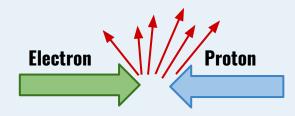
Machine learning for Deeply Virtual Compton Scattering

Manal Almaeen (<u>malma004@odu.edu</u>) PhD Candidate Old Dominion University, Department of Computer Science

Information and Statistics for Nuclear Experiment and Theory workshop (ISNET-9) Washington University in St. Louis

Physics Motivation

How do we get hadron structure?

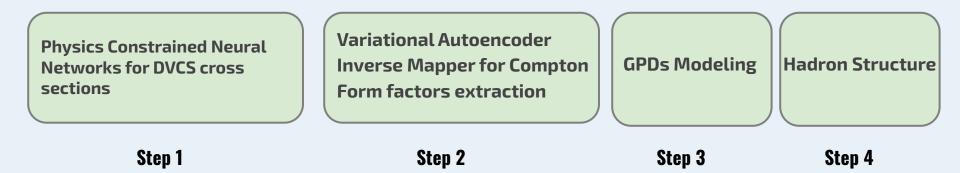


Quantum Correlation Functions (QCF):

- → Parton distribution functions(PDF)
- → Parton to hadron fragmentation functions (FFs)
- → Transverse momentum dependent distributions (TMDs)
- → Generalized parton distributions (GPDs)

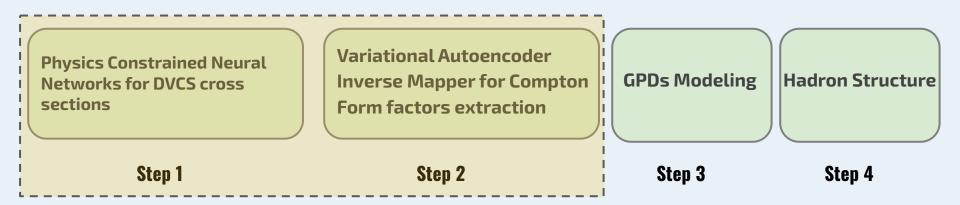
How to measure GPDs? Deeply virtual Compton scattering

- **DVCS** is known to probe generalized parton distributions
- **GPDs** extraction is a challenging problem! This problem can be divided into several levels from experimental cross sections to the physical properties of the hadron



How to measure GPDs? Deeply virtual Compton scattering

- **DVCS** is known to probe generalized parton distributions
- **GPDs** extraction is a challenging problem! This problem can be divided into several levels from experimental cross sections to calculating the physical properties of the hadron



Physics Constrained Neural Networks

Physics Constrained Neural Networks (PCNNs):

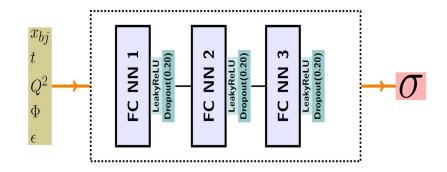
• What is PCNNs?

NNs integrate data and physics knowledge

- Why incorporating physics to ML?
 - Data size
 - Generalization / performance

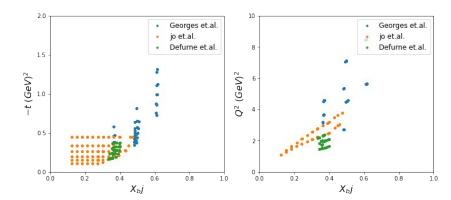
PCNNs: Model Architecture

- Physics constraints:
 - DVCS Error bar :
 - Each DVCS data point includes a mean and a standard error indicating its uncertainty.
 - We treat this error as a source of information through the use of data augmentation.
 - Angular Symmetry
 - For the unpolarized angular symmetry, we use additional loss : // $f(X_{bj}, t, Q^2, \phi, \epsilon) - f(X_{bj}, t, Q^2, -\phi, \epsilon)$ ϵ) //



