Uncertainty Quantification and Parameter Inference for Material Models Using a Bayesian Paradigm

Denielle Ricciardi*, Oksana Chkrebtii, Stephen Niezgoda

The Ohio State University

May 23, 2023

Denielle Ricciardi UQ for Materials Modeling

dericci@sandia.gov

The Ohio State University

The Ohio State University

Materials Science Advancing Technology

Technology advancements enabled by the discovery and design of new materials

The discovery and design of new materials is also often the bottleneck in advancing technology

Denielle Ricciardi

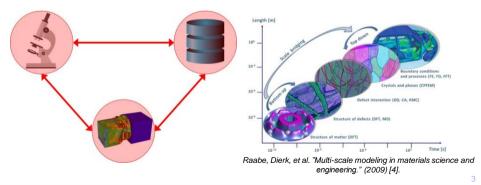
The Ohio State University

ICME for the Discovery and Design of New Materials

Integrated Computational Materials Engineering (ICME):

Integration of materials information, experiment, and computational tools across length and timescales.

$\textbf{Processing} \leftrightarrow \textbf{Microstructure} \leftrightarrow \textbf{Properties} \leftrightarrow \textbf{Performance}$



Denielle Ricciardi

ICME for the Discovery and Design of New Materials

Integrated Computational Materials Engineering (ICME):

Integration of materials information, experiment, and computational tools across length and timescales.

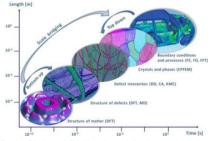
 $\textbf{Processing} \leftrightarrow \textbf{Microstructure} \leftrightarrow \textbf{Properties} \leftrightarrow \textbf{Performance}$

Benefits

- Model linkages account for mechanisms at various scales
- Reduced cost of time and resources
- Accelerated materials development

Challenge

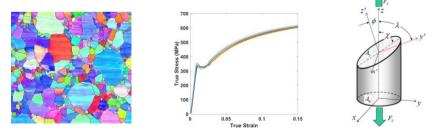
 Establishing a statistical design confidence from deterministic models



Raabe, Dierk, et al. "Multi-scale modeling in materials science and engineering." (2009) [4].

Sources of Uncertainty in Materials Modeling

- Parameter uncertainty
- Noisy/inconsistent experimental data
- Model-form uncertainty
- Sample to sample variability
 - Microstructure dictates material behavior
 - Randomness creates sample-to-sample variability
 - Each sample has a unique true underlying property value due to its unique microstructure
 - There is a single true underlying property of the material



Denielle Ricciardi

The Ohio State University

UQ for materials science and ICME

Principled approaches for UQ critical to reliably develop and deploy new and improved materials within the ICME paradigm.

Objective

Demonstrate a generalized framework for UQ for predictions of material behavior which considers various sources of uncertainty and is easily adaptable to important problems in materials modeling.

Bayesian formalism for statistical inference

Statistical Inference

The goal of recovering information about unknown components, or parameters, θ of a probability model from observed data, **y**, while accounting for associated uncertainty.

The Bayesian Paradigm for Inference

Directly defining and updating beliefs about unknown quantities conditionally on observed data

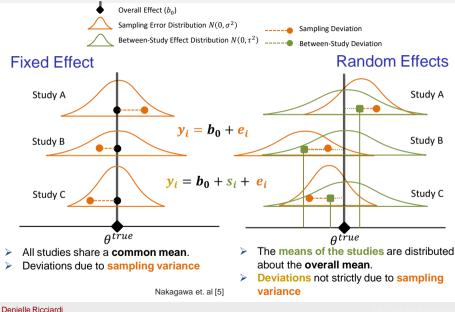
$$\pi(\theta \mid y) = \frac{f(y \mid \theta)\pi(\theta)}{\int_{\Theta} f(y \mid \theta)\pi(\theta)d\theta} \propto f(y \mid \theta)\pi(\theta)$$

Markov Chain Monte Carlo

MCMC simulation methods are state of the art for generating approximate samples from the posterior distributions.

