

Multi-output Gaussian processes for inverse uncertainty quantification in random neutronics

Paul Lartaud^{1,2}, Josselin Garnier², Philippe Humbert¹

¹ CEA/DAM/DIF, ²Ecole polytechnique (CMAP)

1 Introduction

2 Inverse problem

3 Surrogate modeling

4 Application

5 Future work

Context

- Identification of a fissile material based on neutron correlation measurements —> inverse problem resolution.
- Applications : nuclear safeguards, criticality accidents detections, waste identification ..

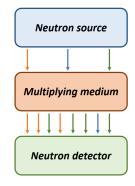
Methodology

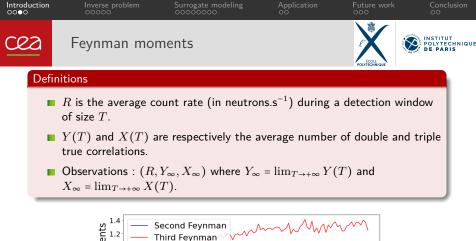
- Direct model : **too costly** (MC simulations) or **biased** (analytical model).
- Surrogate model for the direct model using Gaussian process regression.
- Bayesian resolution of the inverse problem, including the predictive covariance of the multi-output.

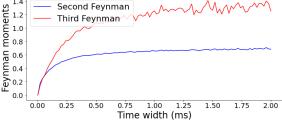
Introduction 0000 Neutron correlations

Definitions

- **Excess of variance** in a multiplying medium compared to a standard Poisson process.
- **True correlations** = coincident detections of neutrons from the same fission chain.
- Measuring the correlated detections provide information on the multiplying medium.







Problem description

- Prompt multiplication factor $0 < k_p < 1$.
- Detector efficiency $\varepsilon_F = \frac{\text{nb of counts}}{\text{nb of induced fissions}}$
- **Source intensity** (in $n.s^{-1}$)

Assumptions

- Homogeneous infinite material
- Mono-energetic neutrons
- Only fission and capture reactions

$$y = (R, Y_{\infty}, X_{\infty})^{T} = f_{\mathsf{PM}}(x) \text{ with } x = (k_{p}, \varepsilon_{F}, S)$$
(1)

Direct model outputs

Analog Monte-Carlo simulations with MCNP6.

■
$$N = 20$$
 independent noisy observations $\mathbf{y} = (y^{(k)})_{1 \le k \le N}$.

 $y^{(k)} = f(x) + \varepsilon^{(k)}$ with $\varepsilon^{(k)} \sim \mathcal{N}(0, \mathbf{C}_m)$, \mathbf{C}_m : Noise error

- **•** The direct model f is identified to the approximated point model f_{PM} .
- Observation covariance \mathbf{C}_m estimated by bootstrap.

- Simulation split into N_T time windows of width T, with n_k the number of detections in window k.
- Asymptotically normal estimators based on central moment estimators $\widehat{\mu_p} = \frac{1}{N_T} \sum_{k=1}^{N_T} (n_k - \widehat{\mu_1})^p \text{ for } p > 1 \text{ and } \widehat{\mu_1} = \frac{1}{N_T} \sum_{k=1}^{N_T} n_k$ $\widehat{Y_T} = \frac{\widehat{\mu_2}}{\widehat{\mu_1}} - 1 \text{ and } \widehat{X_T} = \frac{\widehat{\mu_3}}{\widehat{\mu_1}} - 1 - 3\widehat{Y_T}$ Neutron detections

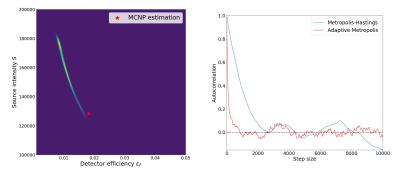
- **Goal** : uncertainty quantification for decision-making.
- III-posed inverse with very noisy observations, solved by Bayesian inference.

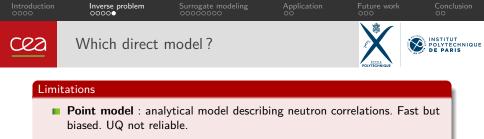
$$y = f(x) + \varepsilon$$
 with $\varepsilon \sim \mathcal{N}(0, \mathbf{C}_m)$, \mathbf{C}_m : Noise error

Posterior distribution $p(x|\mathbf{y})$ sampled by MCMC methods.

$$p(x|\mathbf{y}) \propto p(x) \exp\left(\prod_{k=1}^{N} (y^{(k)} - f(x))^T \mathbf{C}_m^{-1} (y^{(k)} - f(x))\right)$$

- Sampling with Adaptive Metropolis instead of standard Metropolis-Hastings.
- Thin posterior distribution but true point outside the support.
- Model bias not accounted for in the Bayesian resolution.





Monte-Carlo simulations : accurate but too costly (30 minutes per run).