PCNNs: Methods

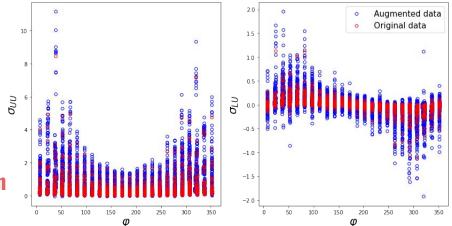
- Data Description
- $\clubsuit \quad \ \ Each \ record \ of \ the \ dataset \ has \ [xbj, t, Q2,Eb, \phi, L, \sigma, \Delta\sigma, \delta\sigma]$
- where L is a label for polarization of beam and target -
 - 1 is unpolarized beam/unpolarized target
 - 2 is polarized beam/unpolarized target
- \bullet σ is the cross section value
- * $\Delta \sigma$ is the statistical error
- $\delta\sigma$ is the systematic error.



(Left) Kinematic region in xBj and t. (Right) xBj and Q 2 where experimental measurements used in this analysis have been taken at 6 GeV and 12 GeV.

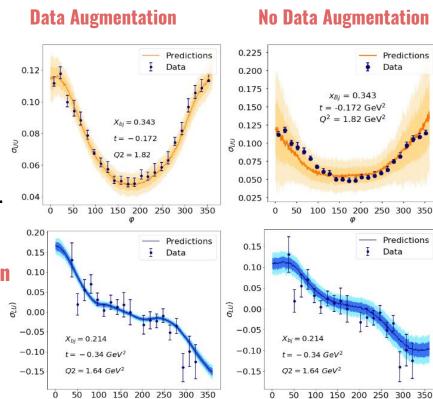
PCNNs: Methods

- Data Augmentation
 - We have 3,862 unpolarized and
 3,884 polarized data points.
 - \circ Data augmentation! Using statistical errors. $\ensuremath{\vec{e}}$
- → This is additional source of physics information



PCNNs: Methods

- Data Augmentation
 - We have 3,862 unpolarized and
 3,884 polarized data points.
 - $\circ \quad \mbox{Data augmentation! Using statistical errors.}$
- → This is additional source of physics information

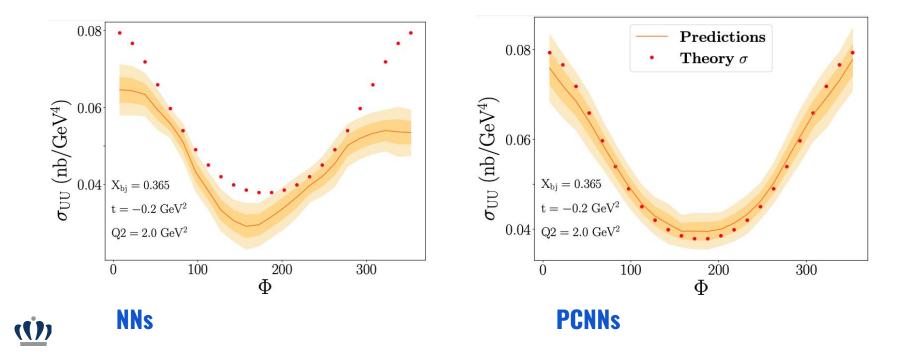


Visualization script obtained from FemtoNet group, UVA

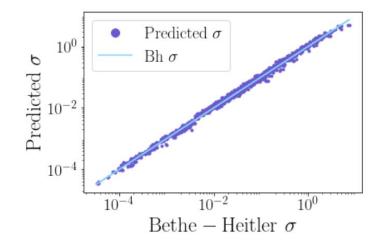
Φ

Ø

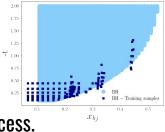
• Testing the PCNNs ability to generalize to kinematics outside of the range covered in BH cross sections.