Denielle Ricciardi

Statistical models for multiple studies/experiments

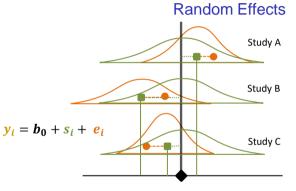


UQ for Materials Modeling

8

Random Effects Model for UQ in Materials Science

- Reflects the natural structure of a class of problems in materials modeling and simulation
- In materials testing, it is not uncommon to see experimental deviations test-to-test which cannot be attributed strictly to sampling error.



- The means of the studies are distributed about the overall mean.
- Deviations not strictly due to sampling variance

A hierarchical random effects model DAG

DAG: directed acyclic graph. Arrows \rightarrow direction of conditional dependence

Effects

 The 'true' underlying state of nature, θ, is the overall effect.

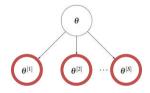
Denielle Ricciardi

The Ohio State University

DAG: directed acyclic graph. Arrows \rightarrow direction of conditional dependence

Effects

- The 'true' underlying state of nature, θ, is the overall effect.
- The data are collected from samples that, due to heterogeneity, have been generated under a different state, θ^[s], which are random effects.



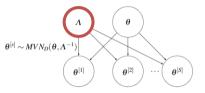
Denielle Ricciardi

DAG: directed acyclic graph. Arrows \rightarrow direction of conditional dependence

Effects

- The 'true' underlying state of nature, θ, is the overall effect.
- The data are collected from samples that, due to heterogeneity, have been generated under a different state, θ^[s], which are random effects.
- $\theta^{[s]}$ connected to θ by a MVN distribution

 $\theta^{[s]} \sim MVN_D(\theta, \Lambda^{-1})$



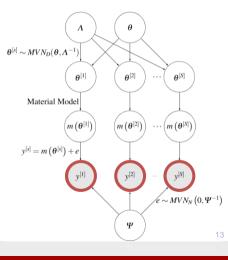
Denielle Ricciardi

DAG: directed acyclic graph. Arrows \rightarrow direction of conditional dependence

Model for the Data

The model for the observations

$$\blacktriangleright y^{[s]} = m(\theta^{[s]}) + e$$



Denielle Ricciardi

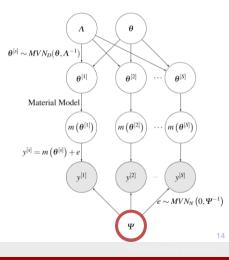
DAG: directed acyclic graph. Arrows \rightarrow direction of conditional dependence

Model for the Data

The model for the observations

$$\blacktriangleright y^{[s]} = m(\theta^{[s]}) + e$$

► $e \sim MVN_N(0, \Psi^{-1})$

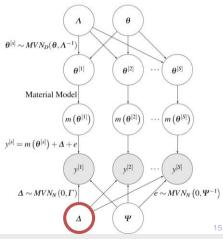


Denielle Ricciardi

DAG: directed acyclic graph. Arrows \rightarrow direction of conditional dependence

Model for the Data

- The model for the observations
 - $\blacktriangleright y^{[s]} = m(\theta^{[s]}) + e$
 - ► $e \sim MVN_N(0, \Psi^{-1})$
- With added model discrepancy term
 - $\succ y^{[s]} = m(\theta^{[s]}) + \Delta + e$
 - $\Delta \sim MVN_N(0,\Gamma)$



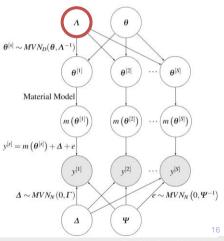
Denielle Ricciardi

e Ohio State University

DAG: directed acyclic graph. Arrows \rightarrow direction of conditional dependence

Prior Modeling for Λ

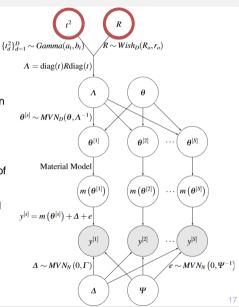
- Wishart Distribution: probability distribution on positive-definite matrices
 - $\blacktriangleright \quad \Lambda \sim Wish_D(V_o, v_o)$
 - Complex relationship between hyperparameters and features of the distribution
 - A flexible alternative is to model a decomposition of the precision matrix instead



