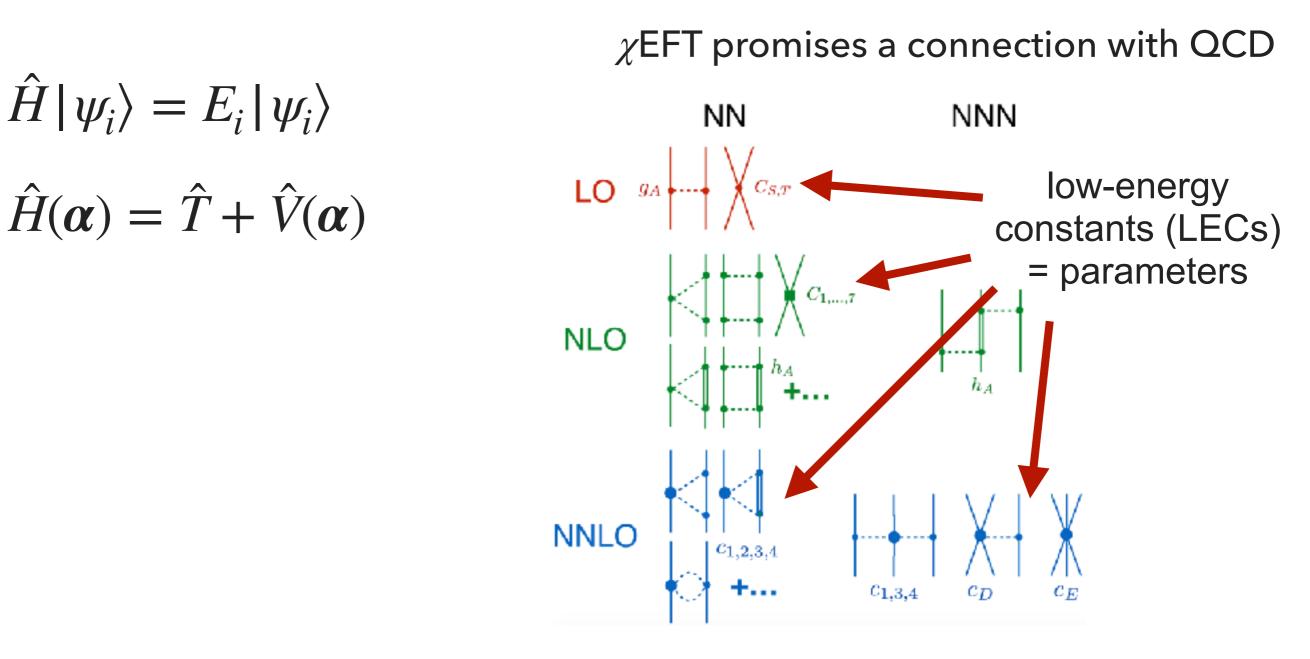
 $\hat{H} | \psi_i \rangle = E_i | \psi_i \rangle$ $\hat{H}(\alpha) = \hat{T} + \hat{V}(\alpha)$



Weinberg, van Kolck, Kaiser, Bernard, Meißner, Epelbaum, Machleidt, Entem, ...

A. Ekström, et al. Phys. Rev C 97, 024332 (2018)
W. Jiang, et al. Phys Rev C 102, 054301 (2020)

Ab initio modeling of nuclear systems using χEF



Weinberg, van Kolck, Kaiser, Bernard, Meißner, Epelbaum, Machleidt, Entem, ...

A. Ekström, et al. Phys. Rev C 97, 024332 (2018)
W. Jiang, et al. Phys Rev C 102, 054301 (2020)

Ab initio modeling of nuclear systems using χEF

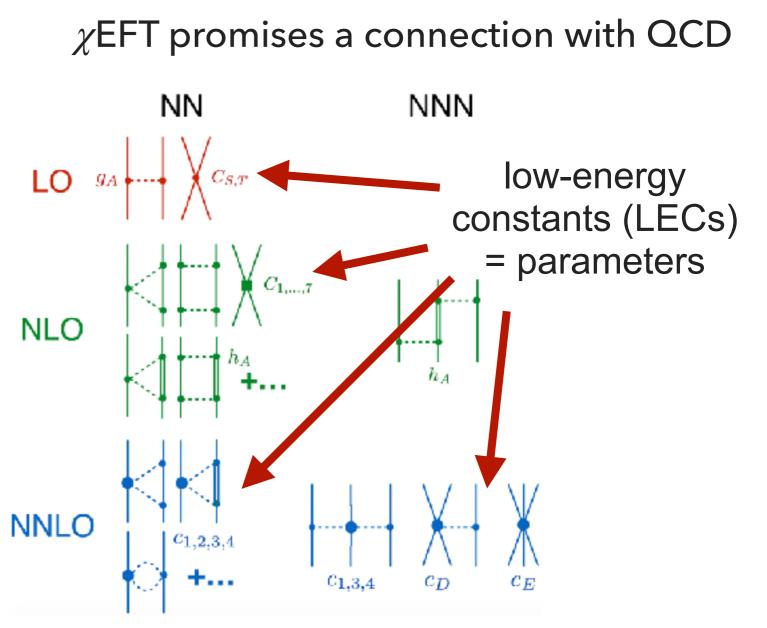
 $\hat{H} | \psi_i \rangle = E_i | \psi_i \rangle$ $\hat{H}(\alpha) = \hat{T} + \hat{V}(\alpha)$

parameters inferred from data.**parametric uncertainty**

EFT expansion truncated – **model/truncation error**

many-body solver relies on approximations:

– many-body error



Weinberg, van Kolck, Kaiser, Bernard, Meißner, Epelbaum, Machleidt, Entem, ...

A. Ekström, et al. Phys. Rev C 97, 024332 (2018)
W. Jiang, et al. Phys Rev C 102, 054301 (2020)

Current UQ frontiers in ab initio nuclear theory 7

Getting to know your errors

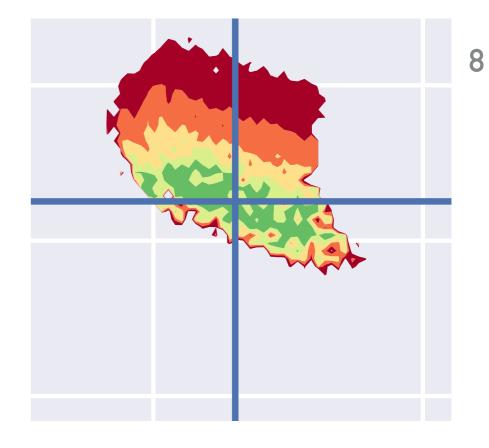
- Means, variances, and covariances of EFT truncation, many-body method, emulator errors;
- PDF functional forms;
- Model calibration and validation
- Sampling PDFs without tears
 - Mimic costly simulators with efficient and accurate emulators;
 - Hamiltonian MC, sampling / importance resampling, ...
- Technologies to be explored
 - Model mixing, experimental design, ...

Current UQ frontiers in ab initio nuclear theory 7

Getting to know your errors

- Means, variances, and covariances of EFT truncation, many-body method, emulator errors;
- PDF functional forms;
- Model calibration and validation
- Sampling PDFs without tears
 - Mimic costly simulators with efficient and accurate emulators;
 - Hamiltonian MC, sampling / importance resampling, ...
- Technologies to be explored
 - Model mixing, experimental design, ...

See, e.g., Frontiers in Physics volume on *"Uncertainty Quantification in Nuclear Physics"*



An emulator mimics the simulator output at a reduced computational cost:

 $y(\alpha) \approx \tilde{y}(\alpha) + \delta \tilde{y}$

- A useful emulator is fast and accurate.
- Keep track of the emulator uncertainty.

An emulator mimics the simulator output at a reduced computational cost:

 $y(\alpha) \approx \tilde{y}(\alpha) + \delta \tilde{y}$

- A useful emulator is fast and accurate.
- Keep track of the emulator uncertainty.
- Emulators can be non-intrusive (data based)
 - Neural networks, Gaussian processes, etc

An emulator mimics the simulator output at a reduced computational cost:

 $y(\alpha) \approx \tilde{y}(\alpha) + \delta \tilde{y}$

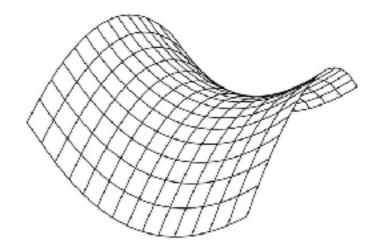
- A useful emulator is fast and accurate.
- Keep track of the emulator uncertainty.
- Emulators can be non-intrusive (data based)
 - Neural networks, Gaussian processes, etc
- Or intrusive (model based)
 - Translating a high-fidelity model to a low-fidelity one
 - Vast literature on model-order reduction (MOR); see, e.g., Melendez et al. (2203.05528) with many refs.