Solution

 GP Surrogate model : fast predictions and improved compared to point model.

 $f_s(x) \sim \mathcal{N}\left(\overline{f_s}(x), \mathbf{C_s}(x)\right), \ \mathbf{C_s}(x) : \text{Model error}$

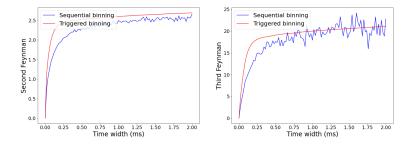
Training on a dataset based on MC simulations. Analytical model used to improve training¹.

1. M. C. KENNEDY et A. O'HAGAN, « Bayesian calibration of computer models, » *Journal of the Royal Statistical Society : Series B (Statistical Methodology)*, t. 63, n° 3, p. 425-464, 2001

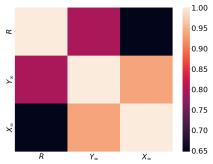
Paul Lartaud

Filtered triggered binning

- Neutron history number are known. Accidental correlations can be filtered out.
- Resulting training dataset much less noisy.
- Observation noise is kept identical to represent experimental results.



- 1125 independent simulations with MCNP6. Feature dimension I = 7, observation dimension D = 3.
- Density, geometries, compositions randomly chosen for each simulation.
- Strongly correlated outputs



Output correlations

Standard GP training and inference

For $f \sim \mathcal{GP}(0, k(x, x'))$ and training dataset (\mathbf{X}, \mathbf{f}) . Posterior predictive law on a test set $(\mathbf{X}_*, \mathbf{f}_*)$:

$$p(\mathbf{f}_*|\mathbf{f}, \mathbf{X}_*, \mathbf{X}) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\mu} = K(\mathbf{X}, \mathbf{X}_*)^T K(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f}$$
$$\boldsymbol{\Sigma} = K(\mathbf{X}_*, \mathbf{X}_*) - K(\mathbf{X}, \mathbf{X}_*)^T (K(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathcal{I})^{-1} K(\mathbf{X}, \mathbf{X}_*)$$

Hyperparameter selection by maximization of marginal likelihood.

$$\log p(\mathbf{f}|\mathbf{X}) = -\frac{1}{2}\mathbf{f}^T K_{\sigma}^{-1}\mathbf{f} - \frac{1}{2}\log|K_{\sigma}| - \frac{I}{2}\log(2\pi) \text{ with } K_{\sigma} = K(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathcal{I}$$

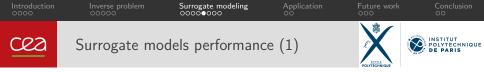
Linear Model of Coregionalization (LMC)

■ Linear combination of Q latent independent scalar GPs $u_q \sim \mathcal{GP}(0, k_q(x, x'))$ for $q \leq Q$ with $\mathbf{W} \in \mathcal{M}_{D,Q}(\mathbb{R})$.

$$f_d(x) = \sum_{q=1}^Q w_{d,q} u_q(x)$$

Standard GP inference with multi-output covariance kernel.

$$\mathsf{Cov}(f_d(x), f_{d'}(x_*)) = \sum_{q=1}^{Q} w_{d,q} w_{d',q} k_q(x, x_*)$$

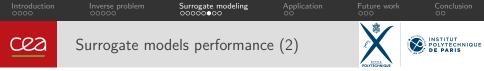


■ Dataset of 1125 instances. Normalized mean absolute error on the validation set (30% of dataset).

- *IGP* : independent scalar GP for each output.
- LMC2 : LMC GP with 2 latent GPs.
- LMC3 : LMC GP with 3 latent GPs.
- *PM* : analytical point model.

	IGP	LMC2	LMC3	РМ
R	0.0083	0.0081	0.0082	0.1933
Y_{∞}	0.029	0.028	0.027	0.0654
X_{∞}	0.155	0.073	0.084	0.151

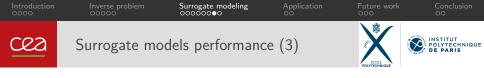
Improved predictions compared to point model. Comparable performance for the different surrogates. But IGP assume independent channels.

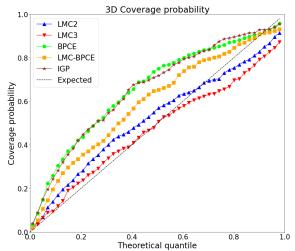


- **Reliability** of predictive covariances?
- **Multi-output coverage probabilities** : for a given test instance (X_*, f_*) , fraction of test inputs in the credible regions $I_{\alpha}(f_*)$ of confidence level α

$$D_M(f_*, f_s(X_*))^2 = \left(f_* - \overline{f_s(X_*)}\right)^T \mathbf{C}_s(X_*)^{-1} \left(f_* - \overline{f_s(X_*)}\right)$$
$$I_\alpha(f_*) = \left\{x \in \mathcal{X} | D_M(f_*, f_s(x))^2 \le q_\alpha\right\}$$

with q_{α} the quantile of confidence level α for the χ^2 distribution with D = 3 levels of freedom.