Denielle Ricciardi

Prior Modeling for Λ

- Wishart Distribution: probability distribution on positive-definite matrices
 - $\Lambda \sim Wish_D(V_o, v_o)$
 - Complex relationship between hyperparameters and features of the distribution
 - A flexible alternative is to model a decomposition of the covariance matrix instead
 - $\Lambda = \operatorname{diag}(t)R\operatorname{diag}(t)$

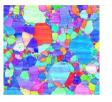


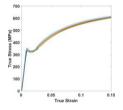
Denielle Ricciardi

ne Ohio State University

Exemplar Problem: Crystal Plasticity

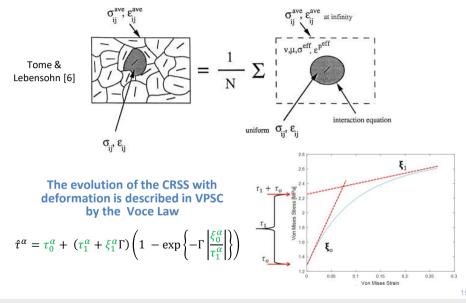
Crystal Plasticity (CP) Modeling: Used to predict mechanical behavior of polycrystalline materials such as the stress-strain response and texture evolution under specific modes of deformation.





- CP models vary greatly in complexity
- High-fidelity models appealing for scientific inquiry
 - ► too expensive for UQ
- Reduced-order, homogenized, mean-field models well-suited for UQ
- Often have some systematic model discrepancy
- Inference and prediction important in this setting

Phenomenological VPSC CP Model



Denielle Ricciardi

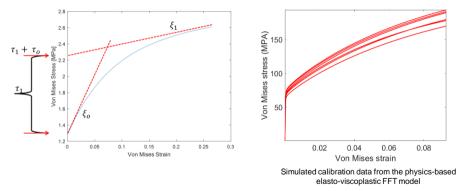
The Ohio State University

Inference Problem

Voce Parameters: $\theta := (\tau_0, \tau_1, \xi_0, \xi_1)$

Constraints:
$$C(\theta) = (\tau_0, \tau_1, \xi_0 - \xi_1) > 0$$

mimic hardening behavior for the room-temperature deformation of copper



VPSC – missing physics for the elastic region of deformation \rightarrow model discrepancy

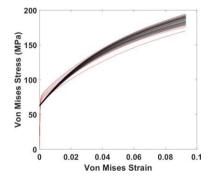
Denielle Ricciardi

Importance of Accounting for Model Discrepancy

If model discrepancy ignored- **bias** is introduced in the inference and consequently in predictions

*Kennedy and O'Hagan (2001) [7] laid out a hierarchical framework for doing inference for reduced order models with discrepancy.

$$y = m(\theta) + \Delta + e$$



Analysis of the VPSC model with model discrepancy not accounted for.

Gaussian Processes to Model Discrepancy

A **Gaussian Process (GP)** can be used to define a prior over functions and is characterized by a mean function and covariance function

 $\varDelta \sim GP\left(\mu,\,c\right)$

 Δ may be represented with a prior mean function $\mu(x) = 0$

$$\Delta(x_1), \dots, \Delta(x_N) \sim MVN_N(\mathbf{0}, C)$$

$$C = \operatorname{Cov}\left(\left(\Delta(x_1), \dots, \Delta(x_N)\right)^T, \left(\Delta(x_1), \dots, \Delta(x_N)\right)^T\right)$$

The covariance between the process at any two points is related to the covariance function,

$$c(x_i, x_j) = \operatorname{Cov}(\Delta(x_i), \Delta(x_j)))$$

Covariance structure controls correlation scale and smoothness of stochastic process

Prior Modeling

Careful choice of the covariance structure is needed to specify a sufficiently informative prior process for the discrepancy Δ

Denielle Ricciardi

The Ohio State University

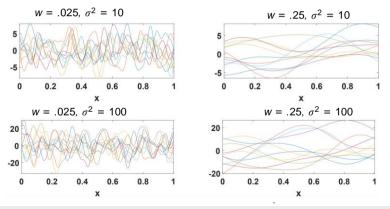
Prior Modeling of the Discrepancy

Example covariance function, the squared exponential,

$$\operatorname{Cov}\left(\Delta(x_i), \Delta(x_j)\right) = c(x_i, x_j) = \sigma^2 \exp\left\{-\frac{1}{2}\left(\frac{x_i - x_j}{w}\right)^2\right\}.$$