Many talks at this workshop. E.g., Furnstahl, Ekström, Becker, Odell (model-based) and several others for data-based emulators

Eigenvector continuation emulators¹⁰

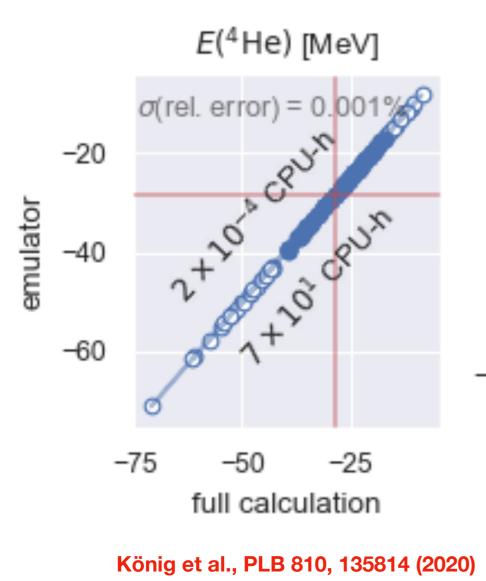
$$H(\alpha) = H_0 + \alpha H_1$$

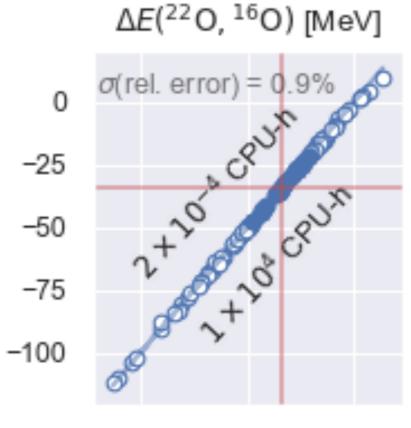
The key insight is that while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold.

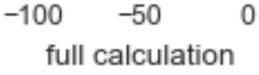


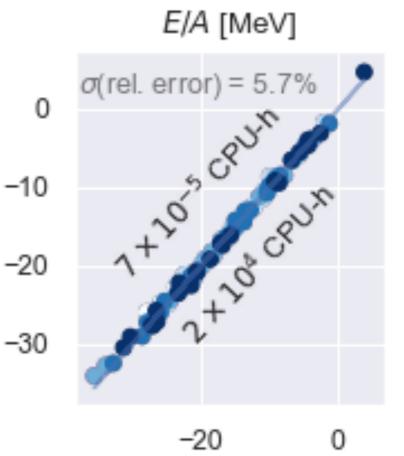
D. Frame, et al. Phys. Rev. Lett. 121, 032501 (2018)

Time(emulation) << Time(simulation) 11







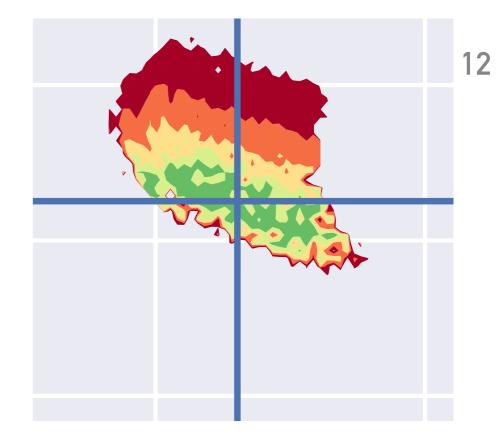


full calculation

Jiang et al., arXiv 2212.13216 & arXiv 2212.13203

Selected references:

- I. Vernon, et al. (Bayesian Anal., 2010)
- I. Vernon, et al. (BMC Systems Biology, 2018)
- B. Hu et al (Nature Phys. 2022)



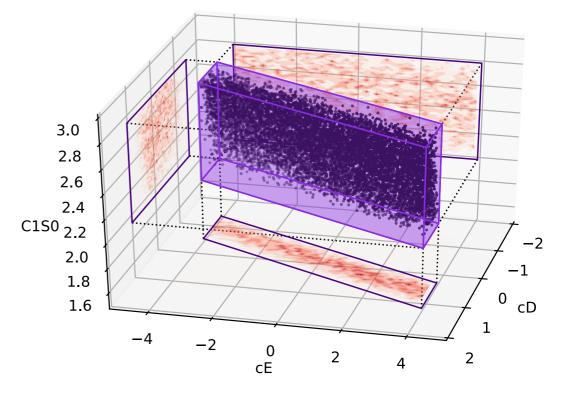
Iterative history matching

Approximate Bayes

- Bayesian linear methods (only means and variances) can be very useful
 - Easier to claim **implausibility** than to quantify likelihood $\Theta_{NI}(\alpha)$ versus $p(\mathcal{D} | \alpha, I) \equiv \mathcal{L}(\alpha)$
 - Define implausibility measure (using only means and variances)
 - History matching:

Iteratively remove regions in which $\Theta_{\rm NI}(\alpha) = 0$

 $\Theta_{\rm NI}(\boldsymbol{\alpha}) = \begin{cases} 0 & \text{implausible} \\ 1 & \text{non-implausible} \end{cases}$



Iterative history matching

- Climate modeling (Williamson 2013, Edwards 2019)
- Ecosystem ecology (Raftery, 1995)
- Epidemiology (Andrianakis 2015, 2016, Vernon 2022)
- Galaxy formation (Vernon 2010, 2014)
- Oil reservoir modelling (Craig 1995, 1996, Cumming 2009)
- Systems biology (Vernon 2018)
- Nuclear physics (Hu 2022, Jiang 2022, Elhatisari 2022)

nature

Explore Content V Journal Information V Publish With Us V

nature > articles > article

Article | Published: 06 February 2019

Revisiting Antarctic ice loss due to marine ice-cliff instability

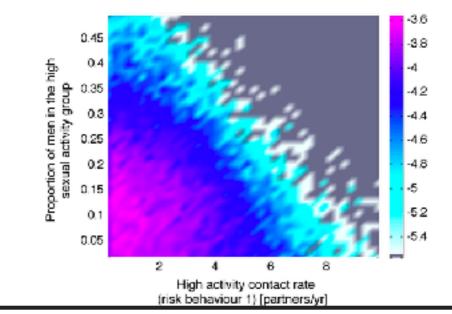
Tamsin L. Edwards 🖂, Mark A. Brandon, Gael Durand, Nell R. Edwards, Nicholas R. Golledge, Philip B. Holden, Isabel J. Nias, Antony J. Payne, Catherine Ritz & Andreas Wernecke

Nature 566, 58-64(2019) Cite this article

Original Article | 🗟 Open Access | 🐵 🚯

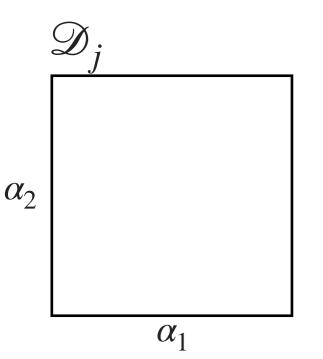
History matching of a complex epidemiological model of human immunodeficiency virus transmission by using variance emulation

I. Andrianakis 🗟, I. Vernon, N. McCreesh, T. J. McKinley, J. E. Oakley, R. N. Nsubuga, M. Goldstein, R. G. White



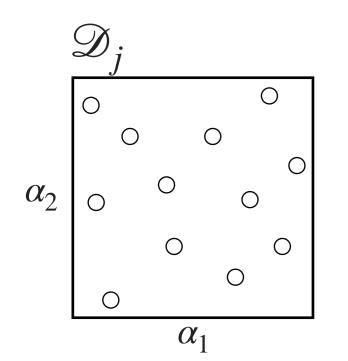
Iterative history matching strategy ¹⁵

1. At iteration j: Construct or **refine emulator(s)** for the model predictions across the current non-implausible volume \mathscr{D}_j . Choose a **rejection strategy based on implausibility measures** for the chosen set \mathscr{Z}_j of informative observables.