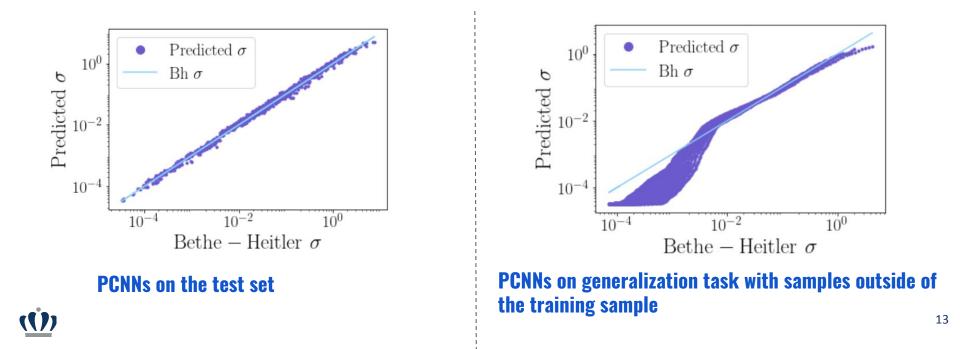
• Testing the PCNNs ability to generalize using pseudo data for the Bethe-Heitler (BH) process.



PCNNs on the test set

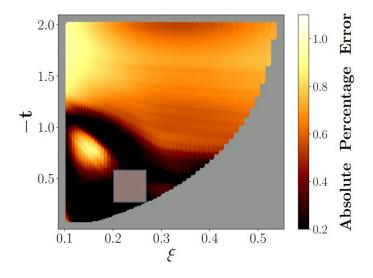


• Testing the PCNNs ability to generalize using pseudo data for the Bethe-Heitler (BH) process.



Train on kinematics (Q^2 = 2, Eb =6 , ξ = 0.2 - 0.3 and -t = 0.17-0.4)

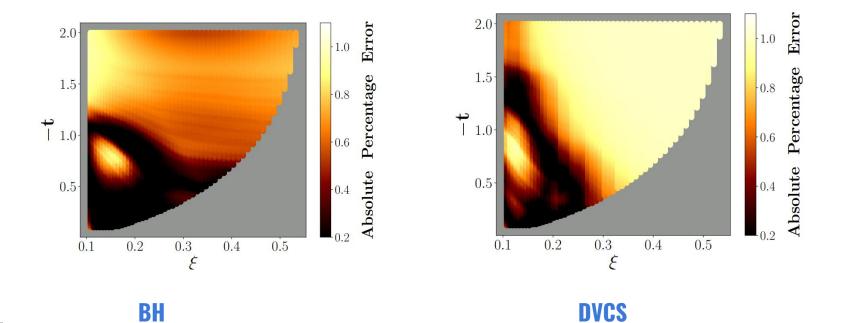
• Testing the PCNNs ability to generalize using BH and DVCS data.



BH

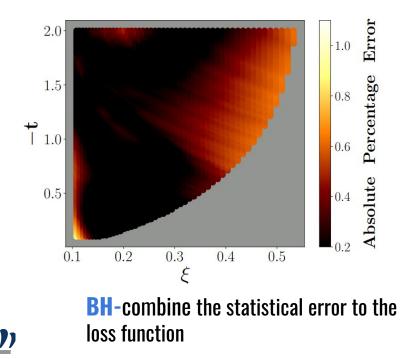
Train on kinematics (Q^2 = 2, Eb =6 , ξ = 0.2 - 0.3 and -t = 0.17-0.4)

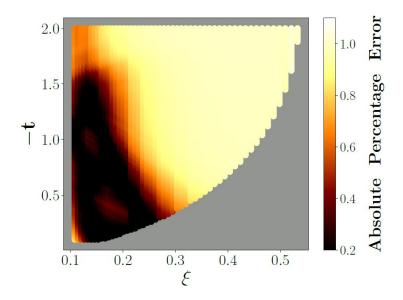
• Testing the PCNNs ability to generalize using BH and DVCS data.