Hyperparameters

► Length scale, w, & variance, σ^2



Denielle Ricciardi

The Ohio State University

29

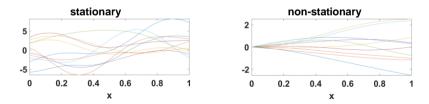
Prior Modeling of the Discrepancy

Example covariance function, the squared exponential,

$$\operatorname{Cov}\left(\Delta(x_i),\Delta(x_j)\right) = c(x_i,x_j) = \sigma^2 \exp\left\{-\frac{1}{2}\left(\frac{x_i-x_j}{w}\right)^2\right\}.$$

Stationarity

Covariance function depends only on the distance between inputs and is independent of their relative location.



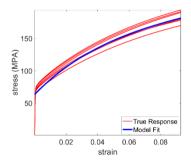
Denielle Ricciardi

24

Discrepancy Prior for the VPSC CP Model

Prior knowledge about Δ

VPSC expected to capture the plastic region nearly perfectly and the elastic region not at all



Denielle Ricciardi

The Ohio State University

Discrepancy Prior for the VPSC CP Model

Prior knowledge about Δ

VPSC expected to capture the plastic region nearly perfectly and the elastic region not at all

Elastic Region

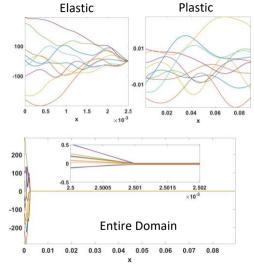
Model discrepancy is the greatest at x = 0 & decreases to 0 at the elastic-plastic transition

Constrained non-stationary covarianc function

Plastic Region

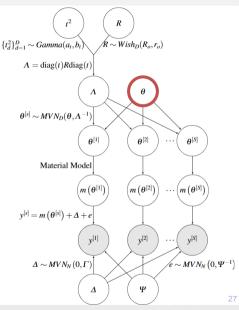
Model discrepancy is expected to remain constant at nearly 0 for the plastic region

Stationary squared-exponential covariance function

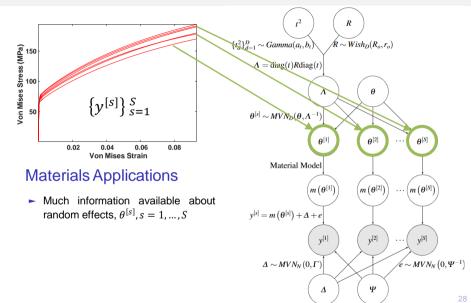


The degree to which the prior choice affects posterior uncertainty depends on

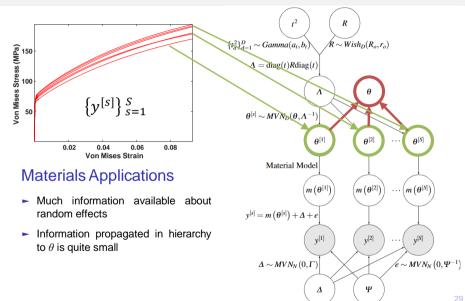
- How informative the prior is
- How much information the data contain about the unknown parameters