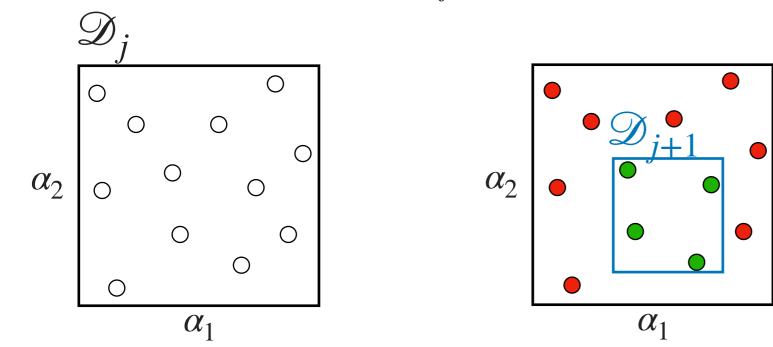
Iterative history matching strategy ¹⁵

- 1. At iteration j: Construct or **refine emulator(s)** for the model predictions across the current non-implausible volume \mathscr{D}_j . Choose a **rejection strategy based on implausibility measures** for the chosen set \mathscr{Z}_j of informative observables.
- 2. Define a set of model runs over the current NI volume \mathscr{D}_j using a **space-filling design** of sample values for the (active) parameter inputs $\{\alpha\}_j$.



Iterative history matching strategy ¹⁵

- 1. At iteration j: Construct or **refine emulator(s)** for the model predictions across the current non-implausible volume \mathscr{D}_j . Choose a **rejection strategy based on implausibility measures** for the chosen set \mathscr{Z}_j of informative observables.
- 2. Define a set of model runs over the current NI volume \mathscr{D}_j using a **space-filling design** of sample values for the (active) parameter inputs $\{\alpha\}_j$.
- 3. The implausibility measures are then calculated over \mathscr{D}_j , using the emulators, and implausibility cutoffs are imposed. Define a **new (smaller) nonimplausible volume** \mathscr{D}_{j+1} which should satisfy $\mathscr{D}_{j+1} \subset \mathscr{D}_j$.



Iterative history matching strategy ¹⁶

- At iteration j: Construct or refine emulator(s) for the model predictions across the current non-implausible volume D_j. Choose a rejection strategy based on implausibility measures for the chosen set Z_j of informative observables.
- 2. Define a set of model runs over the current NI volume \mathscr{D}_j using a **space-filling design** of sample values for the (active) parameter inputs $\{\alpha\}_j$.
- 3. The implausibility measures are then calculated over \mathscr{D}_j , using the emulators, and implausibility cutoffs are imposed. Define a **new (smaller) nonimplausible volume** \mathscr{D}_{j+1} which should satisfy $\mathscr{D}_{j+1} \subset \mathscr{D}_j$.
- 4. Unless (a) computational resources are exhausted, or (b) all considered points in the parameter space are deemed implausible, we:
 - i. include any additional informative observables in the considered set \mathscr{Z}_{i+1} , and return to step 1.
- 5. If 4(a) is true we generate a large number of acceptable runs from the final NI volume $\mathscr{D}_{\text{final}}$, sampled according to scientific need.

Implausibility measure

The implausibility measure does not use the full likelihood, but just means and variances

$$I_M^2(\boldsymbol{\alpha}) \equiv \max_{z_i \in \mathcal{Z}} \frac{\left| \mathbb{E} \left[\tilde{f}_i(\boldsymbol{\alpha}) \right] - z_i \right|^2}{\operatorname{Var} \left[\tilde{f}_i(\boldsymbol{\alpha}) - z_i \right]}.$$

where \mathscr{Z} is the collection of outputs that are being considered and Var[...] is the combined variance of **observational**, model, method, and emulator uncertainties.

Implausibility measure

The implausibility measure does not use the full likelihood, but just means and variances

$$I_M^2(\boldsymbol{\alpha}) \equiv \max_{z_i \in \mathcal{Z}} \frac{\left| \mathbb{E} \left[\tilde{f}_i(\boldsymbol{\alpha}) \right] - z_i \right|^2}{\operatorname{Var} \left[\tilde{f}_i(\boldsymbol{\alpha}) - z_i \right]}.$$

where \mathscr{Z} is the collection of outputs that are being considered and Var[...] is the combined variance of **observational**, **model**, **method**, **and emulator uncertainties**.

• Large values of $I_M(\alpha)$ imply that we are highly unlikely to obtain acceptable matches between model output and observed data at input α . We consider a particular input α as **implausible** if

$$I_M(\boldsymbol{\alpha}) > c_M,$$

where we may choose $c_M = 3$, appealing to Pukelheim's three-sigma rule, or a ladder of cutoffs for the first, second, etc., maximum.

Implausibility measure

The implausibility measure does not use the full likelihood, but just means and variances

$$I_M^2(\boldsymbol{\alpha}) \equiv \max_{z_i \in \mathscr{Z}} \frac{\left| \mathbb{E} \left[\tilde{f}_i(\boldsymbol{\alpha}) \right] - z_i \right|^2}{\operatorname{Var} \left[\tilde{f}_i(\boldsymbol{\alpha}) - z_i \right]}.$$

where \mathscr{Z} is the collection of outputs that are being considered and Var[...] is the combined variance of **observational**, **model**, **method**, **and emulator uncertainties**.

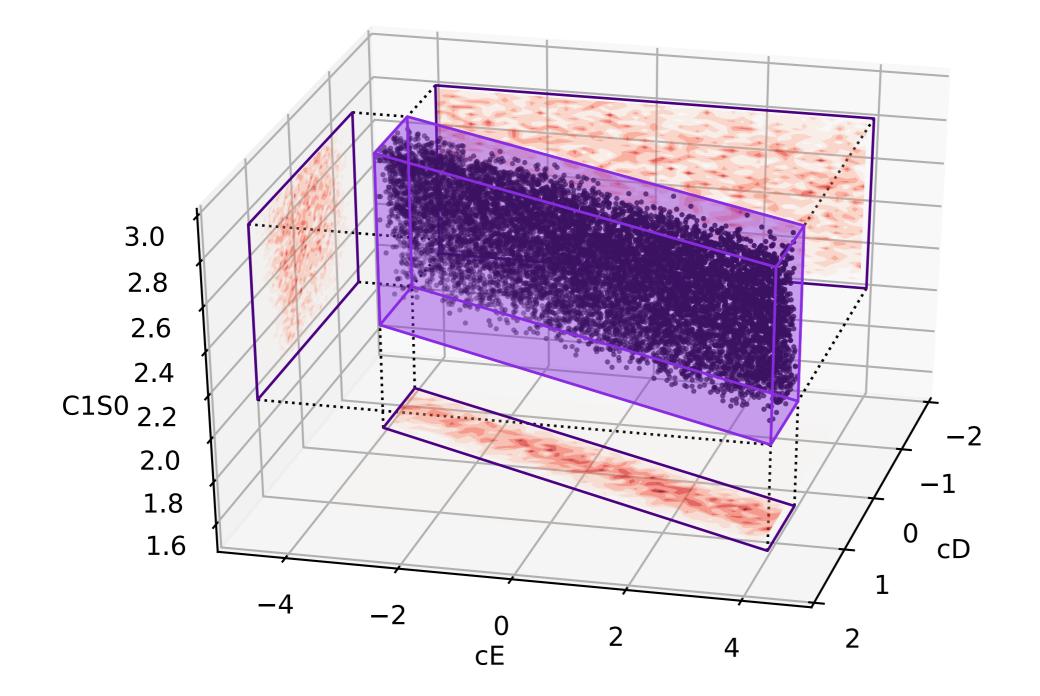
• Large values of $I_M(\alpha)$ imply that we are highly unlikely to obtain acceptable matches between model output and observed data at input α . We consider a particular input α as **implausible** if

$$I_M(\boldsymbol{\alpha}) > c_M,$$

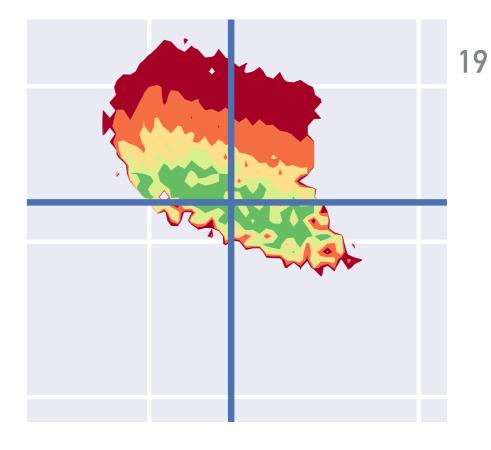
where we may choose $c_M = 3$, appealing to Pukelheim's three-sigma rule, or a ladder of cutoffs for the first, second, etc., maximum.