 $f_{\theta_t}(x))^2$ $\mathcal{L} = \frac{1}{n}$

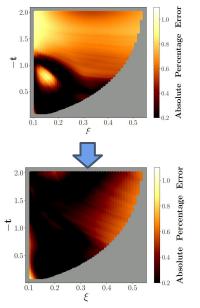
• Incorporating the **statistical error** to BH and DVCS training.



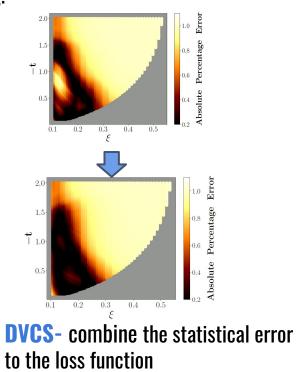


DVCS- combine the statistical error to the loss function

• Incorporating the **statistical error** to BH and DVCS training.



 $f_{\theta_t}(x))^2$ $\mathcal{L} = \frac{1}{-}$

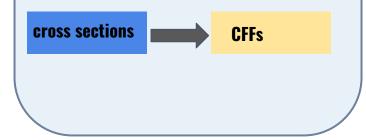


Compton Form Factors Extractions

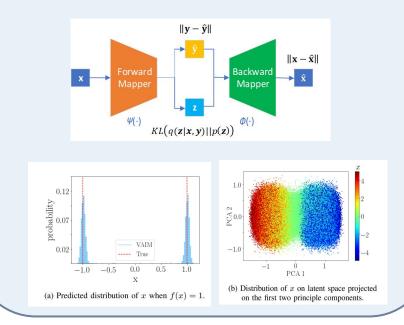
CFFs extraction:

DVCS has been identified as the "golden" channel" for the extraction of information on partonic 3D dynamics in the nucleon.

Inverse problem:

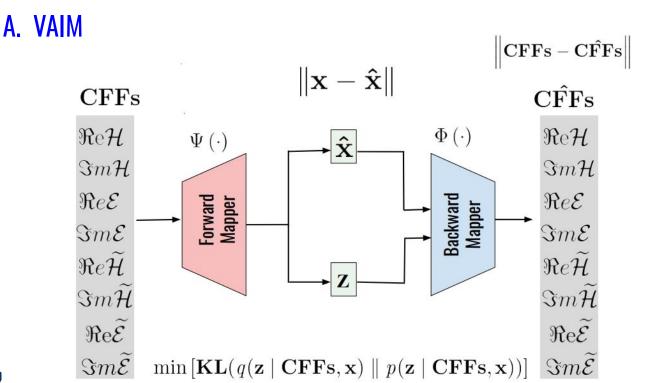


Variational Autoencoder Inverse Mapper (VAIM)[1]



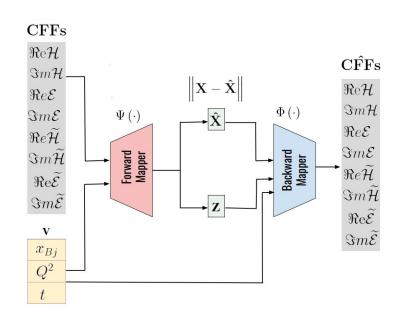
[1] M. Almaeen, Y. Alanazi, N. Sato, et al., "Variational Autoencoder Inverse Mapper: An End-to-End Deep Learning Framework for Inverse Problems", in 2021 International Joint Conference on Neural Networks (IJCNN) (2021).