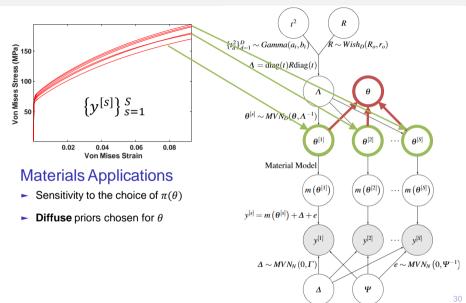
Denielle Ricciardi



Denielle Ricciardi



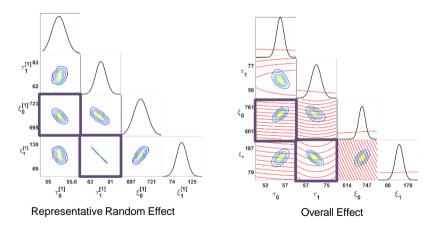
Denielle Ricciardi



Denielle Ricciardi

Bivariate Kernel Density Estimates

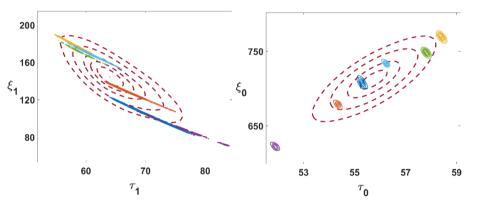
 1.2×10^5 samples produced, 2×10^4 discarded as burn-in. Adaptive algorithm used to overcome high parameter correlations



Denielle Ricciardi

The Ohio State University

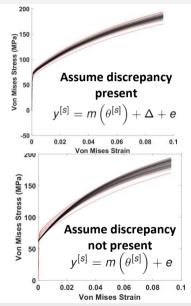
Marginal Posterior Contours



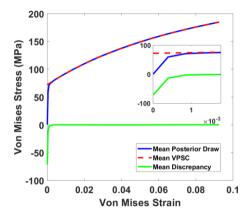
Insight: The highest reduction in uncertainty will be achieved by testing more samples rather than further trying to decrease the measurement noise for each single trajectory.

Denielle Ricciardi

Posterior Uncertainty Propagated to Model Output



Denielle Ricciardi



The point-wise posterior mean, the VPSC model evaluated at the posterior mean parameter values and the mean discrepancy are shown with an inset showing the elastic region.

Summary

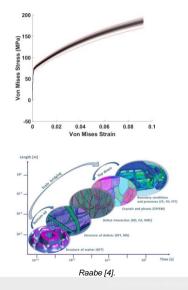
A framework for UQ for materials modeling was demonstrated in a CP example.

UQ accounting for:

- Parameter uncertainty
- Observation error
- Sample-to-sample variability
- Model discrepancy

Implications for ICME

- Reliable use of fast reduced-order, phenomenological (etc.) models
- True material properties are inferred from variable experimental data
- ► Uncertainty can be propagated in model linkages for processing → performance predictions
- Supports reliable design and discovery of new materials



Denielle Ricciardi

34

Thank You

Ricciardi, Denielle E., Oksana A. Chkrebtii, and Stephen R. Niezgoda. "Uncertainty Quantification for Parameter Estimation and Response Prediction: Generalizing the Random Effects Bayesian Inferential Framework to Account for Material and Experimental Variability." *Integrating Materials and Manufacturing Innovation* 8 (2019): 273-293.

Ricciardi, Denielle E., Oksana A. Chkrebtii, and Stephen R. Niezgoda. "Uncertainty quantification accounting for model discrepancy within a random effects Bayesian framework." Integrating Materials and Manufacturing Innovation 9 (2020): 181-198.

Cited Works

[1] Wood, Jonathan. "The top ten advances in materials science." *Materials today* 11.1-2 (2008): 40-45.

[2] Dennis Schroeder / National Renewable Energy Laboratory https://www.energy.gov/eere/solar/perovskite-solar-cells, Public Domain, https://commons.wikimedia.org/w/index.php?curid=131749994

[3] Carl D. Millholland - <u>Electrolyte Materials in Lithium-Ion Batteries - Advancing Materials</u> (thermofisher.com)

[4] Dierk, et al. "Multi-scale modeling in materials science and engineering." (2009).

[5] Nakagawa, Shinichi, et al. "Meta-evaluation of meta-analysis: ten appraisal questions for biologists." *BMC biology* 15.1 (2017): 1-14.

[6] Tomé, C. N., and R. A. Lebensohn. "Visco-plastic self-consistent (vpsc)." Los Alamos National Laboratory (USA) and Universidad Nacional de Rosario (Argentina) 6 (2007).

[7] Kennedy, Marc C., and Anthony O'Hagan. "Bayesian calibration of computer models." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 63.3 (2001): 425-464.

Denielle Ricciardi

Supplemental Slide I: When to Include Discrepancy

Include when...