Surviving the implausibility cutoff does not necessarily imply that *a* is very good; just non-implausible!

Non-implausible domain



The parameter region emerging from history matching is where we expect the posterior distribution to reside.



Emergence of nuclear saturation

Emergence of nuclear saturation within Δ-full chiral effective field theory by W.G. Jiang, cf, <u>T. Djärv</u>, G. Hagen, arXiv:2212.13203

Emulating ab initio computations of infinite nucleonic matter by <u>W.G. Jiang</u>, cf, <u>T. Djärv</u>, G. Hagen, **arXiv:2212.13216**

Emergence of nuclear saturation within $\Delta - \chi EFT$ 20

- χEFT with explicit Δ isobar.
- Extensive error model (EFT truncation, method convergence, finite-size errors).
- Iterative history-matching for global parameter search. Study ab initio model performance, and provide a large (>10⁶) number of nonimplausible samples.
 - Implausibility criterion involves only $A \leq 4$ observables.
- Bayesian posterior predictive distributions for nuclear matter properties.
 - Importance resampling with two different data sets: $\mathscr{D}_{A=2,3,4}$ and $\mathscr{D}_{A=2,3,4,16}$ (see the talk by Weiguang).
- Relies on sub-space projected coupled cluster (SP-CCD) emulators for infinite nuclear matter systems at different densities.

 np S- and P-wave phase shifts at T_{lab}=1, 5, 25, 50, 100, 200 MeV

[wave 1] & [wave 2] & final

- np S- and P-wave phase shifts at T_{lab}=1, 5, 25, 50, 100, 200 MeV
- ▶ 2 H (E, R_{p}^{2}, Q),

[wave 1] & [wave 2] & final

[wave 3] & [wave 4] & final

- np S- and P-wave phase shifts at T_{lab}=1, 5, 25, 50, 100, 200 MeV
- ▶ ²H (E, R_p^2, Q),

[wave 1] & [wave 2] & final

[wave 3] & [wave 4] & final

- ▶ ³H (*E*), ⁴He (E, R_p^2) [wave 4] & final
- Prior for c_1, c_2, c_3, c_4 from a Roy-Steiner analysis of πN data (Siemens 2017)

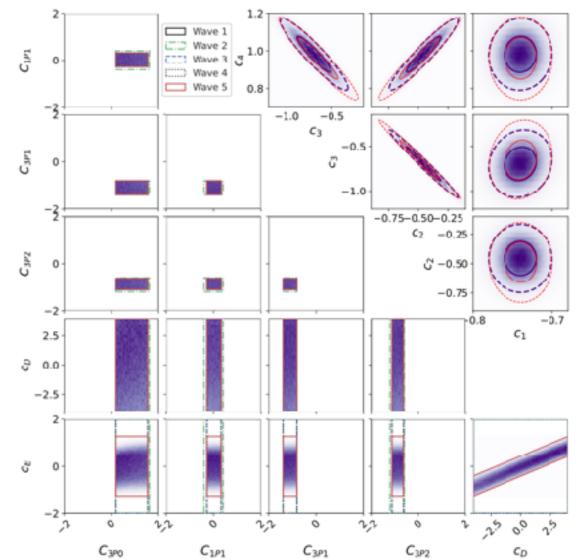
- np S- and P-wave phase shifts at T_{lab}=1, 5, 25, 50, 100, 200 MeV
- ▶ ²H (E, R_p^2, Q),
- ▶ ³H (*E*), ⁴He (*E*, *R*²_{*p*})
- Prior for c₁, c₂, c₃, c₄ from a Roy-Steiner analysis of πN data (Siemens 2017)

	-		-		
Observable	\boldsymbol{z}	$\varepsilon_{\mathrm{exp}}$	$arepsilon_{\mathrm{model}}$	$\varepsilon_{ m method}$	$arepsilon_{ m em}$
$E(^{2}\mathrm{H})$	-2.2298	0.0	0.05	0.0005	0.001%
$r_p(^2\mathrm{H})$	1.976	0.0	0.005	0.0002	0.0005%
$Q(^{2}\mathrm{H})$	0.27	0.01	0.003	0.0005	0.001%
$E(^{3}\mathrm{H})$	-8.4818	0.0	0.17	0.0005	0.01%
$E(^{4}\text{He})$	-28.2956	0.0	0.55	0.0005	0.01%
$r_p(^4\text{He})$	1.455	0.0	0.016	0.0002	0.003%