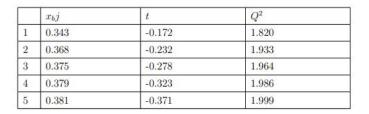
19



 x_{Bi} = 0.343, t = -0.172, Q² = 1.82, E_b = 5.75

B. Conditional-VAIM (C-VAIM)





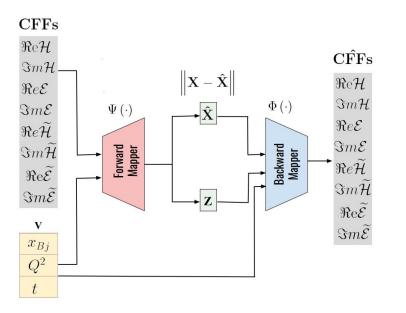
B. Conditional-VAIM (C-VAIM)

- \circ $\;$ Learn an approximate distribution $\; q(\mathbf{z} \mid \mathbf{cff}, \mathbf{v}, \mathbf{x}) \;$
- $\begin{array}{c|c} q(\mathbf{z} \mid \mathbf{cff}, \mathbf{v}, \mathbf{x}) \sim p(\mathbf{z} \mid \mathbf{cff}, \mathbf{v}, \mathbf{x}) \\ \circ & \text{Minimize the Kullback-Leibler (KL) divergence} \end{array}$

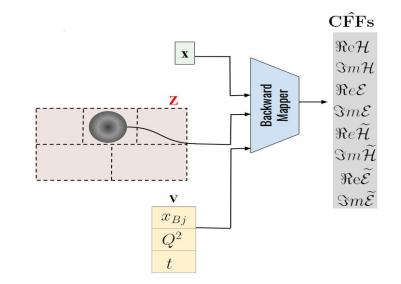
$$\min\left[\mathbf{KL}(q(\mathbf{z} \mid \mathbf{cff}, \mathbf{v}, \mathbf{x}) \parallel p(\mathbf{z} \mid \mathbf{cff}, \mathbf{v}, \mathbf{x}))\right]$$

$$\stackrel{\bullet}{\rightarrow} \min \left[\|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 + \|\mathbf{cff} - \hat{\mathbf{cff}}\|_2^2 + \mathrm{KL}(q(\mathbf{z} \mid \mathbf{cff}, \mathbf{v}, \mathbf{x}) \mid \mid p(\mathbf{z} \mid \mathbf{v})) \right]$$

B. Conditional-VAIM (C-VAIM)

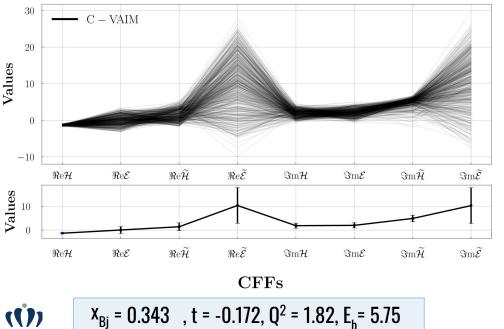


	$x_b j$	t	Q^2
1	0.343	-0.172	1.820
2	0.368	-0.232	1.933
3	0.375	-0.278	1.964
4	0.379	-0.323	1.986
5	0.381	-0.371	1.999

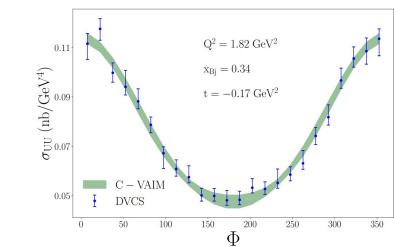


CFFs extraction: Results

B. C-VAIM on several kinematics sets



	$x_b j$	t	Q^2
1	0.343	-0.172	1.820
2	0.368	-0.232	1.933
3	0.375	-0.278	1.964
4	0.379	-0.323	1.986
5	0.381	-0.371	1.999