- The model is missing physics, resulting in systematic discrepancy between the model output and the observations
- There is strong prior knowledge about the misfit between the model and true process
- Identifiability

$$\Delta(x) = \zeta(x) - m(x, \theta).$$

May exclude when...

- No systematic discrepancy is expected
- The model is flexible enough to fit the data
- The model is empirical in nature, where parameters do not have physical significance since the parameter estimates will be strongly biased and HPIs may not cover the true parameter values

Supplemental Slide II: Modeling Discrepancy

Observations of the physical system, y_n , at independent variable inputs, $\mathbf{x} = \{x_1, \dots, x_N\}$, are centered around some true value, $\zeta(x_n)$, with independent Gaussian observation errors, e_n ,

$$y_n = \zeta(x_n) + e_n, \qquad n = 1, \cdots, N.$$

Assume some model of the physical system, $m(\cdot)$, which accepts a vector of input parameters θ and is evaluated at variable inputs $\mathbf{x} = \{x_1, \dots, x_N\}$,

We can link the model to the true system, by incorporating the discrepancy, Δ ,

$$\zeta(\mathbf{x}) = m(\mathbf{x}, \theta) + \Delta(\mathbf{x}).$$

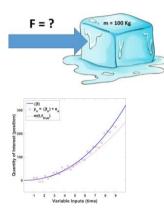
Relating the model to the observations:

$$y_n = m(x_n, \theta) + \Delta(x_n) + e_n, \qquad n = 1, \cdots, N$$

Denielle Ricciardi

Supplemental Slide III: Toy Problem for Discrepancy

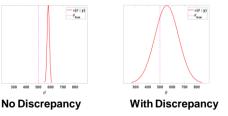
Toy Example for Discrepancy



Model of behavior:
$$m(t, \theta) = \frac{1}{2} \left(\frac{\theta}{\text{mass}} \right) t^2$$

True behavior: $c(t) = \frac{1}{2} \left(\frac{\theta}{\text{mass}} \right) t^2$

True behavior:
$$\zeta(t) = \frac{1}{2} \left(\frac{\theta_{true}}{\text{mass} \cdot \exp(-\lambda t)} \right) t^2$$



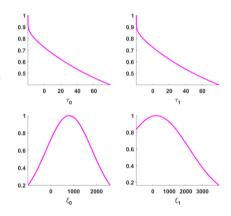
Denielle Ricciardi

The Ohio State University

Supplemental Slide IV: Priors

Priors

Parameter	Model	\mathbb{E}_{θ}	\mathbb{V}_{θ}	ashape	brate
τ_0	Gamma	70	5000	.98	.014
τ_1	Gamma	70	5000	.98	.014
	Normal	1800	1×10^{6}	-	-
ξ0 ξ1 δ ²	Normal	600	1×10^{6}	_	1
δ^2	Gamma	10	100	1	.1
Δ	MVN_N	0	Г	-	-
R	Wisharto	$(D+2) \cdot \mathbb{I}_D$	$(D+2) \cdot 1_D + (D+2) \cdot \mathbb{I}_D$	-	-
t_d^2	Gamma	10	100	1	.1



Denielle Ricciardi

40

Supplemental Slide V: Constitutive Model

$$\dot{\varepsilon}^p = \sum_{\alpha} m^{\alpha} \dot{\gamma}^{\alpha} = \dot{\gamma}_0 \sum_{\alpha} m^{\alpha} \left(\frac{m^{\alpha} : \sigma^{\alpha}}{\tau_0^{\alpha}} \right)^n$$

 α : slip systems

 τ_0 : initial threshold stress

m: Schmid tensor

 $\dot{\varepsilon}^p$: deviatoric plastic strain rate

 σ : stress

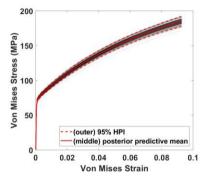
 $\dot{\gamma}^{\alpha}$: local shear rate on slip system α

 $\dot{\gamma}_0$: reference shear rate

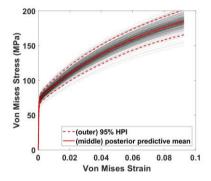
n: rate-sensitivity exponent

41

Supplementary Slide VI: Inference and Prediction



Prediction



Denielle Ricciardi

The Ohio State University

42