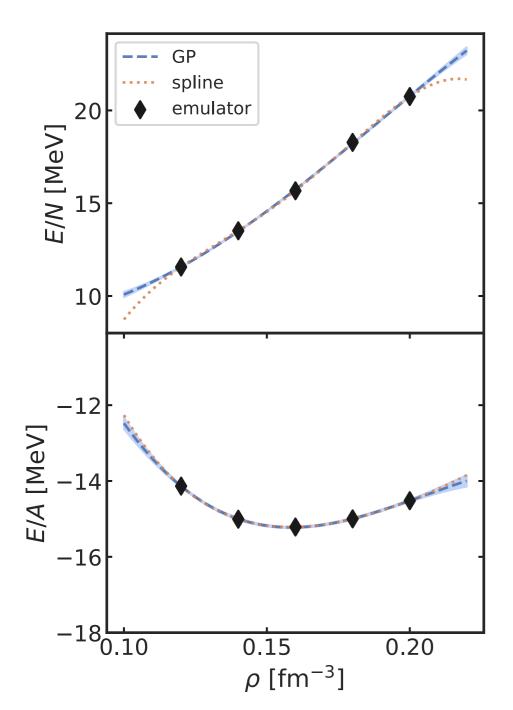
[wave 1] & [wave 2] & final

[wave 3] & [wave 4] & final

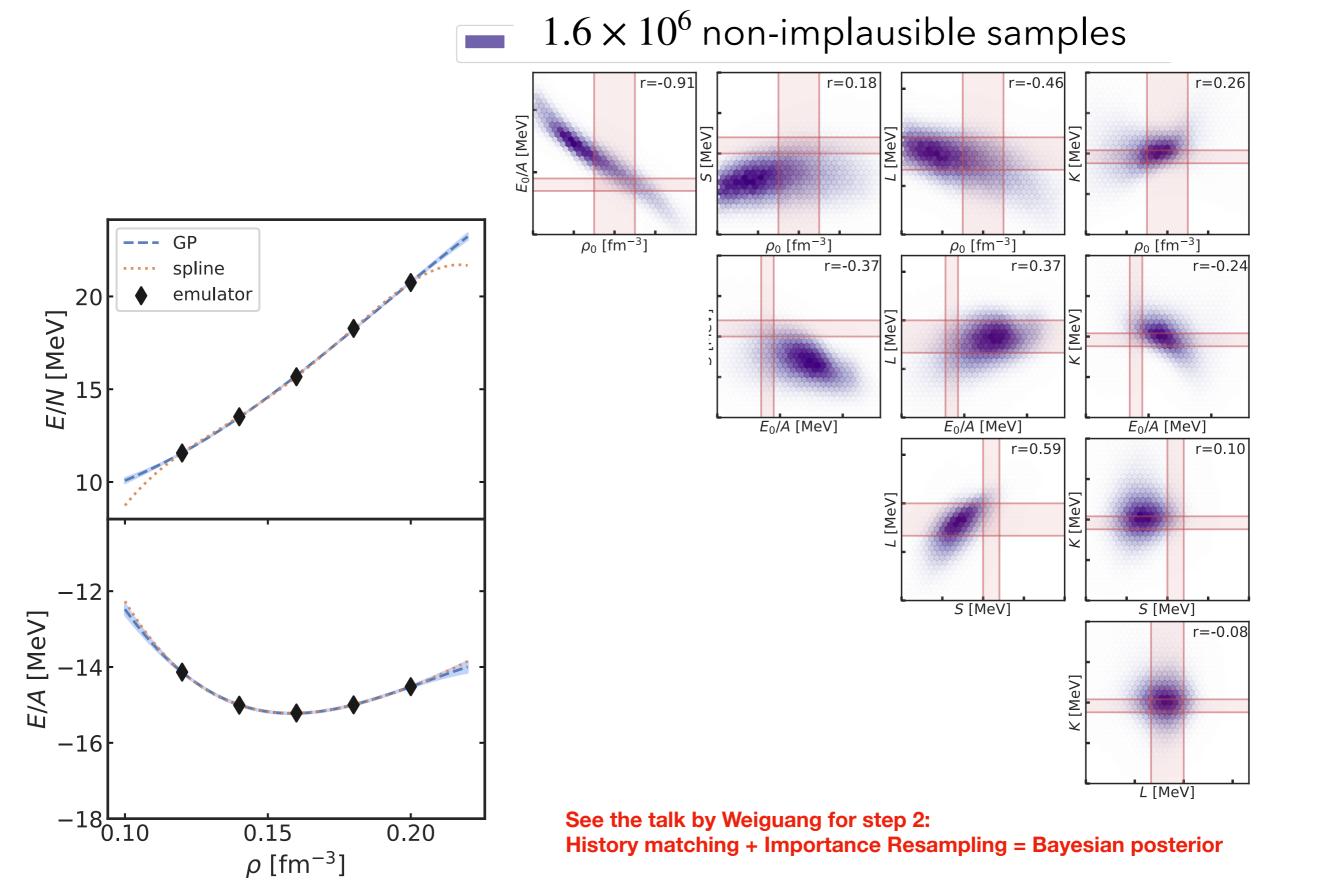
[wave 4] & final



Model output for EOS parameters



Model output for EOS parameters



Summary and outlook

- The concept of **tension in science** relies on statements of uncertainties
- It is natural to strive for accuracy in theoretical modeling; but actual predictive power is more associated with quantified precision.
- Ab initio methods + χEFT + Bayesian statistical methods in combination with fast & accurate emulators is enabling precision nuclear theory.
- We have developed a unified *ab initio* framework to link the physics of NN scattering, few-nucleon systems, medium- and heavy-mass nuclei up to ²⁰⁸Pb, and the nuclear-matter equation of state near saturation density.

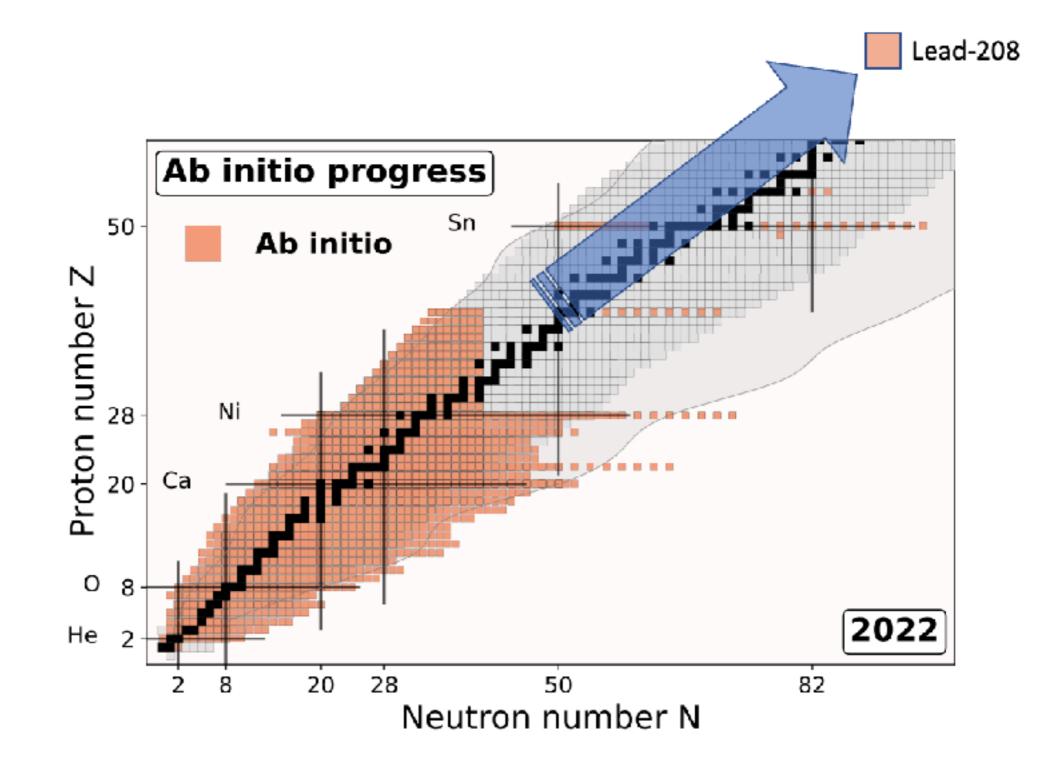
• Challenges:

- Getting to know our uncertainties;
- How to define implausibility when conditioning on many outputs;
- Have identified a need to revisit the leading (and subleading) orders of *x*EFT (from explorations of the model discrepancy).