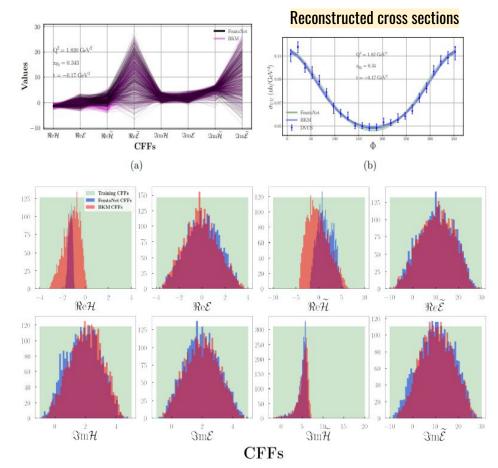
Reconstructed cross sections

CFFs extraction: Results

B. C-VAIM on several kinematics sets

BKM cross sections : the cross sections as they are written in the literature[2]. FemtoNet cross sections: UVA[3].

$$x_{Bj}$$
= 0.343, t = -0.172, Q² = 1.82, E_b= 5.75



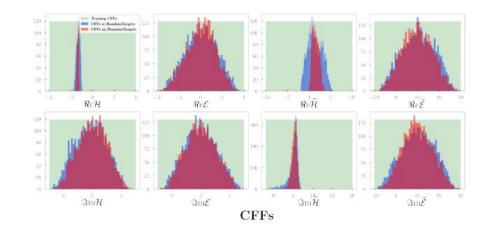
[2] A. V. Belitsky and D. Mueller, "Exclusive electroproduction revisited: treating kinematical effects," Phys. Rev., vol. D82, p. 074010, 2010.
 [3 B. Kriesten et al. "Extraction of generalized parton distribution observables from deeply virtual electron proton scattering experiments," Phys. Rev. D, 2020.

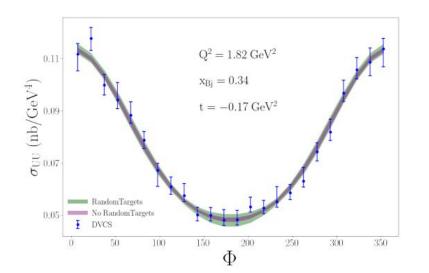
CFFs extraction: Results

B. C-VAIM on several kinematics sets

The results of our analysis with and without the random targets method for the propagation of experimental uncertainties.

$$x_{Bj} = 0.343$$
, t = -0.172, Q² = 1.82, E_b = 5.75





Summary

- PCNNs
 - Incorporating Physics constraint such as angular symmetry to DVCS cross sections.
 - Generalization capability on BH and DVCS data.

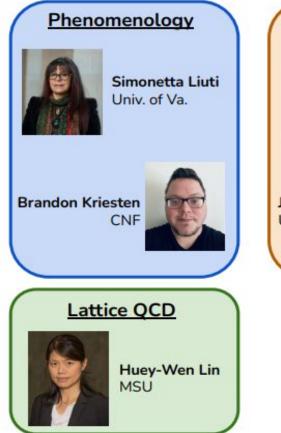
• C-VAIM

- Extracting the CFFs from cross section.
- Applied to the DVCS experimental data.

Publications:

- M. Almaeen, Y. Alanazi, N. Sato, W. Melnitchouk, M. Kunchera, and Y. Li. "Variational Autoencoder Inverse Mapper: An End-to-End Deep Learning Framework for Inverse Problems". International Joint Conference of Neural Networks IJCNN-2021.
- M. Almaeen, J. Grigsby, J. Hoskins, B. Kriesten, Y. Li, H. Lin, S. Liuti. "Benchmarks for a Global Extraction of Information from Deeply Virtual Exclusive Scattering", arXiv:2207.10766.
- M. Almaeen, J. Hoskins, B. Kriesten, Y. Li, H. Lin, S. Liuti. "VAIM CFF: A variational autoencoder inverse mapper solution to Compton form factor extraction from deeply virtual exclusive reactions", In progress.

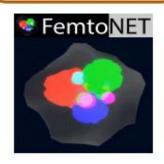
FemtoNet

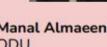


Machine Learning

Yaohang Li ODU

Joshua Hoskins Univ. of Va.





Manal Almaeen ODU

Zaki Panjsheeri Univ. of Va.

Joshua Bautista Univ. of Va.