Bayesian resolution of the inverse problem.

$$y = \overline{f_s(x)} + \eta(x) + \varepsilon$$
 with $\varepsilon \sim \mathcal{N}(0, \mathbf{C}_m)$ and $\eta(x) \sim \mathcal{N}(0, \mathbf{C}_s(x))$

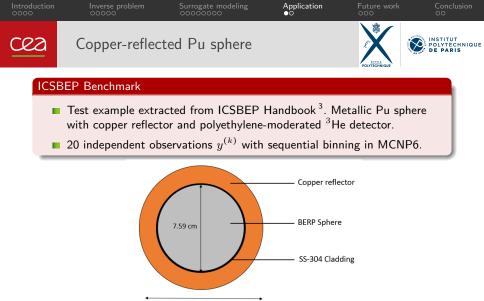
Gaussian likelihood with model error and noise error ².

$$L(\mathbf{y}|x) \propto \exp\left(-\frac{1}{2}\left(\mathbf{y} - \overline{\mathbf{f}_{\mathbf{s}}(x)}\right)^{T} \mathbf{C}_{\text{tot}}(x)^{-1}\left(\mathbf{y} - \overline{\mathbf{f}_{\mathbf{s}}(x)}\right)\right)$$

where $\overline{\mathbf{f}_{\mathbf{s}}(x)} = \left(\overline{f_{s}(x)}, ..., \overline{f_{s}(x)}\right)^{T} \in \mathbb{R}^{DN}$
$$\mathbf{C}_{\text{tot}}(x) = \begin{pmatrix} \mathbf{C}_{s}(x) + \mathbf{C}_{m} & \dots & \mathbf{C}_{s}(x) \\ \vdots & \ddots & \vdots \\ \mathbf{C}_{s}(x) & \dots & \mathbf{C}_{s}(x) + \mathbf{C}_{m} \end{pmatrix} \in \mathbb{R}^{DN \times DN}$$

2. P. LARTAUD, P. HUMBERT, GARNIER et al., « Multi-output Gaussian processes for inverse uncertainty quantification in neutron noise analysis, » *Nuclear Science and Engineering*, p. 1-24, 2023

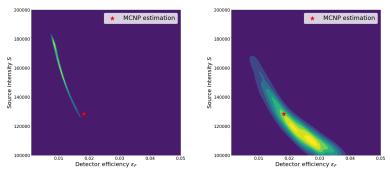
Paul Lartaud



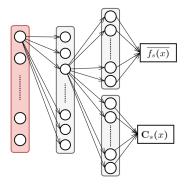
10.16 cm

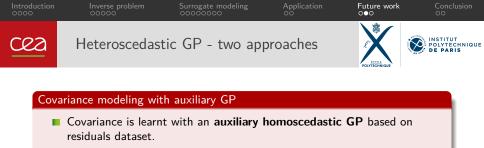
3. J. B. BRIGGS, L. SCOTT et A. NOURI, « The international criticality safety benchmark evaluation project, » *Nuclear science and engineering*, t. 145, n° 1,

- MCMC sampling (Adaptive Metropolis) with likelihood including model and observation noise.
- Thin distribution support, long decorrelation time $\hat{\tau} \simeq 3000$. Large number of MCMC iterations $K = 5 \times 10^6$ MCMC iterations.



- Assume Gaussian training outputs and learn directly the output distribution.
- Learn mean $\overline{f_s(x)}$ and covariance $C_s(x)$ with negative log-likelihood loss.
- Predictive covariances included in inverse problem likelihood.





Very data hungry. Larger dataset and sparse approximations required⁴.

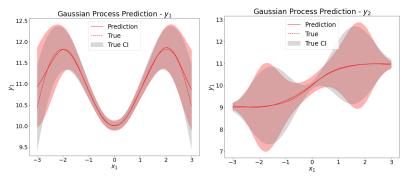
GP with PCE covariance noise kernel

- Polynomial Chaos Expansion (PCE) modeling of the covariance.
- Polynomial coefficients treated as kernel hyperparameters.
- Dramatic increase of nb of hyperparameters. Optimization more difficult.

4. J. QUINONERO-CANDELA et C. E. RASMUSSEN, « A unifying view of sparse approximate Gaussian process regression, » *The Journal of Machine Learning Research*, t. 6, p. 1939-1959, 2005

Paul Lartaud

Toy case example of an heteroscedastic GP regression with 2 outputs.



Contributions

- Development of a general methodology for reliable inverse UQ with surrogate models.
- Application to a neutron multiplication benchmark.

Limitations

- Heteroscedasticity not treated as of yet.
- Generalization to other problems in neutron noise analysis?

Cea

Thank you for your attention.