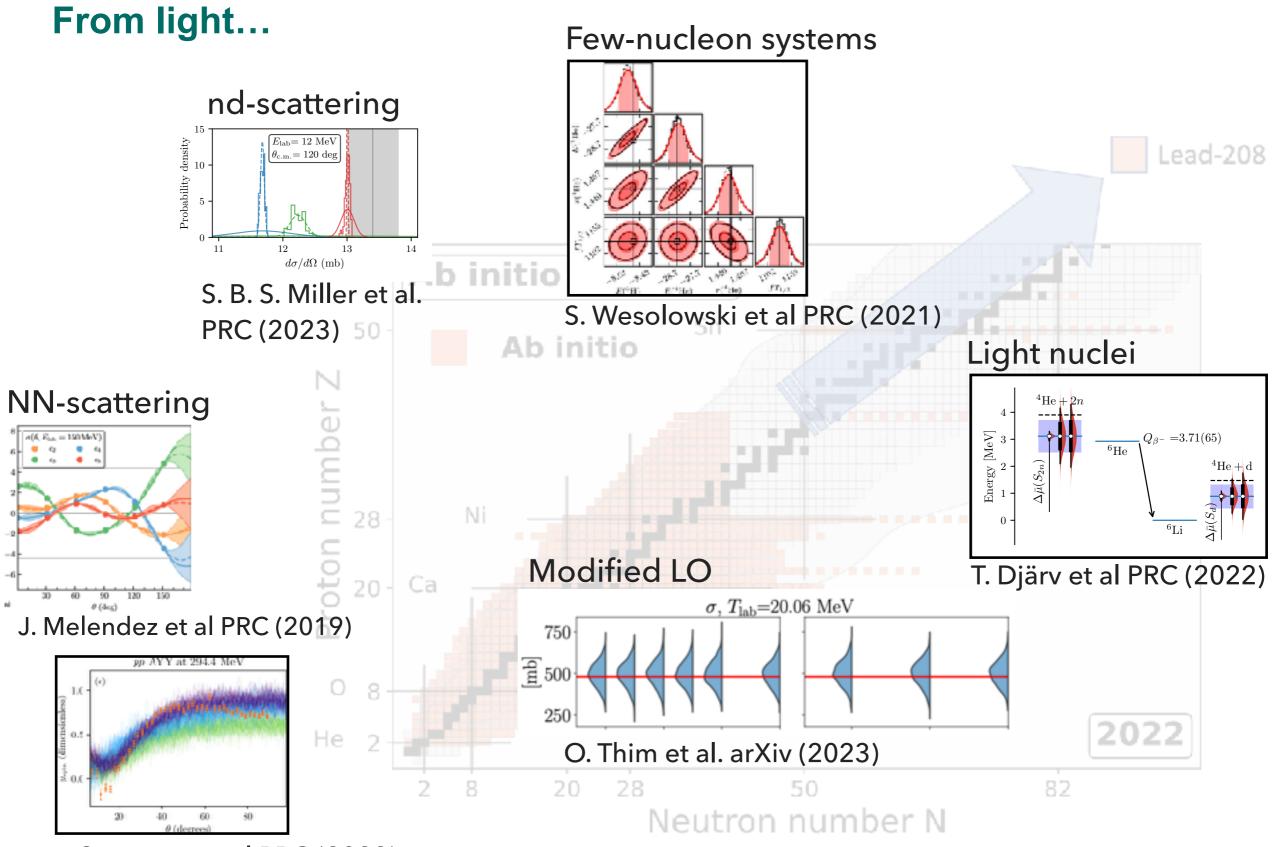
Appendix

Recent UQ progress in χ EFT modeling ²⁵

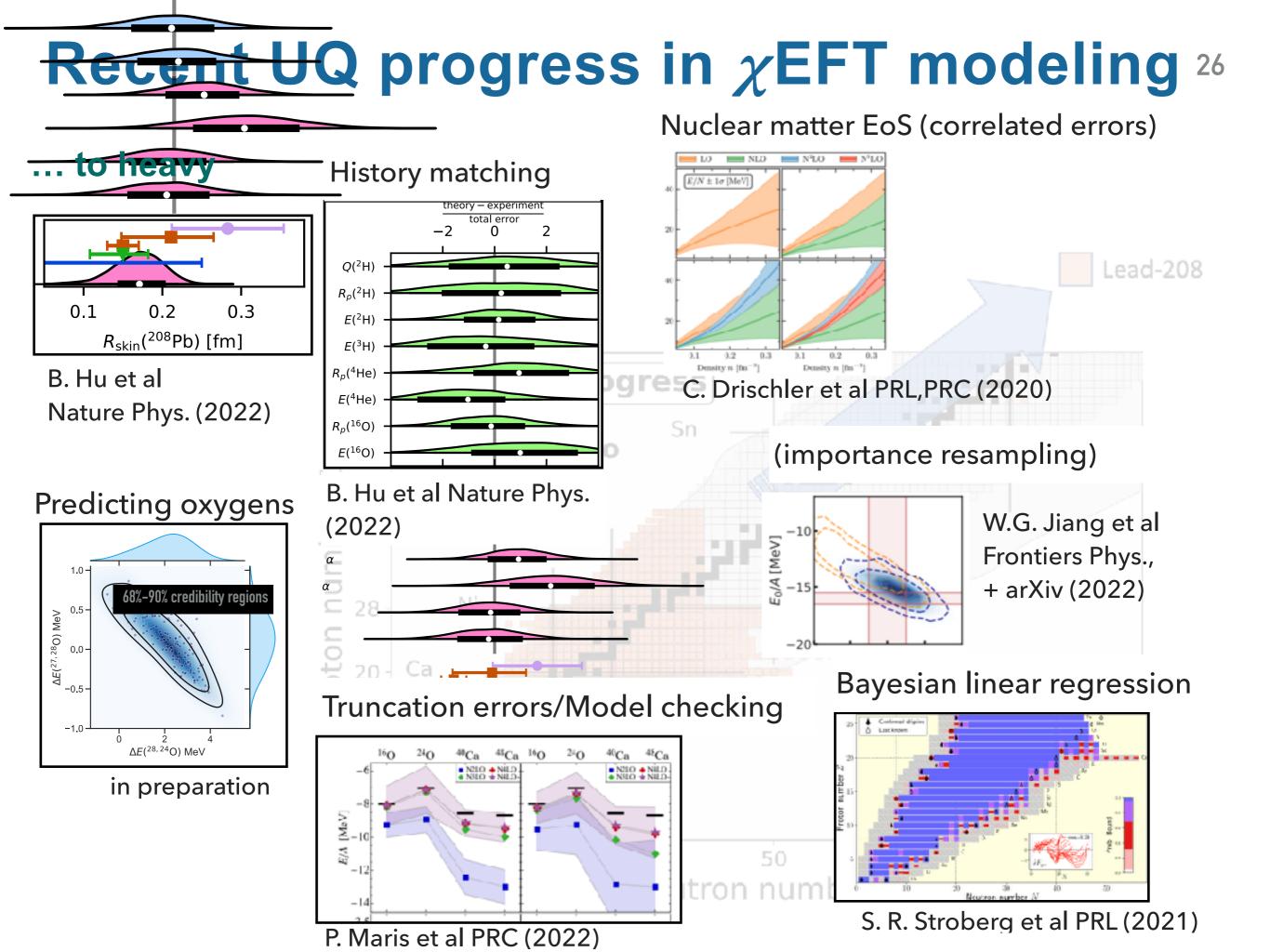
From light...



Recent UQ progress in χ EFT modeling ²⁵



I. Svensson et al PRC (2022)



Infinite nuclear matter: computational approach 27

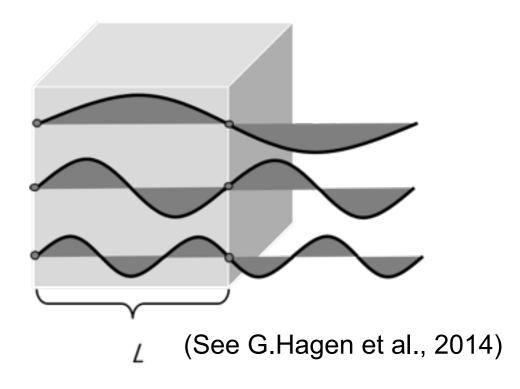
See the talk by Weiguang

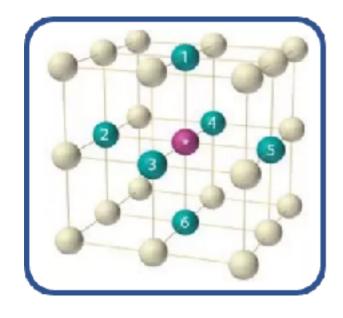
- Discrete momentum basis states $\psi_k(x) \propto e^{ikx}$
- Cubic lattice in momentum space,

$$(k_x, k_y, k_z)$$

•
$$k_n = \frac{2\pi n}{L}$$
, with $n = 0, \pm 1, \pm 2, \dots \pm n_{\max}$

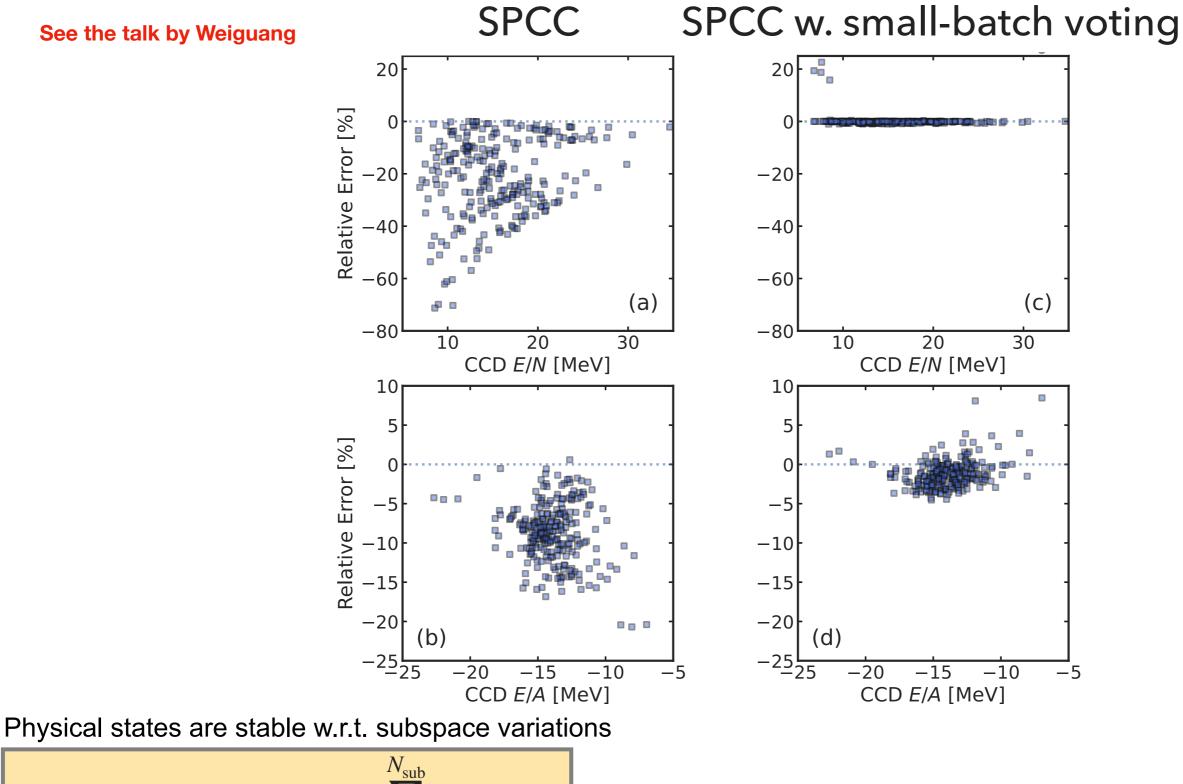
 Results should converge with increasing n_{max} • Periodic boundary conditions $\psi_k(x + L) = \psi_k(x)$





- The box size (L) and the nucleon number (N) controls the density (ρ)
- Computational challenge ($n_{\text{max}} = 4$):
 - PNM: 1458 orbits with 66 neutrons
 - SNM: 2916 orbits with 132 nucleons

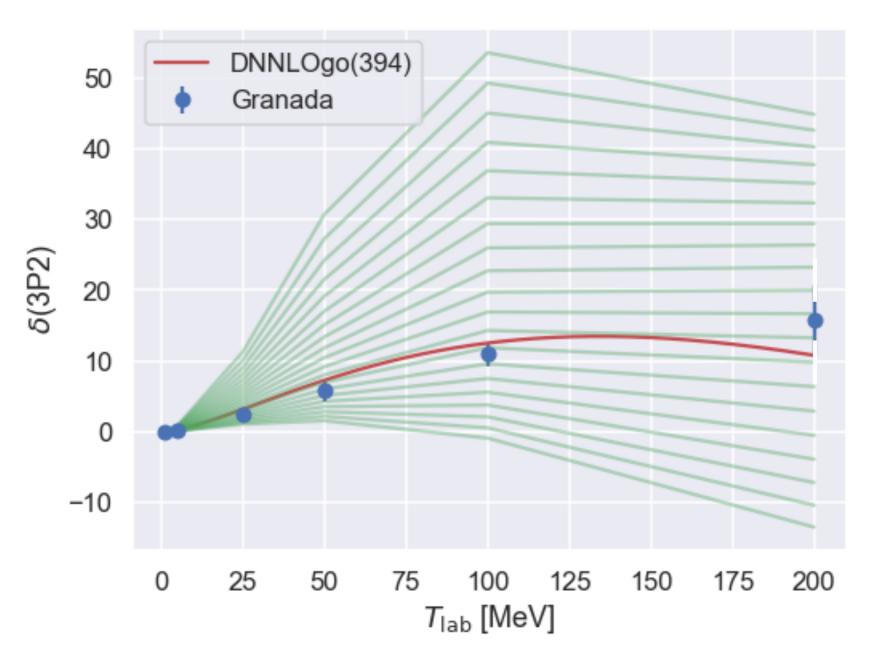
SPCC with small-batch voting



$$|\Psi(\boldsymbol{\alpha}_{\odot})\rangle = e^{T(\boldsymbol{\alpha}_{\odot})} |\Phi_{0}\rangle \approx \sum_{i=1}^{N_{\text{sub}}} c_{i}^{\star} |\Psi_{i}\rangle$$

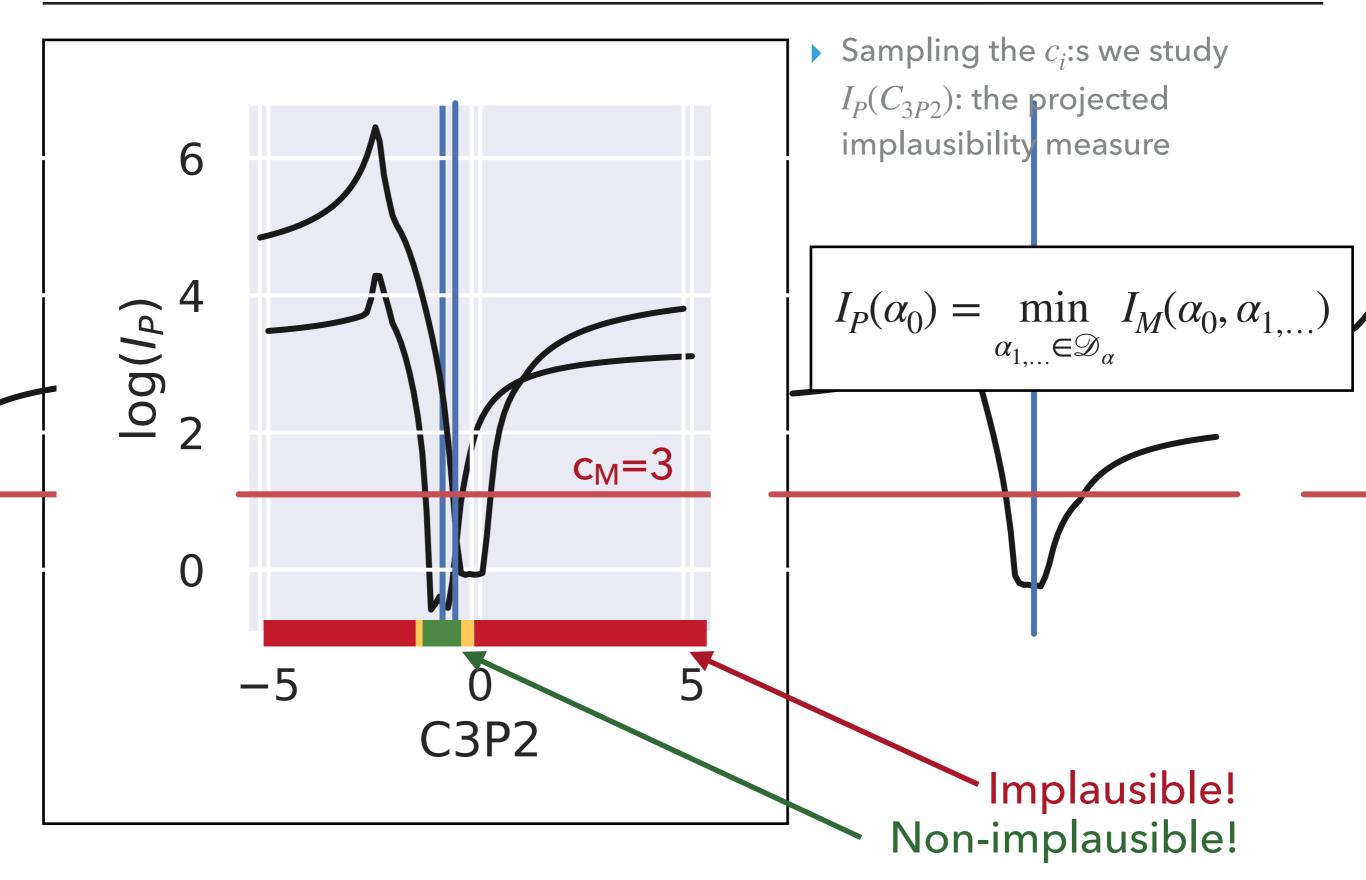
1-parameter example: np scattering (3P2)

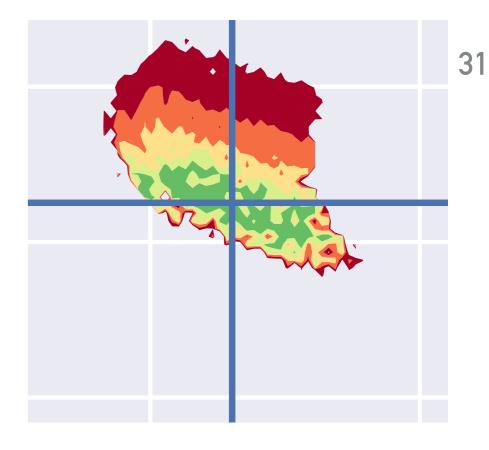
- The "observations" are the 3P2 phase shift at 6 different energies.
- Our theoretical model is the solution of the L-S equation for the np system.
- Below, we fix c_i :s and vary $C_{3P2} \in [-1.5, -0.5]$ (green lines).



Most choices for C_{3P2} are deemed **implausible** when confronted with data.

Projected implausibility measure





Ab initio computations of ²⁰⁸Pb

Ab initio predictions link the neutron skin of ²⁰⁸Pb to nuclear forces by <u>B. Hu, W.G. Jiang, T. Miyagi, Z. Sun</u>, A. Ekström, cf, G. Hagen, J.D. Holt, T. Papenbrock, S.R. Stroberg, I. Vernon, **Nature Phys. 18, 1196 (2022)**

Ab initio computations of ²⁰⁸Pb

We start from a Δ NNLO(394) chiral Hamiltonian. Order by order results provide estimates of the model errors. Pion-nucleon couplings are from a Roy-Steiner analysis.

W. Jiang, et al. Phys Rev **C 102**, 054301 (2020) M. Hoferichter et al, Phys. Rev. Lett. **115**, 192301 (2015)

32

Approximately solve the Schrödinger equation in HF basis using Coupled-Cluster, IMSRG, and MBPT methods. Comparisons and domain knowledge provide estimates of the method errors. G. Hagen, et al. Rep. Prog. Phys. **77**, 096302 (2014) H. Hergert, et al. Phys Rep. **621** 165 (2016)

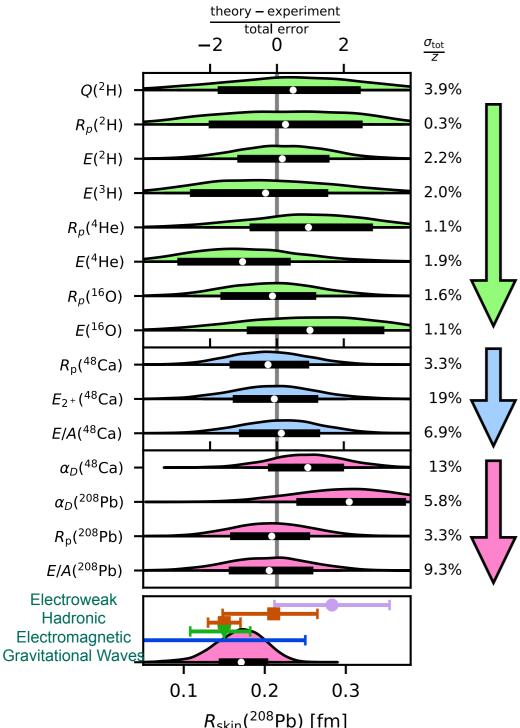
3NFs are captured using the NO2B approx. Large emax (=14) and E3max (=28) spaces. For ²⁰⁸Pb, IR extrapolation adds only ~2% to the skin thickness and ~6% to the energy. T. Miyagai, et al. Phys. Rev. **C 105**, 014302 (2022)

EC-emulators for observables with $A \leq 16$. Validated and trusted to within 0.5% S. König, et al. Phys. Lett. **B 810**, 135814 (2020) A. Ekström and G. Hagen Phys. Rev. Lett. **123**, 252501 (2019)

Nuclear matter computed using CCD(T) with estimates of the method error from systematics. Conflated with estimates for the model error using a multitask Gaussian Process.

C. Drischler, et. al. Phys. Rev. Lett. 125, 202702 (2020)

Ab initio predictions link the skin of ²⁰⁸Pb to nuclear forces 33



History Matching

We explore 10⁹ different interaction parameterizations

Confronted with A=2-16 data + NN scattering information

Find 34 non-implausible interactions

Calibration

Importance resampling

Validation

, Inspect ab initio model and error estimates

History-matching observables										
Observable	2	ϵ_{exp}	$\epsilon_{\rm model}$	$\varepsilon_{\rm method}$	$\epsilon_{\rm em}$	PPD				
$E(^{2}H)$	-2.2246	0.0	0.05	0.0005	0.001%	$-2.22^{+0.07}_{-0.07}$				
$R_{\rm p}(^{2}{\rm H})$	1.976	0.0	0.005	0.0002	0.0005%	$1.98^{+0.01}_{-0.01}$				
$Q(^{2}H)$	0.27	0.01	0.003	0.0005	0.001%	$0.28^{+0.02}_{-0.02}$				
$E(^{3}H)$	-8.4821	0.0	0.17	0.0005	0.01%	$-8.54_{-0.37}^{+0.34}$				
$E(^{4}\text{He})$	-28.2957	0.0	0.55	0.0005	0.01%	$-28.86^{+0.86}_{-1.01}$				
$R_{\rm p}(^{4}{\rm He})$	1.455	0.0	0.016	0.0002	0.003%	$1.47\substack{+0.03\\-0.03}$				
$E(^{16}O)$	127.62	0.0	1.0	0.75	0.5%	$-126.2^{+3.0}_{-2.8}$				
$R_{p}(^{16}O)$	2.58	0.0	0.03	0.01	0.5%	$2.57^{+0.06}_{-0.06}$				
Collibration observables										

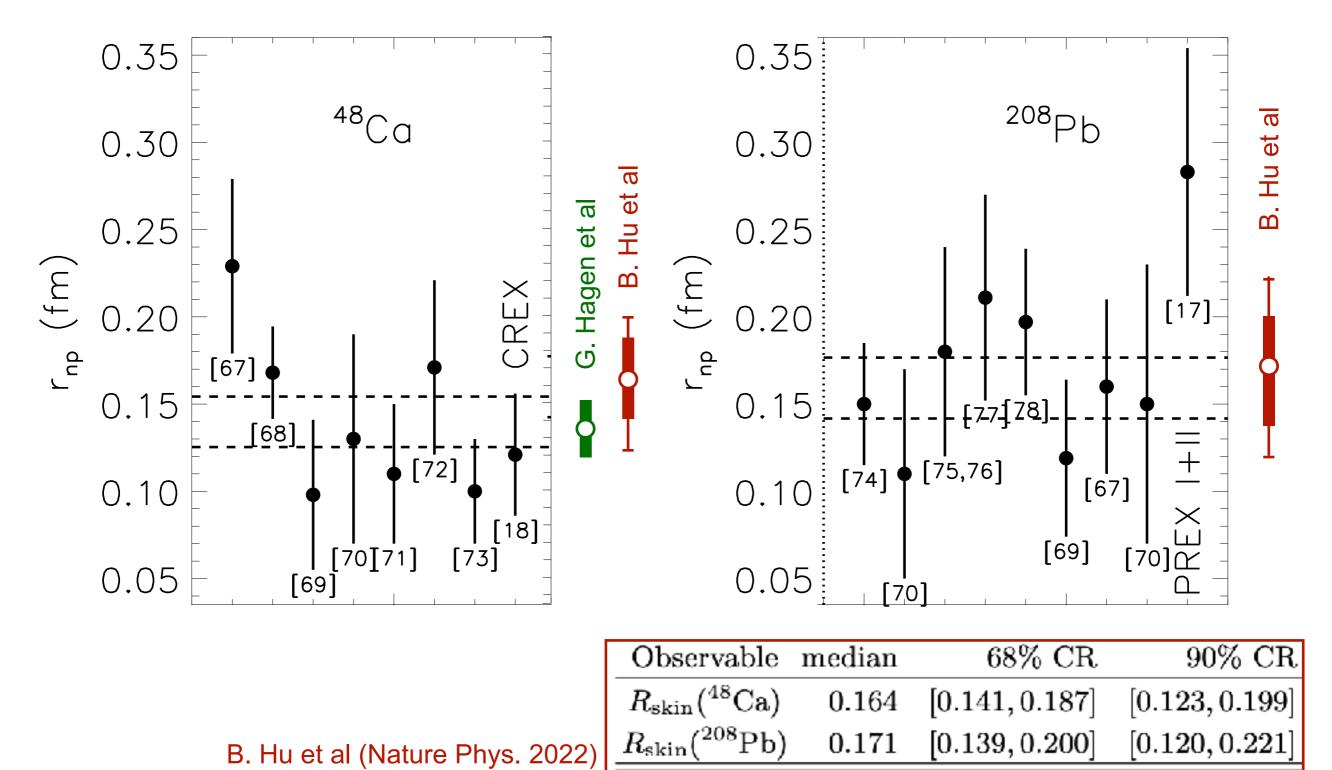
	0	alibra	ation of	bservable	36				
Observable	2	ϵ_{exp}	ε_{model}	$\varepsilon_{\rm method}$	$\varepsilon_{\rm em}$	PPD			
$E/A(^{48}Ca)$	-8.667	0.0	0.54	0.25	_	$-8.58^{+0.72}_{-0.72}$			
$E_{2^{\pm}}(^{48}Ca)$	3.83	0.0	0.5	0.5	_	$3.79^{+0.86}_{-0.96}$			
$R_{\rm P}(^{48}{\rm Ca})$	3.39	0.0	0.11	0.03		$3.36^{+0.14}_{-0.13}$			
Validation observables									
Observable	z	ϵ_{exp}	$\epsilon_{\mathrm{model}}$	$\varepsilon_{\rm method}$	$\varepsilon_{\rm em}$	PPD			
$E/A(^{208}Pb)$	-7.867	0.0	0.54	0.5	_	$-8.06^{+0.99}_{-0.88}$			
$R_{\rm p}(^{208}{\rm Pb})$	5.45	0.0	0.17	0.05		$5.43^{+0.21}_{-0.23}$			
$\alpha_D(^{48}Ca)$	2.07	0.22	0.06	0.1		$2.30^{+0.31}_{-0.26}$			
$\alpha_D(^{208}\text{Pb})$						$22.6^{+2.1}_{-1.8}$			

B. Hu et al (Nature Phys. 2022)

Prediction: small skin thickness 0.14-0.20 fm in mild (1.5 sigma) tension with PREX.

Neutron skin thickness

Constraints on Nuclear Symmetry Energy Parameters J. Lattimer (2023)



34

Why does ab initio predict thin skins? 35

- Tune C1S0 while adjusting cE to maintain saturation
- Study the effect on various observables. Note *L* & $\delta_{1S0}(50)$

